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Abstract: The key issue in the post-genomic era is how to systematically describe the association 

between small molecule transcripts or translations inside cells. With the rapid development of high-

throughput “omics” technologies, the achieved ability to detect and characterize molecules with 

other molecule targets opens up the possibility of investigating the relationships between different 

molecules from a global perspective. In this article, a Molecular Associations Network(MAN) is 

constructed and comprehensively analyzed by integrating the associations among miRNA, lncRNA, 

protein, drug, and disease, in which any kind of potential associations can be predicted. More 

specifically, each node in MAN can be represented as a vector by combining two kinds of 

information including the attributes of the node itself (e.g. sequences of ncRNAs and proteins, 

semantics of diseases and molecular fingerprints of drugs) and the manner of the node in the 

complex network (associations with other nodes). Random Forest classifier is trained to classify and 

predict new interactions or associations between biomolecules. In the experiment, the proposed 

method achieves a superb performance with 0.9735 AUC in 5-fold cross-validation, which show that 

the proposed method can provide new insight for exploration of the molecular mechanisms of 

disease and valuable clues for disease treatment. 
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1. Introduction 

There are many types of biomolecules inside living cells that form multiple associated regulatory 

networks as pathways or direct participants to maintain a wide variety of life activities and key 

functions [1-3]. For instance, protein-protein interactions play a key role in numerous life processes 

and maintain many of the functions of normal cells. There is also growing evidence that ncRNAs are 

involved in cell growth and apoptosis, leading to many diseases. Therefore, predicting the potential 

associations between small molecule transcripts and compounds not only helps people to understand 

important cell activities at the molecular level, but is also significant for prevention, diagnosis and 

treatment of disease, as well as genomic drug discovery [4, 5]. In fact, it is unrealistic to verify the 

existence of association between such large-scale nodes one by one through biological experiments 

under the constraints of time and cost. In addition, the results of the experimental methods will be 

accompanied with higher false positives and false negatives due to various external factors [6]. 

Benefiting from the development of high-throughput technologies such as Microarray, Q-PCR, and 

yeast two-hybrid screens (Y2H) [7, 8], construction of association prediction framework that provide 

a new viewpoint for gaining a holistic understanding in different fields will be possible based on the 

published online database such as LncRNADisease [9], HMDD [10], and STRING [11].   
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In recent years, several computational methods based on public data sets have been put forward 

successively and was carried on in practice to guide and support manual experiments [12]. These 

proposed methods can be roughly divided according to the research field, calculation model, 

calculation method, etc. The prediction model can be divided into several categories because of the 

different research objects and the typical representative is as follows. In the field of protein–protein 

interaction (PPI), Wang et al. regarded the protein sequence as a kind of natural language called 

Bio2Vec for feature extraction and discover the potential association by convolution neural network 

(CNN) [13]. In the field of ncRNA-protein (RPI), Yi et al. proposed a robust deep learning framework 

for predicting interactions through evolutionary information [14].  

 

Figure 1. Example of the molecular associations network. Different color represents different molecules 

nodes and associations edges. 

In the field of drug-target interactions (DTI), Wang et al. predict the association between drug 

and target by Rotation Forest based on drug structure and protein sequence [15]. Through the 

different computational models, the prediction framework can be roughly divided into machine 

learning based methods, network based methods and matrix decomposition based methods. You et 

al. proposed a novel model called PCA-EELM to predict protein-protein interactions by machine 

learning model with only information of protein sequence [16]. Chen et al. presented a network-based 

framework to predict miRNA-disease association by integrating known associations and the 

similarity of miRNAs and diseases respectively [17]. Li et al. transformed the problem of discovering 

undetected miRNA-disease association into the problem of adjacency matrix completion and 

proposed a prediction model called MCMDA [18]. Most of the existing computational models are 

based on direct associations or the characteristics of the research objects themselves to detect 

unknown relationships. And now, it is becoming more and more popular to explore potential 

associations through some intermediary. For example, by constructing a heterogeneous network of 

miRNA, lncRNA, and disease, Chen et al. took lncRNA as an intermediary to discover miRNA-

disease associations through label propagation algorithms [19]. Peng et al. carried on CNN as the 

classifier to predict undetected miRNA-disease associations by capturing similarity in a three-layer 

network including miRNA, protein, and disease [20]. Researchers are gradually addressing this 

problem through an increasingly overall perspective, but to date there is still no predictive model 

that can discover the association of any node in the complete network within a cell.  

In this study, we present a model to predict the relationship between any small molecules in a 

cell based on sequence and network embedding through a more systematic and comprehensive view. 

