

1 Article

2 **GaN/Ga₂O₃ Core/Shell Nanowires Growth:**
3 **Nanostructures for Future CO-Sensors Developments**4 **Q.C. Bui, L. Largeau, M. Morassi, N. Jegenyes, O. Mauguain, L. Travers, X. Lafosse, C. Dupuis,**
5 **J.C. Harmand, M. Tchernycheva and N. Gogneau ***6 Centre de Nanosciences et de Nanotechnologies—CNRS-UMR9001, Université Paris-Sud,
7 Université Paris-Saclay, 10 Boulevard Thomas Gobert, F-91120 Palaiseau, France;
8 shiningskill@gmail.com(Q.C.B.); ludovic.largeau@c2n.upsaclay.fr (L.L.); martina.morassi@c2n.upsaclay.fr
9 (M.M.); jegenyes@free.fr (N.J.); olivia.mauguin@c2n.upsaclay.fr (O.M.); laurent.travers@u-psud.fr (L.T.);
10 xavier.lafosse@c2n.upsaclay.fr (X.L.); christophe.dupuis@c2n.upsaclay.fr (C.D.); jean-
11 christophe.harmand@c2n.upsaclay.fr (J.C.H); maria.tchernycheva@u-psud.fr (M.T.)
12 * Correspondence: noelle.gogneau@c2n.upsaclay.fr; Tel.: +33-(0)1-70-27-05-4913 **Abstract:** The development of sensors for monitoring Carbon Monoxide (CO) in a large range of
14 temperature is of crucial importance in areas as monitoring of industrial processes or personal
15 tracking using smart objects. Devices integrating GaN/Ga₂O₃ core/shell nanowires (NWs) is a
16 promising solution allowing combining the high sensitivity of the electronic properties to the states
17 of GaN-core surface; and the high sensitivity to CO of Ga₂O₃-shell. Because the performances of
18 sensors primarily depend on the material properties composing the active layer of the device, it is
19 essential to control these properties and in first time its synthesis. In this work, we investigate the
20 synthesis of GaN/Ga₂O₃ core-shell NWs with a special focus on the formation of the shell. The GaN
21 NWs grown by Plasma-assisted molecular beam epitaxy, are post-treated following thermal
22 oxidation to form Ga₂O₃-shell surrounding the GaN-core. We establish that the Ga₂O₃-shell thickness
23 can be modulated from 1 up to 14 nm by changing the oxidation conditions, and follows the diffuse-
24 controlled reaction. By combining XRD-STEM and EDX analysis, we also demonstrate that the oxide
25 shell formed by thermal oxidation is crystalline and presents the β -Ga₂O₃ crystalline phase, and is
26 synthesized in epitaxial relationship with the GaN-core.27 **Keywords:** core/shell nanowires; GaN; Ga₂O₃; metal-oxide semiconductor; gas sensor devices
2829 **1. Introduction**30 The rapid development of smart objects has led to the increased interest of sensor technologies,
31 which enable the collection and exchange of sensed data in real-time. With the development of
32 nanotechnologies, the sensor efficiency and accuracy have been improved and thereby the
33 application domains have been largely extended [1,2]. Among a very wide range of sensor
34 applications, such as intelligent building, public safety or environmental monitoring, the
35 development of sensor devices allowing monitoring of the harmful Green House Gases (GHGs) is of
36 the utmost importance. GHGs need to be monitored in areas as diverse as monitoring of industrial
37 processes or personal tracking using smart objects. The Carbon Monoxide (CO) is one of GHGs. Its
38 efficient detection and monitoring is essential and require the development of specific sensor devices
39 which must be reliable, responsive, highly sensitive, miniaturized, low cost, and capable to operate
40 on a large range of temperature, from ambient temperatures (smart objects) to high temperatures (up
41 to 600°C for industrial combustion processes).42 The sensing and data collection of gases such as CO, but also such as CO₂ or NO_x, require the
43 sensor to fulfill four main criteria: 1- The sensitivity with a minimum of detection of the order of few
44 ppm (an even ppb for harmful gases, e.g. NO_x) for precisely monitoring the combustion process, a
45 high response rate and a fast recovery time to initial state; 2) The selectivity to monitor targeted gas
46 without cross-interference with other gases, whose presence should not affecting the detection signal

47 quality (i.e. sensitivity), the response rate and recovery time; 3) The sensing stability (by keeping high
48 selectivity), and reliability in harsh environment (environmental humidity, pressure, radiation
49 and/or chemical attack); and 4) The miniaturization and manufacturability of sensor device to
50 combine an integration of multi-sensing devices (i.e. simultaneous gas detection) with the lowest
51 power consumption in order to develop ultra-compact self-powered sensors.

52 Most of actual sensors are solid-state sensors based on the interaction of gas particles with
53 surfaces and volumes. The electrochemical potential, the resistivity, the density, and/or the optical
54 properties are altered upon gas adsorption, which must be maximized in order to increase the
55 reaction and therefore the detection. Common high-temperature GHG sensors are based on metal
56 oxide material working on the principle of chemiresistor. For CO, the detection mechanism is based
57 on the redox reaction between the gas species and the pre-adsorbed O₂ on the surface of metal oxide,
58 affecting the depletion layer and thus resulting in the change of the conductivity of the material [3-
59 7].

60 Metal oxide sensors based on SnO₂ material have been developed to monitor CO due to their
61 relatively high sensitivity [8-9]. Indeed, the detection of 5 ppm CO in few seconds at 300 °C has been
62 demonstrated [10-11]. Chemiresistor sensors based on Titanium Oxide (TiO₂)/lanthanum oxide
63 (La₂O₃/CuO) have also demonstrated their capacity to selectively detect down to 500 ppm of CO
64 against CH₄ [12] under 5% of O₂ up to 600 °C. However, these kind of sensors can present a low
65 selectivity (due to interference with other gas), a drift of the sensor response and/or a poor recovery.
66 CO-sensors based on Ga₂O₃ thin film have also been developed usually operating in the 400-600°C
67 temperature range. Comparing to SnO₂, Ga₂O₃ gas sensor present faster response, faster recovery
68 time and lower cross-sensitivity to humidity [13-16]. The sensitivity and selectivity performances of
69 these Ga₂O₃ sensors have been improved by adjusting the oxygen vacancy concentration [17] or by
70 using gold particles to catalyze the reaction between adsorbed oxygen on sensor surface and gas
71 molecule by reducing their activation energy [18]. However, these sensors based on planar films
72 present numerous drawbacks. Among them, the limited surface, where takes place the interaction
73 between gas molecules and materials, results in limited sensor performances.

