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This paper attempts to clarify an issue about the number of unknowns in the Reynolds-Averaged 
Navier-Stokes equations (RANS). The study discovers that all perspectives regarding the numbers of 
unknowns in the RANS stems from the misinterpretation of the Reynolds stress tensor. The current 
literature considers that the Reynolds stress tensor has six unknowns; however, this paper shows 
that the Reynolds stress tensor actually has only three unknowns, namely the three components of 
fluctuation velocity. The transport equation on both the Reynolds stress tensor and kinetic energy 
are discussed as well. As application, the turbulent Berger’s equation and Prandtl boundary layer 
equations are resolved. All solutions have no any adjustable parameters. The paper also propose a 
general algorithm for three dimensional turbulence flow. It is found that the magnitude of velocity 
fluctuations or turbulence are proportional to the flow pressure, which is a remarkable discovery.
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INTRODUCTION

Turbulence is everywhere, controlling the drag on
cars, airplanes, and trains, whilst dictating the weath-
er through its influence on large-scale atmospheric and
oceanic flows. Even solar flares are a manifestation of
turbulence since they are triggered by vigorous motions
on the surface of the Sun [1–40].

The study of turbulence is a difficult subject owing to
its complex and forbidding mathematical descriptions,
which is often considered as the last unsolved problem in
classical physics. In 1895 Reynolds published a seminal
work on turbulence [1], in which he proposed that flow
velocity u and pressure p are decomposed into its time-
averaged quantities, ū, p̄, and fluctuating quantities, ũ,
p̃; thus, the Reynolds decompositions are:

u = ū(x) + ũ(x, t), (1)

p(x, t) = p̄(x) + p̃(x, t), (2)

where coordinates and time are (x, t). According to
Reynolds, ū represent a mean-motion at each point
and ũ a motion at the same point relative to the
mean-motion at the point. Therefore, the Reynolds
called the ū mean-motion and ũ relative-mean-motion
[1]. The time-averaging definition is given by ū(x) =

limT→∞
1
T

∫ t0+T

t0
u(x, t)dt, and time-fluctuation ũ = u−

ū(x).

REYNOLDS-AVERAGED NAVIER-STOKES
EQUATIONS

With the decomposition the Navier-Stokes equa-
tion is then transformed into the Reynolds-averaged

Navier–Stokes equations (RANS) as follows

ρ∇ · (ū⊗ ū) +∇p̄ = µ∇2ū+∇ · τ , (3)

∇ · ū = 0, (4)

where dynamic viscosity µ, gradient operator ∇ = ei∇i,
base vector in the i-coordinate ei, and tensor product ⊗,
and the Reynolds stress tensor is given by

τ = −ρũ⊗ ũ = −ρ lim
T→∞

1

T

∫ t0+T

t0

(ũ⊗ ũ)dt, (5)

where T is the period of time over which the averaging
takes place and must be sufficiently large to give mean-
ingful averages and is needed to measure mean values
depends on the accuracy desired. Reynolds stress is ap-
parent stress owing to the fluctuating velocity field ũ.

Denoting kinematic viscosity ν = µ/ρ, the above equa-
tions can be equivalently rewritten in conventional form:

ū ·∇ū+ 1
ρ∇p̄+ limT→∞

1
T

∫ t+T

t
(ũ ·∇ũ)dt

= ν∇2ū, (6)

∇ · ū = 0 (7)

HOW MANY UNKNOWNS ARE THERE IN THE
RANS ？？？

All current literatures and textbooks believe that the
Reynolds stresses τ has six unknowns (In the later, we
will show that the Reynolds stresses have only three un-
knowns instead of six ones.). This understanding result-
s a consensus of saying that there are 10 unknowns in
Eqs.3, 4 and/or Eqs.35, 35.

If you carefully read Reynolds’ paper in 1895 [1], and
will see that Reynolds did not discussed the number of
unknowns in the RANS. However, from his presentation
we are sure that he never considered the term ρũ⊗ ũ as
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independent unknowns, while for some cases he even pro-
posed explicit expressions for the velocity fluctuation ũ,
for instance, expressions in page 149 and Eq.(50) in page
158 of Reynolds paper [1], which means that he actually
take the velocity fluctuation ũ as unknowns. Due to the
limited references, the author has no idea who was the
first person proposed this 10-unknowns perception on the
RANS.
Clearly, the RANS in Eqs.3, 4 has four independent

equations governing the mean velocity field; namely the
three components of the Reynolds equation Eqs.3 togeth-
er with the mean continuity equation Eq.4. However,
these four equations contain more than four unknowns.
In addition to ū and p̄, there are also the Reynolds stress-
es τ , which results the Reynolds-averaged Navier-Stokes
equations unclosed. The closure problem is being consid-
ered as the number one topic in turbulence, during the
past several decades, scientists and engineers have made
many attempts towards solving the closure problem.
Regarding the RANS closure problem, the curren-

t consensus is that there are six unknown components
in the symmetric Reynolds stress tensor τ , namely
τ11, τ12, τ13, τ22, τ23, τ33. However, we have a complete-
ly different perspectives. What we believe is that the
Reynolds stress tensor τ has only three unknowns, name-
ly the velocity fluctuation components u′

i (i = 1, 2, 3) due
to the fact that the Reynolds stress tensor is simply an
integration of a second order dyadic tensor of flow veloc-
ity fluctuations rather than a general symmetric tensor.