The complex associations network of biomolecules (as shown in Figure 1 and Figure 2) consists of 

two parts: nodes (ncRNA (miRNA, lncRNA), protein (target), drug, disease) and edges (the 

relationship between nodes). Determining the edges between any two nodes in the whole complex 
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network helps people to have a deep and comprehensive understanding of various life activities in 

living organisms from another micro perspective [21, 22].  

Firstly, nine kinds of molecular associations, such as miRNA-disease association, protein-protein 

interaction, lncRNA-protein interactions, and drug-target interaction were collected to consider the 

relationship between each node and any other kind of node in a global way. After de-redundancy 

and repetition, five research objects such as miRNA, protein, and drug were obtained and co-

combined to construct a complex heterogeneous network in an entire view at the cellular level. 

Secondly, each node can be represented in two ways. One is the node intrinsic attributes such as the 

sequence of ncRNA and protein, the molecular fingerprint of drug, and the phenotype of disease. 

The other way is to represent the relationship between nodes and other nodes as a vector through 

network embedding. Thirdly, all known associations are treated as positive samples, and an equal 

number of unknown associations are randomly selected as negative samples, which together serve 

as a training set. Random forest is selected as a classifier for training verification and testing. The five-

fold cross validation was adopted to evaluated the proposed method, and we also have compared 

the performance of different types of features, classifiers and previous methods. The results indicate 

that our method combined intrinsic attribute feature and manner information could achieve effective 

and robust prediction performance. The construction of systematic and complex molecular 

associations network offers a new view, which can help us better understand biology and disease 

pathologies. To the best of our knowledge, we are the first to construct molecular associations 

network using associations between lncRNA, miRNA, disease, drug and protein. We hope that this 

work will inspire more research on representational learning on biological networks. 

 

 

Figure 2. The molecular associations network. 

2. Materials and Methods 

2.1. Combined nine kind of associations to construct the molecular associations network 

In order to systematically and holistically establish a biomolecular relationship network, known 

associations between biological small molecule transcripts (miRNA, lncRNA and protein), diseases 

and drugs were downloaded from multiple databases. The details of the final experimental data 

obtained after performing the inclusion of identifier unification, de-redundancy, simplification and 

deletion of the irrelevant items are shown in the following Table 1. 

Table 1. The details of nine kinds of associations in the molecular associations network. 
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Relationship type Database Number of associations 

miRNA-lncRNA lncRNASNP2 [23] 8374 

miRNA-disease HMDD [10] 16427 

miRNA-protein miRTarBase [24] 4944 

lncRNA-disease 
LncRNADisease [9], 

lncRNASNP2 [23] 
1264 

lncRNA-protein 

protein-disease 

drug-protein 

drug-disease 

protein-protein 

LncRNA2Target [25] 

DisGeNET [26] 

DrugBank [27] 

CTD [28] 

STRING [11] 

690 

25087 

11107 

18416 

19237 

Total N/A 105546 

After aggregating the above database, we separately classify the different nodes to get the final 

statistics as shown in the following Table 2.   

Table 2. The amount of 5 types of nodes in the molecular associations network. 

Node Amount 

Disease 2062 

LncRNA 769 

MiRNA 1023 

Protein 1649 

Drug 1025 

Total 6528 

2.2. NcRNA and Protein Sequence 

The sequences of miRNA, lncRNA, and protein are downloaded from miRbase [29], NONCODE 

[30], and STRING [11], respectively, to subsequently represent the attribute of the node. For the sake 

of simplicity, we chose to encode ncRNA sequences using a 64 (4 × 4 × 4) dimensional vector, in which 

each feature represents the normalized frequency of the corresponding 3-mer appearing in the RNA 

sequence (e.g. ACG, CAU, UUG). Inspired by the article of Shen et al. [31], in the process of protein 

sequence encoding, 20 amino acids are classified into 4 classes according to the polarity of the side 

chain including (Ala, Val, Leu, Ile, Met, Phe, Trp, Pro), (Gly, Ser, Thr, Cys, Asn, Gln, Tyr), (Arg, Lys, 

His) and (Asp, Glu). Thus, each protein sequence can be represented by a 3-mer that is 64 (4 × 4 × 4) 

dimensional vector and each dimension of the vector representing the normalized frequency of the 

corresponding 3-mer in the sequence. 

2.3 Disease MeSH Descriptors and Directed Acyclic Graph 

The Medical Subject Headings (MeSH) is a comprehensive searchable control vocabulary which 

is organized by National Library of Medicine furnished a rigorous index for journal articles and books 

in the life sciences. The top-level categories in the MeSH descriptor hierarchy are: Anatomy [A], 

Organisms [B], Diseases [C], Chemicals Drugs [D] and so on. In this system, each disease can be 

represented by a Directed Acyclic Graph (DAG) generated through its MeSH, accurately and 

objectively describe its own characteristics. The details to describe the disease with DAG is as follows. 