74 This last decade, a new class of sensors based on 1D-nanostuctures, such as nanowires (NWs) or
75 nanorods (NRs), has appeared as a promising way to improve the sensing performances. Thanks to
76 their specific properties, these 1D-nanostructures present, in comparison with their 2D-film
77 counterparts, important characteristics to fundamentally improve the gas-sensing efficiency in terms
78 of sensitivity, response and spatial resolution [19-28]: (i) their large surface to volume ratio greatly
79 enhances the detection limit and thus leads to a higher sensitivity [29], and induces enhanced and
80 tunable surface reactivity implying possible room temperature operation, faster response and
81 recovery time; (ii) their nanometer scale dimensions are compatible with the size of species being
82 sensed, opening up the way for nano-detection; and finally (iii) due to these morphological properties
83 combined with their quasi-lattice perfection, the NWs offer superior mechanical properties leading
84 to large elastic deformation without plastic deformation or fracture [30], higher flexibility, higher
85 robustness and higher resistance to fatigue, then extending the operational lifetime of nano-systems
86 [31].

87 As for 2D based sensors, the main materials used for developing gas-sensors, from room
88 temperature to 400°C, are chemiresistor based on metal oxide NWs such as SnO₂, ZnO, In₂O₃ and
89 Ga₂O₃. However, in spite of the considerable effort devoted to develop high-efficient gas sensors
90 based on 1D-nanostructures, further improvements of the sensor performances are today needed
91 including sensitivity, low detection limit, response-recovery time, selectivity as well as operating
92 temperature range.

93 To enhance the sensing performances, several approaches have been considered to modify the
94 surface properties, such as doping, surface functionalization or hybridization [23] and core-shell
95 heterostructures [23, 32]. Concerning this last approach, carbon nanotubes-core/vanadium oxide-
96 shell [33], Ga₂O₃- core/SnO₂-shell NWs [34], ZnO-core/Co₃O₄-shell NWs [35], Pb/In₂O₃ nanocubes [36]
97 and Ga₂O₃-core/GaN-shell NWs [37] have demonstrated enhanced sensing performances or sensing
98 at a lower operating temperature. In these heterostructures, the sensing is based on the NW resistance

99 modulation before and after exposing it to gas such as CO. The core-shell NW heterostructures are
100 characterized by the existence of two depletion zone, a first one at the air/shell interface and a second
101 one at the shell/core interface [37]. The adsorption/desorption of the gas on the heterostructure
102 surface modifies the depth of the first depletion layer, which in turn alters the second one at the
103 interface and thus induces a modulation of the corresponding potential barrier height. Carrier
104 transport is thus affected, resulting in a large change in resistance and thus in an enhanced response
105 of the core/shell NW sensor. Based on this mechanism, $\text{Ga}_2\text{O}_3/\text{GaN}$ core/shell based sensor has
106 demonstrated detection of 10–200 ppm CO at 150°C with the responses were 1.6–3.1 times stronger
107 than a pure Ga_2O_3 nanowire sensor [37]. In spite of these encouraging results, the system presents a
108 strong response to other gases, which indicates its poor selectivity to CO.

109 To develop highly sensitive and selective CO-gas sensor device operating in a large range of
110 temperature, from ambient temperature (smart object) to high temperature (up to 600°C for industrial
111 combustion processes), we propose to consider $\text{GaN}/\text{Ga}_2\text{O}_3$ core-shell NW heterostructures
112 combining the advantages of the GaN -core and Ga_2O_3 -shell materials. GaN and its alloys present
113 favorable properties to develop gas-sensors and especially in playing the NW-core role: (i) the III-
114 Nitrides present high thermal and chemical stability as well as radiation hardness, thus allowing their
115 use in harsh environments; (ii) they exhibit less intrinsic leakage and are capable of operating at high
116 temperatures due to the larger bandgap and stronger bond energy [38]; (iii) the GaN , as same as AlN ,
117 have a high Pauling Electronegativity difference (1.23 eV), which confers a high sensitivity of the
118 electronic properties to the state of its surface (K Parameter) [38]; and (iv) the nitrides are
119 characterized by conductivity in the range of 10^{-8} to 10^3 S/cm, allowing both to keep the influence of
120 the surface on the charge carriers and the modulation of the Fermi level [38]. The choice of Ga_2O_3 -
121 shell is motivated by the following advantages: (i) Ga_2O_3 present high thermal stability, especially the
122 β - Ga_2O_3 crystalline phase (the most stable phase). This property is suitable to be used for sensing CO
123 in high temperature environment of industrial factory; (ii) Ga_2O_3 presents high sensitivity to CO. In
124 fact, its resistivity is very sensitive to CO at high temperature. Thus by measuring and analyzing the
125 changing in resistance of Ga_2O_3 shell, it is possible to detect CO species [39]; (iii) Presence of Ga_2O_3
126 layer covering the GaN surface, resulting from oxidation mechanism upon contact to ambient air
127 atmosphere, increases the response of GaN sensors to CO [38].

128 Because the performances of sensors primarily depend on the material properties composing
129 the active layer of the device, it is of crucial importance to control these properties and in first time
130 its synthesis. In this paper, we investigate the synthesis of $\text{GaN}/\text{Ga}_2\text{O}_3$ core-shell NWs with a special
131 focus on the formation of the Ga_2O_3 shell. The GaN nanowires grown by Plasma-assisted molecular
132 beam epitaxy (PA-MBE), are post-treated following thermal oxidation to form Ga_2O_3 shell
133 surrounding the GaN core. We established that the thickness of the Ga_2O_3 shell can be modulated by
134 changing the oxidation conditions (temperature, O_2 flux and time of oxidation), from 1 up to 14 nm
135 and follows the diffuse-controlled reaction. The structural properties of the shell have been
136 investigated by combining XRD, TEM-STEM and EDX. Then, we have demonstrated that the oxide
137 shell formed by thermal oxidation is crystalline and presents the β - Ga_2O_3 crystalline phase, the most
138 stable one, and is synthesized in epitaxial relationship with the GaN core.

139 2. Materials and Methods

140 The synthesis of $\text{GaN}/\text{Ga}_2\text{O}_3$ core-shell NW heterostructures is composed of two successive
141 steps:

142 1- GaN -core NW growth: Self-assembled free-catalyst GaN -core NWs were grown on conductive
143 oxide-free Si (111) substrate (resistivity of the order of 0.007 Ω cm) in a molecular beam epitaxy
144 chamber (MBE) (RIBER Compact 12 PA-MBE system, Bezons, France), equipped with a radio-
145 frequency N plasma source. After a chemical cleaning and a thermal deoxidation of the substrate
146 surface to remove the organic pollutants and the native oxide, a 2.5-nm-thick AlN buffer layer was
147 deposited at 620°C following a previously reported procedure [40]. This seed layer allows a better
148 control of the NW nucleation and density, a reduction of the NW twist and an improvement of the

149 NW vertical orientation [41-44]. Then, the temperature is ramped to 790°C to grow the GaN NWs
 150 under nominally N-rich conditions with an N/Ga flux ratio of 1.36. Following this growth procedure,
 151 the GaN NWs are vertically oriented with a hexagonal shape delimited by [10-10] plane, are
 152 characterized by a quasi-crystalline perfection (absence of dislocations) [40], a prevalent N-polarity
 153 [45-46] and present reproducible dimensions and densities (Fig. 1). GaN NWs considered in this
 154 study are characterized by a density of 5.10^9 NW/cm², an average diameter of 40 ± 5 nm and average
 155 height of 650 ± 100 nm, these structural characteristics being extracted from high-resolved SEM
 156 images.