LEMMAS

To support our statement, let’s us introduce some lem-
mas as follows

Lemma 1 Giving two vectors, v(x, t) = viei = v1e1 +
v2e2 + v3e3 and w(x, t) = wjej = w1e1 + w2e2 + w3e3,
we can defined a dyadic tensor v ⊗w as follows [41]

v ⊗w = viei ⊗ wjej = viwjei ⊗ ej

= v1w1e1 ⊗ e1 + v1w2e1 ⊗ e2 + v1w3e1 ⊗ e3

+ v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2 + v2w3e2 ⊗ e3

+ v3w1e3 ⊗ e1 + v3w2e3 ⊗ e2 + v3w3e3 ⊗ e3.
(8)

In general case of v ̸= w, the dyadic tensor v⊗w is a
general tensor with 9 components (elements),and have 6
unknowns, namely, v1, v2, v3 and w1, w2, w3, since the
9 components can be fully determined by the 6 unknowns.
If v = w, the tensor v ⊗w is a 2rd order tensor with

9 components (elements), and have 3 unknowns, namely,
v1, v2, v3 and/or w1, w2, w3, since the 9 components can
be fully determined by the 3 unknowns.

Lemma 2 Giving three vectors, u(x, t) = uiei = u1e1+
u2e2 + u3e3 , v(x, t) = viei = v1e1 + v2e2 + v3e3 and

w(x, t) = wjej = w1e1 +w2e2 +w3e3, we can defined a
3rd order tensor v ⊗w as follows

u⊗ v ⊗w = uiek ⊗ vkei ⊗ wjej = ukviwjek ⊗ ei ⊗ ej .
(9)

In general case of u ̸= v ̸= w, the tensor u ⊗ v ⊗ w
is a general tensor with 27 components (elements), and
have 9 unknowns, namely, u1, u2, u3, v1, v2, v3 and
w1, w2, w3, since the 27 components can be fully deter-
mined by the 9 unknowns.

If u = v = w, the tensor u⊗v⊗w is a 3rd order tensor
with 27 components (elements), and have 3 unknowns,
namely, u1, u2, u3, or v1, v2, v3 and/or w1, w2, w3, s-
ince the 27 components can be fully determined by the 3
unknowns.

Lemma 3 Giving a vector, v(x, t) = viei = v1e1 +
v2e2+v3e3, we can defined a 2nd order symmetric dyadic
tensor v ⊗ v and its mean value A(x) as follows

A(x) = lim
T→∞

1

T

∫ t0+T

t0

v ⊗ vdt

= lim
T→∞

1

T

∫ t0+T

t0

vivjei ⊗ ejdt

= lim
T→∞

1

T

∫ t0+T

t0

[v1v1e1 ⊗ e1 + v1v2e1 ⊗ e2

+ v1v3e1 ⊗ e3 + v2v1e2 ⊗ e1

+ v2v2e2 ⊗ e2 + v2v3e2 ⊗ e3

+ v3v1e3 ⊗ e1 + v3v2e3 ⊗ e2

+ v3v3e3 ⊗ e3]dt (10)

where vivj = vjvi. Although A(x) has six independen-
t components,namely v1v1, v1v2, v1v3, v2v2, v2v3, v3v3,
however it is clear there are only three independent quan-
tities, namely, v1, v2, v3, in the A(x). It is because
that the quantities v1v1, v1v2, v1v3, v2v2, v2v3, v3v3 can
be fully determined by v1, v2, v3.

The lemma 3 actually states that any (time) averaging
operation is just a method of data processing and will
not change the number of unknowns of the problem.

It is clear that A(x) will be the Reynolds stress tensor
τ , if replacing v1, v2, v3 by the components of velocity
fluctuations ũi (i = 1, 2, 3), respectively, namely, v1 =
ũ1, v2 = ũ2, v3 = ũ3.

PROOF 1

From the Lemma, we can see that the Reynolds stress
tensor has only three unknown components. This can be
proved easily as follows: the Reynolds stress tensor can
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be defined by

τ = −ρũ⊗ ũ

= −ρũiei ⊗ ũjej = −ρũiũjei ⊗ ej

= −ρ lim
T→∞

1

T

∫ t0+T

t0

(ũiũjei ⊗ ej)dt

=

[
−ρ lim

T→∞

1

T

∫ t0+T

t0

ũiũjdt

]
ei ⊗ ej

= τijei ⊗ ej , (11)

and the fluctuation velocity convective terms are given
by:

ũ ·∇ũ = ũiei · [ek∂k ⊗ (ũjej)]