DAG(D) = (D, N(D), E(D)), N(D) is the set of points that contains all the diseases in the DAG(D). E(D) 

is the set of edges that contains all relationships between nodes in the DAG(D). An example of the 

disease Astrocytoma’s DAG is as follows Figure 3: 
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Figure 3. Construction of a disease’s DAG. 

For the diseases that are included in MeSH, the semantic similarity that is calculated by means 

of DAG can be chose to represent the disease according to the previous literature [32]. The semantic 

similarity between different diseases can be defined as follows. In DAG of disease D, the contribution 

of any ancestral disease t to disease D is as the formula: 

{
𝐷1𝐷(𝑡) = 1                                                                     𝑖𝑓 𝑡 = 𝐷

𝐷1𝐷(𝑡) = max{∆ ∗ 𝐷1𝐷(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}  𝑖𝑓 𝑡 ≠ 𝐷
                 (1) 

∆ is the semantic contribution factor. The contribution of disease D to itself is 1 and the contribution of 

other nodes to D will be attenuated due to ∆. Based on Equation (1), we can obtain the sum of the contributions 

of all diseases in DAG to D: 

𝐷𝑉1(D) = 𝛴𝑡∈𝑁𝐷
𝐷1𝐷(𝑡)                                   (2) 

Similar to the Jaccard similarity coefficient, the semantic similarity between the diseases i 

and j can be calculated by the following formula: 

𝑆1(𝑖, 𝑗) =
∑ (𝐷1𝑖(𝑡)+𝐷1𝑗(𝑡))𝑡∈𝑁𝑖∩𝑁𝑗

𝐷𝑉1(𝑖)+𝐷𝑉1(𝑗)
                                (3) 

2.4. Drug Molecular Fingerprint 

The smiles of drugs were downloaded from DrugBank and then transformed into corresponding 

Morgan Fingerprint by python package.  

2.5. Stacked Autoencoder 

In order to reduce noise and normalize attribute information to a uniform dimension, 

stacked autoencoder was employed to obtain a suitable subspace from the original feature 

space. SAE can be divided into two parts: the encoder that encodes the input data into 

corresponding representation h and the decoder that reconstructs an approximation x̂ from 

the hidden representation h. 

ℎ = 𝑓(𝑥) ≔ 𝑆𝑓(𝑊𝑥 + 𝑝)                                 (4) 

𝑦 = 𝑔(ℎ) ≔ 𝑆𝑔(𝑊
′𝑥 + 𝑞)                                (5) 
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Here, we choose the ReLU function as the activation function: 

𝑆𝑓(𝑡) = 𝑆𝑔(𝑡) = 𝑚𝑎𝑥(0,𝑊𝑡 + 𝑏)                                  (6) 

2.6. Node Representation 

In the entire biomolecular network, each node is represented by its intrinsic attributes and its 

relationship with other nodes. The attributes of the node itself can be the sequence of ncRNA, protein, 

the semantics of the disease, and the molecular fingerprint of the drug. The relationship with other 

nodes can be considered as a functional representation based on the idea of collaborative filtering. 

More specifically, in this work, we chose a method of network embedding called LINE [33] to globally 

represent the manner of nodes in the entire network and the flow of information directly or latently 

with other nodes.  

For large-scale networks, some existing network representation learning algorithms require 

complex computational complexity. Recently, some methods of large-scale networks either use 

indirect methods to reduce computational complexity or lack explicit objective function (DeepWalk 

[33]). LINE [31] defines two similarity relationships, including the first-order proximity and the 

second-order proximity. The first-order similarity is defined as the node connection relationship 

(local feature) in the network, and the second-order similarity is defined as the common neighbor 

node (global feature) of the nodes that are not directly connected as a supplement to the first-order 

similarity. In this work, we use the network representation model LINE to learn how to represent the 

relationships between each node and other nodes in the entire network. In this way, an undirected 

edge can be considered as two directed edges with opposite directions and equal weights. The 

second-order proximity assumes that vertices sharing many connections to other vertices are similar 

to each other. The probability that 𝑣𝑗 is a neighbor of 𝑣𝑖 is defined as: 

𝑝2(𝑣𝑗|𝑣𝑖) =
𝑒𝑥𝑝 (𝑢⃗⃗ 𝑗

𝑇⋅𝑢⃗⃗ 𝑖)