157

158 **Figure 1.** Schematization and SEM images of GaN NWs before and GaN/Ga₂O₃ core-shell NWs after
 159 oxidation. The cycle of oxidation is also schematized.

160 **2- Ga₂O₃ shell synthesis:** The Ga₂O₃ shell is formed around GaN NW by thermal oxidation post-
 161 treatment. The as-grown GaN NWs are oxidized at high temperature following the procedure
 162 described in Fig. 1. The adjustment of the temperature to the oxidation one is performed under
 163 Nitrogen to avoid any alteration of the NW surfaces. After the stabilization of the oxidation
 164 temperature, the controlled environment is injected and the oxidation time is considered. Finally, the
 165 temperature is decreased under Nitrogen to the ambient one. During the oxidation step, due to the
 166 high temperature, the GaN is decomposed at the surface. The Nitrogen is removed in the
 167 environment, while the Ga, with its free dangling bonds is linked with oxygen, then forming Ga₂O₃
 168 oxide (Fig. 1). After the first oxide monolayer is formed, it will separate the oxygen and the GaN
 169 creating a barrier. To continue the oxidation, the oxygen species should diffuse through the Ga₂O₃
 170 oxide to form another oxide monolayer. As a function of the oxidation time, the shell surrounding
 171 the GaN core becomes thicker.

172 The oxidation mechanisms, the rate of oxidation, the quality of Ga₂O₃ layer and the interface
 173 GaN/Ga₂O₃ can be affected by many factors such as: temperature, oxidized agents and their flow rate,

174 pressure, GaN structure and concentration of impurities, etc. In order to investigate the formation of
 175 the Ga_2O_3 -shell, the oxidation of GaN-core NWs has been tested under different conditions: oxidation
 176 time, temperature and N_2/O_2 ratio, summarized in Table 1. We note here that the N_2/O_2 ratio was
 177 chosen to be approximately equivalent to the normal air composition. The “humid” term refers to
 178 oxidation environment equivalent to normal air (i.e. with water vapor), while the “dry” term refers
 179 to the same oxidation conditions (N_2/O_2 ratio) but without water vapor.

180 **Table 1.** Conditions of oxidation.

Series \ Factor	Temperature (°C)	O_2 flux (sccm)	N_2 flux (sccm)	Time (min)
1	900	1.3 <i>dry atmosphere</i>	5	5 - 15
2	900	1.3 <i>humid atmosphere</i>	5	3 - 15
3	850	1.3 <i>dry atmosphere</i>	5	7 - 30
4	850	0.4 - 1.3 <i>dry atmosphere</i>	5	15

181
 182 The structural properties of the core-shell NWs have been characterized by combining different
 183 techniques, such as Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM),
 184 X-Ray Diffraction (XRD) and Energy Dispersive X-ray (EDX). To evaluate the shell formation, the
 185 diameters of NWs were systematically characterized before and after each oxidation by High
 186 Resolution SEM images in cross-section view (SEM Magellan 400L-FEI) and confirmed by STEM/EDX
 187 analysis. The crystal structure of NWs was analyzed by X-Ray Diffraction with a Smartlab RIGAKU
 188 under in-plane diffraction configurations. The choice of this experimental configuration is motivated
 189 by the thinness of the sample (the average height of the NW being of 650 nm) and the study of the
 190 parallel plan to the c-axis of the vertically oriented NWs on Si(111) substrate. Finally, the composition
 191 and crystal structure of samples after oxidation were analyzed by using high-resolved transmission
 192 electron microscope having the possibility to work also under the scanning TEM mode and the
 193 energy dispersive X-ray mode (EDX).

194 **3. Results and Discussion**

195 In order to adjust the performances of sensors based on GaN/ Ga_2O_3 core-shell NW, it is of crucial
 196 importance to understand the conditions of the shell formation and thus to control its thickness and
 197 crystalline quality. The main factors driving the thermal oxidation of GaN NWs are: The temperature,
 198 the O_2 flux, the time and the dry/humid environment. The effects of these factors were studied
 199 through different series of samples (Table 1). In order to thoroughly investigate the formation of the
 200 oxide shell, we have combined various techniques of characterization allowing us to access to the
 201 morphology modification of the NWs, as well as the composition and crystallographic phase of the
 202 oxide shell.

203 **3.1. Ga_2O_3 shell thickness evolution**

204 By comparing the HR-SEM images of NWs before and after the oxidation, we can observe that
 205 the as-grown MBE GaN-core NWs are characterized by smooth surfaces, while the GaN/ Ga_2O_3 core-
 206 shell NW heterostructures present rough surfaces (Figure 1). The formation of Ga_2O_3 shell is also
 207 characterized by an increase of the NW diameter. Due to the self-assembled growth mode of the NWs
 208 (cf. Materials and Methods), we have a modulation of the as-grown NW diameter from wire to wire.
 209 To realize a representative study, each sample has been measured before and after oxidation with a
 210 statistical analysis of the NW diameter based on the measurement of a large number of
 211 nanostructures (around 400 NWs). The diameter follows a single Gaussian distribution, within the
 212 limits of statistical error and the error bars correspond to the full width at half maximum of the
 213 Gaussian fit in each case (Figure 2a). The shell thickness is estimated from the increase of the NW

214 diameter after oxidation was evaluated by the difference between mean values of two distributions
 215 with standard error calculated as follows: $\sigma_{2-1} = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}$.

216 The diameter expansion is caused by the difference between the specific volume of the GaN (13.5
 217 cm³/mol) and the β -Ga₂O₃ (31.8 cm³/mol). Then, when a Ga atom of GaN is converted to a Ga atom
 218 of Ga₂O₃, the corresponding volume increases. The specific volume of GaN and β -Ga₂O₃ have been
 219 calculated based on their molar mass and densities (for GaN: 83.7 g/mol and 6.2 g/cm³ [47]; for β -
 220 Ga₂O₃ 187.4 g/mol and 5.9 g/cm³ [48]). Therefore, the diameter of GaN NWs is expected to be
 221 expanded after the oxidation. We want to note that even if the formation of the oxide mainly explains
 222 the expansions of the NW diameter, other reasons can accompany this one, such as the non-uniform
 223 oxidation, the defects of Ga₂O₃ structure, the vacancies in the shell, etc. It should also be noted that
 224 the difference between the mean values of the two distributions before and after the oxidation is the
 225 average expansion of the NW diameter. However, it is not exactly equivalent to 2 times the thickness
 226 of the formed oxide. In fact, when GaN is oxidized, a layer of GaN at the side of the NW is converted
 227 into the oxide layer. This means that the oxide thickness is equal to the thickness expansion plus the
 228 thickness of GaN layer that has been oxidized, as schematized on Figure 2d.