∑ 𝑒𝑥𝑝 (𝑢⃗⃗ 𝑗
𝑇⋅𝑢⃗⃗ 𝑖)

|𝑉|
𝑘=1

                                  (6) 

The probability that each point in the network is a neighbor of vi) is defined as: 

𝑃̂2(𝑣𝑗|𝑣𝑖) =
𝑤𝑖𝑗

𝑑𝑖
                                         (7) 

Therefore, we minimize the following objective functions: 

O2 = ∑ 𝜆𝑖𝑑(𝑃̂2(⋅ |𝑣𝑖), 𝑝2(⋅ |𝑣𝑖))𝑖∈𝑉                           (8) 

For the sake of simplicity, 𝜆𝑖 is set to the degree of the vertex i, i.e. 𝜆𝑖 = 𝑑𝑖 . Here KL divergence 

is used as the function of distance. After some constants are omitted, the loss function can be 

simplified as the following form: 

O2 = −∑ 𝑤𝑖,𝑗 log 𝑝2(𝑣𝑗|𝑣𝑖))(𝑖,𝑗)∈𝐸                           (9) 

3. Results and Discussion 

3.1. Evaluate the 5-fold cross validation performance of our method 

For the five-fold cross-validation, the entire data set was randomly divided into five subsets of 

equal size, one subset was treated as the test set in turn, and the remaining four subsets were used as 

the training sets to construct the classifier. Note that at the time of each cross validation, only the 

currently training set, i.e. 80% of the total edges, would be embedding as the manner of the node, 

which avoids the leakage of test information. Although the above operations may cause some of the 
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nodes originally in the network to become isolated i.e. degree with 0 and these nodes may also lack 

attribute information at the same time. This situation can better simulate the real environment to 

provide support and assistance for the exploration of unknown fields by researchers through manual 

experiments.  

A range of broader evaluation criteria including accuracy (Acc.), sensitivity (Sen.), specificity 

(Spec.), precision (Prec.) and MCC was utilized to evaluate the proposed model more 

comprehensively and fairly. As shown in Table 3 and Figure 4, the results of average Acc., Sen., Spec., 

Prec., MCC and AUC of 92.38%, 92.61%, 92.14%, 92.18%, 84.76% and 97.35% when the proposed 

framework was applied to predict arbitrary associations in the whole network. The details of 5-fold 

cross-validation results performed by our method were list in Table 1. Receiver operating 

characteristic curve (ROC) is a commonly used standard for evaluating models. Area under curve 

(AUC) is the area of graph which is surround by the roc, the abscissa false positive rate (FPR), and 

the ordinate true positive rate (TPR). We also draw the ROC and calculated AUC to visually evaluate 

our proposed model at the same time as the 5-cross validation. PR curve whose abscissa is recall and 

ordinate is precision was applied to evaluated the model from another angle. In conclusion, our 

method obtained AUC of 0.9735 and AUPR (area under PR) which indicated that the proposed 

method combined 2 kinds of information had excellent ability to identify positive and negative 

samples. The higher AUC and AUPR indicated our method had a strong predictive performance and 

the lower variance of the results showed the proposed model was stable and robust. 

Table 3. 5-Fold cross-validation results performed by our method. 

fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%) 

0 92.25 92.68 91.82 91.89 84.51 97.35 

1 92.43 92.52 92.35 92.36 84.87 97.34 

2 92.49 92.84 92.13 92.19 84.98 97.39 

3 92.58 92.75 92.42 92.44 85.16 97.39 

4 92.13 92.28 91.98 92.01 84.26 97.29 

Average 92.380.18 92.610.22 92.140.25 92.180.23 84.760.37 97.350.04 

 

Figure 4. The ROCs, AUCs, PRs, and AUPRs of our method under 5-fold cross validation on the whole 

dataset. 

3.2 Comparison of different feature extraction methods 

As mentioned above, each node in the biomolecular network within cell can be represented by 

two kinds of information including attribute information and manner information. In order to 

evaluate the impact of each type of information on the final classification effect, we respectively 

utilized the information of attribute, the information of manner and the combination of the above 

two to represent the node under the extensive evaluation criteria in the 5-fold cross-validation. As 

shown in Table 4 and Figure 5, the average of ROC and PR under 5-fold cross validation is reported. 
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A variety of evaluation criteria as shown in the table below indicated that the node representation 

combined with the two kinds of information has more outstanding expressiveness. 

Table 4. Comparison of different features. 

feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%) 

Attribute 88.620.14 91.480.13 85.760.2 86.530.17 77.370.28 94.470.11 

Manner 90.70.14 88.840.15 92.560.19 92.270.19 81.450.29 96.260.05 

Both 92.380.18 92.610.22 92.140.25 92.180.23 84.760.37 97.350.04 

 

Figure 5. Comparison with different features under 5-fold cross validation. 

3.3 Comparison of different classifers 

In order to evaluate the performance of the classifier, we compared Random Forest with 

Adaboost, Logistic Regression, Naïve Bayes and XGBoost under 5 cross-validation in various 

evaluation criteria. Under the control variable method, the various settings of the experiment are the 

same except the classifier which makes the comparison of experimental results fairer and more 

credible. The results are shown in Table 5 and Figure 6. The difference in the effect of different 

classifiers may be caused by the following factors: (1) Naive Bayes can get better results when the 

properties of the sample are independent of each other. In this experiment, there are cases where the 

attributes are not independent and cross-joining together affects the final classification effect. (2) 

Logistic Regression is essentially a linear classifier whose performance is limited by the distribution 

of the data and did not perform well in this article. (3) The parameters of all classifiers are default 

values, which may cause Adaboost and XGBoost to have under-fitting or over-fitting on this task. 

Table 5. Comparison of different classifiers. 

Classifier Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%) 

Adaboost 80.030.29 80.910.3 79.140.43 79.510.36 60.070.58 87.990.28 

Logistic 79.920.29 82.780.29 77.060.49 78.30.37 59.940.57 87.470.26 

Naive Bayes 55.930.15 24.830.24 87.040.32 65.70.5 15.150.41 72.130.34 

XGBoost 84.371.3 82.892.96 85.850.56 85.420.37 68.82.58 92.70.66 

Random 

Forest 
92.380.18 92.610.22 92.140.25 92.180.23 84.760.37 97.350.04 
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Figure 6. Comparison with Random Forest, Adaboost, Logistic Regression, Naive Bayes and XGBoost 

under 5-fold cross validation. 

3.4 Additional comparision experiment for lncRNA-disease association prediction 

In order to compare with traditional methods that focus on single or isolated objects, the 

lncRNA-disease association prediction was chosen to perform this comparison experiment because 

of the serious lack of node attribute information. After processing the data, 1263 independent 

lncRNA-disease association pairs were obtained including 345 different lncRNAs and 295 different 

diseases. 

 

Figure 7. Comparison with previous methods for lncRNA-disease association prediction. 
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The sequence of each lncRNA was determined when the experimental material was collected. 

However, among all diseases associated with lncRNA, only 76 of 295 diseases were able to obtain 

attribute information by constructing DAG to produce similarity with other diseases. The pairs which 

include both 2 kind of information only take possession of 259 in 1263 associations. Figure 7a showed 

results of the link prediction 5-fold cross validation with pure attribute information as the 

characteristics of the node. Figure 7b showed the results of link prediction based on the feature 

combined attribute information with previous isolated embedding method.  

That is, 80% lncRNA-disease associations were utilized to construct the adjacency matrix for 

generating Gaussian Profile Kernel Similarity in each fold cross validation [34]. Figure 7c shows the 

results of global embedding, that is, 80% of the lncRNA-disease associations and all the other 8 kind 

of relationships were processed by LINE in each cross-validation. Obviously, after combining the 

global manner information, the performance of prediction in lncRNA-disease association can be 

greatly improved. It also proves that the cell is a complete unit of life, and the interaction of 

biomolecules in the cell together maintains the normal conduct of life activities. 

4. Conclusions 

Accumulating evidence demonstrates the superiority of link prediction based on massive data 

through machine learning models, which not only serves as an addition to manual experiments, but 

also provides researchers with an overall and macro insight into the interactions between 

intracellular molecules. In this article, we proposed a new framework based on 5 different kind of 

nodes and 9 different kind of relationships to detect any potential associations between arbitrary 

research objects in the whole network. Each node can be represented as a vector by two kinds of 

information including node attributes and node manner. For attribute information, ncRNA and 

protein could be encoded into 64-dimensional vectors by the method of k-mer, in which each feature 

represents the normalized frequency of the corresponding 3-mer appearing in the RNA or protein 

sequence. The characteristics of the disease and the drug can be represented by their own semantic 

and molecular structure and transformed into 64-dimensional vectors through the function of feature 

selection and transformation in SAE. For manner information, the relationship of each node with 

others could be abstracted by the network embedding method LINE. Combined with the above two 

kinds of information, each node can be represented by a 128-dimensional vector and put into Random 

Forest to carry out prediction. The experimental results provide that our method can achieve 

outstanding performance. The construction of molecular regulatory network in human cells, offer a 

new systematic view on understanding complex life activities and diseases. 
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