229
 230 **Figure 2.** (a) Gaussian distribution of the NWs diameter before and after oxidation during 10 min and
 231 15 min under a dry atmosphere at 850°C for 1.3 sccm of O₂, 5 sccm of N₂. The diameter expansion is
 232 schematized with dashed lines; (b) Schematization of the NW expansion; (c) NW diameter expansion
 233 as a function of the oxidation time for 1.3 sccm of O₂ and 5 sccm of N₂, for different temperatures and
 234 atmospheres; (d) NW diameter expansion as a function of the O₂ flux for a fixed temperature of 850°C,
 235 a N₂ flux of 5 sccm, an oxidation time of 15 min and under dry atmosphere.

236 Figure 2 establishes the direct correlation between the diameter expansion and the oxidation
 237 conditions. We can observe that the Ga₂O₃ shell thickness can be controlled between 1 and 14 nm as
 238 a function of the oxidation conditions. Figure 2c shows the diameter expansion at 850°C (blue curve)
 239 and 900°C (green curve) as a function of the oxidation time, for O₂ and N₂ fluxes of 1.3 sccm and 5

240 sccm respectively and under dry atmosphere (Table 1, Series 1 and 3). The diameter expansion due
241 to the oxidation of the GaN NWs increases with time, indicating that the NWs keep continue to be
242 oxidized with time. The diameter expansion of the samples oxidized at 900°C is always higher than
243 the one occurring at 850°C for the same conditions and time of oxidation. This result demonstrates
244 that the oxidation rate was faster with higher temperature. These results are similar to ones reported
245 in [49-52]. The curve corresponding to the oxidation temperature of 850°C in figure 2c shows that the
246 diameter expansion (or the increase of the oxidation rate) becomes slower with time. This
247 phenomenon indicates that the oxidation follows the diffuse-controlled reaction. This means that the
248 formed oxide layer starts to be thick enough to hinder the interaction between the GaN and the
249 oxygen. The decrease of the oxidation rate in time is not observed in samples oxidized at 900°C,
250 despite a thicker oxide layer as evidenced by the higher diameter expansion. This behavior can be
251 explained by the higher oxidation temperature. In fact, at higher temperature, the system is more
252 reactive and the diffusion of oxygen through the oxide layer is easier and faster. We can then assume
253 an under-linear thickening of the shell for higher oxidation times.

254 Now, we compare the diameter expansion as a function of the time for the same oxidation
255 conditions ($T = 900^\circ\text{C}$, $\text{O}_2 = 1.3 \text{ sccm}$, $\text{N}_2 = 5 \text{ sccm}$), but for different atmospheres, i.e. under dry (green
256 curve) and wet (orange curve) thermal oxidation conditions. The comparison between oxidized
257 samples shows that the diameter expansion of NWs oxidized in wet atmosphere is more important.
258 In other words, it indicates that the oxidation rate is faster under humid environment. However, the
259 faster oxidation yields a more difficult control over the oxide formation and as reported in the
260 literature, leads to a poor GaN/ Ga_2O_3 interface causing unstable electrical properties of the structure
261 [15]. Thus, these conditions are undesirable since they can degrade the sensor performances.

262 Finally, we have analyzed the oxidation under dry atmosphere as a function of the O_2 flux
263 (varying between 0.4 and 1.3 sccm), by keeping content the temperature at 850°C, the N_2 flux at 5
264 sccm and the oxidation time at 15 min. We can observe on Figure 2d two different regimes of
265 oxidation rate: The Regime I is characterized by a continuous increase of the oxidation rate with the
266 O_2 flux, while in Regime II, the oxidation rate decreases for high fluxes. To understand the origin of
267 these two regimes, we have to consider that the variation of oxygen flow rate can affect many factors
268 during the oxidation, such as the concentration of oxygen and nitrogen, the total pressure in the
269 oxidation chamber, as well as the partial pressure of oxygen and nitrogen.

270 The nitrogen is an inert gas, so that it is not participating to the oxidation reaction. By contrast,
271 the increase of the oxygen flow induces an increase of the oxygen concentration in the N_2/O_2 gas
272 mixture, and thus of the partial pressure of oxygen (N_2 flux being kept constant), leading to a faster
273 diffusion of oxygen through the being-formed oxide shell. Thus, the oxidation rate is enhanced. From
274 the GaN decomposition point of view, when the sample is oxidized in environment with low oxygen
275 flow rate, partial pressure of nitrogen is high, which can reduce the decomposition of GaN as
276 mentioned in report [14]. In other words, the decomposition of GaN gets faster as the oxygen flow
277 rate becomes higher and the partial pressure of nitrogen becomes lower. These behaviors are both in
278 good agreement with the diameter expansion observed in Regime I where the oxygen flow rate
279 increases from 0.4 to 1.0 sccm. However, for fluxes higher than 1.0 sccm, the diameter expansion
280 decreases. This behavior can appear contradictory to the last described one. To explain the Regime II
281 behavior, the increase of the total pressure with the oxygen flow rate can be considered. This means
282 that the GaN decomposition could be more difficult under high pressure, resulting in a slower
283 oxidation rate. Additional experiments are needed to understand this Regime II behavior.
284 Nevertheless, the less pronounced oxidation rate for higher fluxes does not prevent the control of the
285 Ga_2O_3 shell thickness from 1 to 14 nm by adjusting the oxidation temperature, time and atmosphere
286 as illustrated by Figure 2c, where the O_2 flux was fixed to 1.3 sccm, the highest tested one (Figure 2d).

287 3.2. Structural characterization of the Ga_2O_3 shell

288 To study the composition and the crystal structure of the Ga_2O_3 oxide shell, samples have been
289 characterized by combining X-Ray diffraction, STEM and EDX.

290 Figure 3 shows typical spectra of GaN (Figure 3a) before oxidation and GaN/Ga₂O₃ NWs (Figure
 291 3c) after oxidation, analyzed by XRD using in-plane Phi/2ThetaChi scan configuration. The spectra
 292 performed on as-grown GaN NWs show only 2 peaks located at 47.3° and at 57.8° corresponding
 293 respectively to the signal of Si (220) and the signal of hexagonal GaN (11-20). By contrast, the
 294 spectrum of GaN NWs after oxidation present two additional peaks, located at 61.1° and 64.4°,
 295 suggesting the signals of oxide. According to reports [50-51], monoclinic β -Ga₂O₃ phase, the most
 296 stable one, appears after similar oxidation process of GaN. By comparing with the reference XRD
 297 spectra of β -Ga₂O₃ shown in figure 3b [53], the peak at 61.1° is attributed to the signal of β -Ga₂O₃
 298 (020), as confirmed by STEM analysis (presented after), while the one around 64° is assigned to the
 299 signal of β -Ga₂O₃ (403).

300

301 **Figure 3.** XRD analyze using in-plane Phi/2ThetaChi scan configuration. **(a)** XRD spectra of as-grown
 302 GaN NWs before thermal oxidation; **(b)** Reference XRD spectrum of the β -Ga₂O₃ in report [53]; **(c)**
 303 XRD spectra of GaN/Ga₂O₃ NWs after oxidation at 900°C during 7 min under dry atmosphere with
 304 N₂ and O₂ fluxes of 5 sccm and 1.3 sccm respectively.

305 We note here that only the GaN (11-20) peak appears on figures 3a and 3c. The peak of GaN (10-
 306 10) at 32.3903° does not appear, despite it is perpendicular to the sample surface and thus can give
 307 signal in XRD in-plane scanning. However, in XRD phi/2thetachi mode scanning, to observe several
 308 signatures in the same spectrum, the planes must be parallel to each other. The plane (11-20) cannot
 309 be parallel to the plane (10-10) in same NW as the structure grown by PA-MBE is monocrystalline
 310 with a unique orientation for the whole NW ensemble. The missing of GaN (10-10) peak in figure 3
 311 shows that the samples do not present NW in position where its plane (10-10) is parallel to the (11-
 312 20) one, and thus demonstrate that NWs have preferentially orientation as we have previously
 313 demonstrated [44].

314 The detailed positions of peaks for three different samples before and after dry oxidation are
 315 showed in the Table 2. The theoretical values of 2ThetaChi have been calculated by using theoretical
 316 parameters of crystal.

317

318

Table 2. 2ThetaChi values of crystals.

	Si (220) ¹	GaN (11-20)	Ga ₂ O ₃ (020)	Ga ₂ O ₃ (403)
T=900°C, N ₂ /O ₂ =5/1.3, Time=7min, Shell thickness=6.9	47.3516°	57.8236°	61.0465°	64.6155°
T=850°C, N ₂ /O ₂ =5/1.3, Time=15min, Shell thickness=6.5	47.3277°	57.8005°	61.0825°	64.0635°
T=850°C, N ₂ /O ₂ =5/0.8, Time=15min, Shell thickness=8.1	47.3262°	57.8005°	61.0400°	64.4000°
Pure GaN NWs	47.3211°	57.7507°		
Theory 2ThetaChi	47.3010°	57.7742°	60.8969°	64.6319°

319 ¹ Because the crystal parameters remain unchanged after oxidation process as explained below, the Si peak is
320 considered to compare values of GaN and Ga₂O₃ in the different samples.

321 The mismatch existing between GaN and Ga₂O₃ at the core-shell interface induces internal strain
322 and thus affects their parameters as well as values of 2ThetaChi in XRD spectra. Due to the specific
323 volume of GaN and Ga₂O₃, from a theoretical point of view, Ga₂O₃ should induce stretching in the
324 GaN, and reciprocally, GaN should induce compression on Ga₂O₃. This strain equilibrium depends
325 on the thickness ratio between core and shell. By regarding the thickness of the GaN-core (diameter
326 ~ 40 nm) and of the oxide shell (for thickness < 10 nm), the main stress expressed in the
327 heterostructure is localized in the shell, as demonstrated by the material crystal parameters extracted
328 from XRD measurements, summarized in the Table 3. The average parameter of whole GaN core
329 does not changed, while the increase of 2ThetaChi of Ga₂O₃ (020) in the Table 2 and the decrease of
330 its parameter b, in Table 3, indicates the presence of a compressive Ga₂O₃ shell. For the specific case
331 of thick Ga₂O₃ shell (> 10 nm), the compressive strain starts to be relaxed. In consequences, this
332 partially relaxed shell induces tensile strain on the GaN-core.

333

Table 3. Parameter of crystals extracted from XRD measurements.

	a of Si	a of GaN	b of Ga ₂ O ₃
T=900°C, N ₂ /O ₂ =5/1.3, Time=7min, Shell thickness=6.9	5.426 Å	3.186 Å	3.033 Å
T=850°C, N ₂ /O ₂ =5/1.3, Time=15min, Shell thickness=6.5	5.428 Å	3.188 Å	3.031 Å
T=850°C, N ₂ /O ₂ =5/0.8, Time=15min, Shell thickness=8.1	5.428 Å	3.188 Å	3.034 Å
Pure GaN NWs	5.429 Å	3.190 Å	
Theory parameter	5.431 Å	3.189 Å	3.040 Å

334

335 As shown on Figure 3, the peak of GaN (11-20) is very sharp, indicating uniform crystal
336 parameter of GaN synthesized by PA-MBE. By contrast, the Ga₂O₃ (020) peak is quite broad and
337 slightly shifted towards higher degrees. To explain these observations, we have to consider two
338 phenomena:

339 1) Due to the stress undergone from GaN or due to the presence of possible defects at the GaN/Ga₂O₃
340 interface, the crystal parameter of Ga₂O₃ is varied in whole oxide shell. The variation of crystal
341 parameter leads to the variation of 2ThetaChi, causing the wide peak in XRD spectra.
342 2) If we finely analyze the reference XRD spectra of β -Ga₂O₃ (Figure 3b), we can note the presence,
343 very close to the Ga₂O₃ (020) peak, of the Ga₂O₃ (710) peak, with an estimated (from theoretical
344 parameter) 2ThetaChi of 62.6294°. The widening of the Ga₂O₃ (020) and Ga₂O₃ (710) due to the
345 crystalline non-homogeneity of the shell can lead to their overlap, then resulting in the appearance,

346 on XRD spectra, of a unique Ga_2O_3 (020) broad peak slightly shifted with respect to the peak
 347 theoretical position.

348 XRD evidence that the oxide shell synthesis by thermal treatment of MBE-grown GaN NWs
 349 leads to the formation of $\beta\text{-Ga}_2\text{O}_3$ crystalline phase. To further investigate the formation of this shell,
 350 we have analyzed some samples by XRD using in-plane Phi scan. In this configuration, the samples
 351 are rotated by 360° while the angle between the X-ray source and the detector (2ThetaChi) is fixed at
 352 57.8° , 61.1° and 64.3° corresponding to GaN (11-20), $\beta\text{-Ga}_2\text{O}_3$ (020) and $\beta\text{-Ga}_2\text{O}_3$ (403). Figure 4
 353 presents the results for pure GaN NWs and GaN/ $\beta\text{-Ga}_2\text{O}_3$ NWs. On Figure 4a, six peaks respond to the
 354 six (11-20) planes of GaN, demonstrating the symmetry of hexagonal structure of GaN. Figure 4b,
 355 shows also six peaks, indicating that the (020) and (403) planes of $\beta\text{-Ga}_2\text{O}_3$ present symmetrically
 356 along the hexagonal structure of GaN. This result, in agreement with the result from Phi/2ThetaChi
 357 scan (Figure 3), demonstrates that the $\beta\text{-Ga}_2\text{O}_3$ synthesized by post-thermal treatment is grown in
 358 epitaxial relationship with the GaN core.

359

360 **Figure 4.** XRD analysis using in-plane Phi scan configuration of GaN/ $\beta\text{-Ga}_2\text{O}_3$ NWs with the detector
 361 (2ThetaChi) fixed at 57.8° (a), 61.1° (b) and 64.3° (c) corresponding to GaN (11-20), $\beta\text{-Ga}_2\text{O}_3$ (020) and
 362 $\beta\text{-Ga}_2\text{O}_3$ (403) respectively.

363 The XRD analysis have evidenced that the Ga_2O_3 shell crystallize in the $\beta\text{-Ga}_2\text{O}_3$, the most-stable
 364 phase, but is characterized by a lack of uniformity. To investigate this point, we have performed
 365 High-Resolved STEM analysis combined with EDX mapping. Figures 5a and 5c presents bright field
 366 and dark field images of GaN/ $\beta\text{-Ga}_2\text{O}_3$ NWs. The crystal structure of the heterostructures is
 367 characterized by different patterns, corresponding to the structure of GaN for the core, and the
 368 structure of Ga_2O_3 oxide for the shell (of both sides of the NW). The TEM images evidence a ripple at
 369 the GaN/oxide interface and show variations in the shell lattice. This could be caused by the mismatch
 370 between GaN and Ga_2O_3 structures, creating internal stresses located in the shell, and the appearance
 371 of defects in Ga_2O_3 .

372 The zoom in the NW core (figure 5c) indicates that the pattern responds to the (11-20) plane of
 373 hexagonal GaN. The perfect lattice of GaN in the figure indicates that its monocrystalline structure is
 374 preserved after the oxidation treatment. Concerning the shell, the TEM images reveal that it presents
 375 a different crystalline structure from the NW core and is non-uniform with different patterns.
 376 According to the result from XRD analysis, the plane (11-20) of GaN is parallel to the (020) plane of
 377 $\beta\text{-Ga}_2\text{O}_3$. This means the crystal structure of this plane, or of any other parallel ones, can be observed
 378 in the same images than one containing the (11-20) plane of GaN. Figure 5d presents STEM analysis
 379 performed at the GaN/ Ga_2O_3 interface. The shell presents the same structure than the structure of $\beta\text{-}$
 380 Ga_2O_3 (020) plane [60]. Combined with the fact that their parameters correspond to the theoretical
 381 ones, we can conclude that the oxide shell formed by thermal oxidation of MBE grown GaN NWs
 382 presents the monoclinic $\beta\text{-Ga}_2\text{O}_3$ crystalline phase [54]. The non-uniformity of the shell results from
 383 the mismatch caused by hexagonal structure of GaN, which disarranges the formation of monoclinic
 384 structure of Ga_2O_3 at the angles of hexagon. Since Ga_2O_3 structure has epitaxial relation with GaN

385 structure, the angles of hexagonal structure change the direction of monoclinic structure in an
 386 inappropriate way for monoclinic structure, leading to the observed mixing direction of Ga_2O_3 lattice.

387

388 **Figure 5.** STEM images of GaN/Ga₂O₃ NWs in **(a)** bright field mode; **(b)** dark field mode. **(c)**
 389 Magnification of the GaN core. **(d)** Magnification at the GaN/Ga₂O₃ interface. The β -Ga₂O₃
 390 structural representation is extracted from [54].

391 Finally, the Figure 6 presents EDX mapping performed on GaN/ β -Ga₂O₃ NWs. The different
 392 elements composing the NW can be well distinguished between the GaN core and the Ga₂O₃ shell.
 393 At this stage, it is important to note that the blue dots of O atoms can be seen in an area of the GaN
 394 core. This is not the signature of oxygen contain inside the GaN core, but only the signature of a *visual
 395 effet*. In fact, because the Ga₂O₃ shell surrounds the GaN core, the electron beam is transmitted
 396 through the entire NWs, causing an overlaps of the core and shell signatures. The EDX mapping
 397 reveals that the β -Ga₂O₃ shell surrounds the wall GaN-core, which is of crucial importance to
 398 integrate this kind of heterostructures in gas-sensors. EDX mappings evidence also the border
 399 between the core and the shell, which expresses the ripple interface of GaN/Ga₂O₃ similar to ones
 400 observed by STEM. The thickness of the oxide shell extracted from EDX mapping is around 3-5 nm,
 401 this measurement being in good agreement with our estimations performed from SEM analyses
 402 (Figure 2).

403
404Figure 6. STEM (a) and EDX mappings (b) of GaN/Ga₂O₃ NW.

405

4. Conclusion

406 We have developed a synthesis procedure to form GaN/β-Ga₂O₃ NWs composed on two
 407 successive steps: (1) the growth of GaN NWs by plasma-assisted MBE, followed by (2) their thermal
 408 oxidation post-treatment, leading to the formation of a Ga₂O₃ shell surrounding the GaN-core. Due
 409 to the larger specific volume of Ga₂O₃ by regarding the one of GaN, the oxidation of the GaN-core is
 410 associated with an expansion of its diameter. We have analyzed the shell thickness variation
 411 (diameter expansion) as a function of the oxidation conditions (temperature, O₂ flux, atmosphere and
 412 time of oxidation). Then, we have established that the thickness of the Ga₂O₃ shell can be modulated
 413 with the oxidation conditions, from 1 up to 14 nm, and follows the diffuse-controlled reaction. The
 414 structural properties of the shell have been investigated by combining various techniques: XRD,
 415 TEM-STEM and EDX. We have demonstrated that the oxide shell formed by thermal oxidation is
 416 synthesized in epitaxial relationship with the GaN core. We have also established that the shell is
 417 crystalline and presents the β-Ga₂O₃ crystalline phase, the most stable one. By controlling the
 418 synthesis of GaN/β-Ga₂O₃ NWs, this paper constitutes a building block for developing high-efficient
 419 CO-gas sensors.

420

421 **Author Contributions:** “NW growth, M. Morassi, L. Travers, and Q.C. Bui; Thermal oxidation, Q.C. Bui, X.
 422 Lafosse, and N. Gogneau.; Methodology, Q.C. Bui, M. Morassi and N. Gogneau.; NW structural
 423 characterizations, L. Largeau, Q. C. Bui, C. Dupuis, O. Mauguin, and N. Gogneau.; Investigation, Q.C. Bui, L.
 424 Largeau, and N. Gogneau.; Data Analysis, Q.C. Bui, M. Morassi, N. Jegenyes, L. Largeau, M. Tchernycheva, and
 425 N. Gogneau.; Validation, M. Tchernycheva, and N. Gogneau.; Funding Acquisition, M. Tchernycheva, J.C.
 426 Harmand, and N. Gogneau; Writing-Original Draft, Q.C. Bui, M. Tchernycheva, L. Largeau, and N. Gogneau.;
 427 Supervision, M. Tchernycheva, J.C. Harmand, and N. Gogneau.”

428 **Funding:** This work was financially supported by the French National Research Agency through the GANEX
 429 program (ANR-11-LABX-0014), and the EU Horizon 2020 ERC project ‘NanoHarvest’ (Grant 639052).

430 **Conflicts of Interest:** The authors declare no conflict of interest.

431 References

1. Potyrailo, R. A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. *Chem. Rev.* **2016**, *116*, 11877.
2. Shehzad, K.; Shi, T.; Qadir, A.; Wan, X.; Guo, H.; Ali, A.; Xuan, W.; Xu, H.; Gu, Z.; Peng, X.; Xie, J.; Sun, L.; He, Q.; Xu, Z.; Gao, C.; Rim, Y.-S.; Dan, Y.; Hasan, T.; Tan, P.; Li, E.; Yin, W.; Cheng, Z.; Yu, B.; Xu, Y.; Luo, J.; Duan, X. Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction. *Adv. Mater. Technol.* **2017**, *2*, 1600262.
3. Shankar, P.; Bosco Balaguru Rayappan, J. Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases - A review. *Science Lett. J.* **2015**, *4*, 126.
4. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. *Sensors* **2010**, *10*, 2088.

441

442 5. Liua, Z.; Yamazakia, T.; Shena, Y.; Kikutaa, T.; Nakatania, N.; Li, Y. O₂ and CO sensing of Ga₂O₃ multiple
443 nanowire gas sensors. *Sensors and Actuators B* **2008**, *129*, 666.

444 6. Fleischer, M.; Meixner, H. Electron mobility in single- and polycrystalline Ga₂O₃. *J. Appl. Phys.* **1993**, *74*, 300.

445 7. Mazeina, L.; Picard, Y. N.; Maximenko, S.I.; Perkins, F.K.; Glaser, E.R.; Twigg, M.E.; Freitas, J.A.; Prokes,
446 S.M. Growth of Sn-Doped β -Ga₂O₃ Nanowires and Ga₂O₃-SnO₂ Heterostructures for Gas Sensing
447 Applications. *Cryst. Growth & Des.* **2009**, *9*, 4471.

448 8. Bârsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the
449 example of CO sensing with SnO₂ sensors in the presence of humidity. *J. Phys.: Condens. Matter.* **2003**, *15*,
450 R813.

451 9. Hahn, S.H.; Bârsan, N.; Weimar, U.; Ejakov, S.G.; Visser, J.H.; Soltis, R.E. CO sensing with SnO₂ thick film
452 sensors: role of oxygen and water vapour. *Thin Solid Films* **2003**, *436*, 17.

453 10. Huang, J.; Wan Q. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures.
454 *Sensors* **2009**, *9*, 9903.

455 11. Hernández-Ramírez, F.; Tarancón, A.; Casals, O. ; Arbiol, J. ; Morante, J. R. High response and stability in
456 CO and humidity measures using a single SnO₂ nanowire. *Sensors and Actuators B* **2007**, *121*, 3.

457 12. Savagea, N.O.; Akbar, S.A.; Dutta, P.K. Titanium dioxide based high temperature carbon monoxide
458 selective sensor. *Sensors and Actuators B: Chemical* **2001**, *72*, 239.

459 13. Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in
460 Environmental Monitoring. *Sensors* **2010**, *10*, 5469.

461 14. Oon, H.S.; Cheong, K. Y. Effect of Oxidation Time on Thermally Grown Oxide on GaN. *J. Mater. Eng. and*
462 *Perf.* **2013**, *22*, 1341.

463 15. Korbutowicz, R.; Prazmowska, J. Wet Thermal Oxidation of GaAs and GaN. *Semicond. Technol.*, In *Jan*
464 *Grym (Ed.)*, InTech (2010).

465 16. Hoefera, U.; Frank, J.; Fleischer, M. High temperature Ga₂O₃-gas sensor and SnO₂-gas sensors: a
466 comparison. *Sensors and Actuators B* **2011**, *78*, 6.

467 17. Ogita, M.; Saikaa, N.; Nakanishi, Y.; Hatanaka, Y. Ga₂O₃ thin films for high-temperature gas sensors, *Appl.*
468 *Surf. Sci.* **1999**, *142*, 188.

469 18. Schwebel, T.; Fleischer, M.; Meixner, H.; Kohl, C. D. CO-Sensor for domestic use based on high temperature
470 stable Ga₂O₃ thin films. *Sensors and Actuators B*, **1998**, *49*, 46.

471 19. Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? *Mater. Sci. Eng. B*
472 **2007**, *139*, 1.

473 20. Franke, M. E.; Koplin, T. J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: does the
474 nanoscale matter? *Small* **2006**, *2*, 36.

475 21. Vander Wal, R. L.; Hunter, G. W.; Xu, J. C.; Kulis, M. J.; Berger, G. M.; Ticich, T. M. Metal-oxide
476 nanostructure and gas-sensing performance. *Sens. Actuators B* **2009**, *138*, 113.

477 22. Jimerez-Cadena, G.; Riu, J.; Rius, F.X. *Analyst* **2007**, *132*, 1083.

478 23. Huang, X.-J.; Choi, Y.-K. Chemical sensors based on nanostructured materials. *Sens. Actuators B* **2007**, *122*,
479 659.

480 24. Comini, C. Metal oxide nano-crystals for gas sensing. *Anal. Chim. Acta* **2006**, *568*, 28.

481 25. Zhang, J.; Liu, X.; Neri, G.; Pinna, P. Nanostructured Materials for Room-Temperature Gas Sensors. *Adv.*
482 *Mater.* **2016**, *28*, 795.

483 26. Chen, X.; Wong, C. K.; Yuan, C. A.; Zhang, G. Nanowire-based gas sensors. *Sens. Actuators B* **2013**, *177*, 178.

484 27. Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. *Small* **2010**, *6*, 1705.

485 28. Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-Dimensional Metal-Oxide Nanostructures: Recent
486 Developments in Synthesis, Characterization, and Applications. *Adv. Funct. Mater.* **2012**, *22*, 3326.

487 29. Kolmakov, A.; Zhang, Y.; Cheng, G.; Koskovits, M. Detection of CO and O₂ Using Tin Oxide Nanowire
488 Sensors. *Adv. Mater.* **2003**, *15*, 997.

489 30. Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: what's next? *Nano Lett.* **2010**, *10*, 1529.

490 31. Cao, G. In *Nanostructures and Nanomaterials*, Imperial Collage Press. London, 2004

491 32. Miller, D. R. ; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A
492 review. *Sens. Actuators, B* **2014**, *204* , 250.

493 33. Willinger, M-G; Neri, G.; Rauwel, E.; Bonavita, A.; Micali, G.; Pinna, N. Vanadium Oxide Sensing Layer
494 Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process. *Nano. Lett.* **2008**, *8*, 4201.

495 34. Jang, Y-G; Kim, W-S.; Kim, D-H.; Hong, S-Y. Fabrication of $\text{Ga}_2\text{O}_3/\text{SnO}_2$ core–shell nanowires and their
496 ethanol gas sensing properties. *J. Mater. Res.* **2011**, *26*, 2322.

497 35. Liu, Y.; Zhu, G.; Chen, J.; Xu, H.; Shen, X.; Yuan, A. $\text{Co}_3\text{O}_4/\text{ZnO}$ nanocomposites for gas-sensing
498 applications. *Appl. Surf. Sci.* **2013**, *265*, 379.

499 36. Lai, H.-Y.; Chen, C.-H.; Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-
500 decorated In_2O_3 flower-like nanobundles. *J. Mater. Chem.* **2012**, *22*, 13204.

501 37. Park, S. H.; Kim, S.H.; Park, S. Y.; Lee, C. Synthesis and CO gas sensing properties of surface nitridated
502 Ga_2O_3 nanowires. *RSC Adv.* **2014**, *4*, 63402.

503 38. Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? *Materials Science and*
504 *Engineering: B* **2007**, *139*, 1.

505 39. Prasad, R. M.; Lauterbach, S.; Kleebe, H-J.; Merdrignac-Conanec, O.; Barsan, N.; Weimar, U.; Gurlo, A.
506 Response of Gallium Nitride Chemiresistors to Carbon Monoxide is Due to Oxygen Contamination. *ACS*
507 *Sens.* **2017**, *2*, 713

508 40. Largeau, L.; Galopin, E.; Gogneau, N.; Travers, L.; Glas, F.; Harmand, J-C. N-Polar GaN Nanowires Seeded
509 by Al Droplets on Si(111). *Cryst. Growth Des.* **2012**, *12*, 2724

510 41. Brubaker, M. D.; Levin, I.; Davydov, A.V.; Rourke, D. M.; Sanford, N. A.; Bright, V. M.; and Bertness, K. A.
511 GaN based nanorods for solid state lighting. *J. Appl. Phys.* **2011**, *110*, 053506

512 42. Songmuang, R.; Landré, O.; and Daudin, B. Molecular beam epitaxy growth and optical properties of AlN
513 nanowires. *Appl. Phys. Lett.* **2007**, *91*, 251902

514 43. Bertness, K. A.; Roshko, A.; Mansfield, L. M.; Harvey, T. E.; and Sanford, N. A. Nucleation conditions for
515 catalyst-free GaN nanowires. First International Symposium on Growth of Nitrides. *J. Cryst. Growth* **2007**,
516 *300*, 94

517 44. Largeau, L.; Dheeraj, D. L.; Tchernycheva, M.; Cirlin, G. E.; Harmand, J. C. Facet and in-plane
518 crystallographic orientations of GaN nanowires grown on Si(111). *Nanotechnology* **2008**, *19*, 155704.

519 45. Largeau, L.; Galopin, E.; Gogneau, N.; Travers, L.; Glas, F.; Harmand, JC. N-Polar GaN Nanowires Seeded
520 by Al Droplets on Si(111)C. *Cryst. Growth Des.* **2012**, *12*, 2724.

521 46. Auzelle, T.; Haas, B.; Minj, A.; Bougerol, C.; Rouvière, J.-L.; Cros, A.; Colchero, J.; Daudin, B. The influence
522 of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. *J. Appl. Phys.* **2015**,
523 *117*, 245303.

524 47. Parameters of semiconductor. Retrieved from <http://www.ioffe.ru/SVA/NSM/Semicond>

525 48. Gallium(III) Oxide. Retrieved from <http://www.sigmapel.com/catalog/product/aldrich/215066>

526 49. Yamada, T.; Ito, J.; Asahara, R.; Watanabe, K.; Nozaki, M.; Nakazawa, S.; Anda, Y.; Ishida, M.; Ueda, T.;
527 Yoshigoe, A.; Hosoi, T.; Shimura, T.; Watanabe, H. Comprehensive study on initial thermal oxidation of
528 GaN(0001) surface and subsequent oxide growth in dry oxygen ambient. *J. Appl. Phys.* **2017**, *121*, 035303.

529 50. Chen, P.; Zhang, R.; Xu, X.F.; Zhou, Y.G.; Chen, Z.Z.; Xie, S.Y.; Li, W.P.; Zheng, Y.D. The oxidation of
530 gallium nitride epilayers in dry oxygen. *Appl. Phys. A* **2000**, *71*, 191.

531 51. Wolter S. D.; Mohney, S. E.; Venugopalan, H.; Wickenden, A. E.; Koleske, D. D. Kinetic Study of the
532 Oxidation of Gallium Nitride in Dry Air. *J. Electrochem. Soc.* **1998**, *145*, 629.

533 52. Zhou, Y.; Ahyia, C.; Isaacs-Smith, T.; Bozack, M.; Tina, C-C.; illiams, J.; Park, M.; Cheng, A-J.; Park, J-H.;
534 Kim, D-J.; Wang, D.; Preble, E.A.; Hanser, A.; Evans, K. Formation, etching and electrical characterization
535 of a thermally grown gallium oxide on the Ga-face of a bulk GaN substrate. *Solid-State Electronics* **2008**, *52*,
536 756.

537 53. Li, Y.; Tokizono, T.; Liao, M.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J.J. Efficient Assembly of Bridged
538 β - Ga_2O_3 Nanowires for Solar-Blind Photodetection. *Adv. Func. Mater.* **2010**, *20*, 3972.

539 54. Hanada, K.; Moribayashi, O.; Koshi, K.; Sasaki, K.; Kuramata, A.; Ueda, O.; Kasu, M. Origins of etch pits in
540 β - $\text{Ga}_2\text{O}_3(010)$ single crystals. *Japan. J. Appl. Phys.* **2016**, *55*, 1202BG.