= ũiũj,kei · (ek ⊗ ej) = ũiũj,k(ei · ek)ej
= ũiũj,kδikej = ũiũj,iej

=

(
lim

T→∞

1

T

∫ t+T

t

ũiũj,idt

)
ej

= τij,iej , (12)

where the Reynolds stress tensor in index format τij is
defined by

τij = τji = −ρ lim
T→∞

1

T

∫ t0+T

t0

ũiũjdt. (13)

It is clear that any τij can be calculated by fluctuation ve-
locity components ũ1, ũ2, ũ3, which means that the τij
are dependent on the components ũ1, ũ2, ũ3. In other
words, the components ũ1, ũ2, ũ3 are real unknowns. It
is the key point why we say that the Reynolds stress ten-
sor τ has 6 unknowns is a big mistake in the turbulence
modelling.
Therefore, the formulation in Eq.11 reveals that the

Reynolds stress tensor τ = −ρũ⊗ ũ can be fully cal-
culated by three independent components of fluctuation
velocity ũ1, ũ2, ũ3. In other words, the Reynolds stress
tensor has only three unknowns rather than six ones.
It means that the averaging technique is just a math-
ematical processing, which can provide us a mean value,
however, can’t change the number of unknowns of the
problem.
The misinterpretation regarding the numbers of un-

known components of all literature may stem from con-
sidering the Reynolds stress tensor as a general 2nd or-
der symmetric tensor with six independent components.
However, the Reynolds stress tensor is not an arbitrary
2nd order tensor, actually each of its component is made
by the bi-product of fluctuation velocity components,
which means that the Reynolds stress tensor is an dyadic
tensor of the velocity fluctuation. The unknown compo-
nents to construct the dyadic tensor are the three compo-
nents of fluctuation velocity ũ. Therefore, the Reynolds

stress tensor has only three unknowns, namely ũ1, ũ2, ũ3.
For two dimensional flow, of course, the 2D Reynolds
stress tensor has only two unknowns, namely ũ1, ũ2.

PROOF 2

Given two scalar functions, ũ =
√
2U cos(ωt) and ṽ =√

2V cos(ωt + θ), as independent unknowns, we can use
them to construct a 2nd order tensor or matrix with 4
components as follows: (ũ)2, ũṽ, ṽũ, (ṽ)2.

Thus time averages give:

lim
T→∞

1

T

∫ t0+T

t0

(ũũ)dt = U2 (14)

lim
T→∞

1

T

∫ t0+T

t0

(ũṽ)dt = UV cos θ (15)

lim
T→∞

1

T

∫ t0+T

t0

(ṽũ)d = UV cos θ (16)

lim
T→∞

1

T

∫ t0+T

t0

(ṽṽ)dt = V 2 (17)

In the definition of the Reynolds stress tensor, θ = 0, we
have ũ =

√
2U cos(ωt) and ṽ =

√
2V cos(ωt) and their

averaging

lim
T→∞

1

T

∫ t0+T

t0

(ũũ)dt = U2 (18)

lim
T→∞

1

T

∫ t0+T

t0

(ũṽ)dt = UV (19)

lim
T→∞

1

T

∫ t0+T

t0

(ṽũ)dt = UV (20)

lim
T→∞

1

T

∫ t0+T

t0

(ṽṽ)dt = V 2 (21)

Therefore, the Reynolds stress tensor is given by

τ = −ρ(U2e1 ⊗ e1 + UV e1 ⊗ e2

+ V Ue2 ⊗ e1 + V 2e2 ⊗ e2). (22)

The above process shows that, ũ or U , and ṽ or V , are
the independent unknowns, with them we can get the
Reynolds stress tensor τ .

If keeping the θ, namely, then we are talking about
the time correlation (autocorrelations) at the same point.
The correlation between the same (Greek autos = self
or same) fluctuating quantity measured at two different
times (at the same point in space) is not itself very rele-
vant to the behaviour of turbulence and its measurement
requires a time delay mechanism (usually a tape recorder
with movable heads or a digital sample-and-delay sys-
tem).

In the same way, you can define the space correla-
tion, however, all literatures and textbooks said that the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 July 2019                   doi:10.20944/preprints201907.0038.v1

https://doi.org/10.20944/preprints201907.0038.v1


4

Reynolds stress tensor is the one-point or single-point
velocity fluctuation correlation. Therefore, θ = 0.
Even not setting θ = 0, the Reynolds stress still has

three independent unknowns, namely the three compo-
nents of velocity fluctuations. This is the key point of
this article. The conclusion of saying that the RANS has
only 7 independent unknowns is still correct.

PROOF 3

To support this obvious statement from other point of
view, let’s study the problem by tensor representation
theory and write the Reynolds stress tensor as follows:

τ = −ρ lim
T→∞

1

T

∫ t0+T

t0

σdt, (23)

where σ = ũ(x, t)⊗ ũ(x, t) = ũiei ⊗ ũjej = ũiũjei ⊗ ej .
The characteristic equation of σ is given by

λ3 − I1λ
2 + I2λ− I3 = 0. (24)

Note tr(σ)2 = (ũ1)
2+(ũ2)

2+(ũ3)
2 and tr(σ)2 = tr(σ2),

thus

I1 = tr(σ) = (ũ1)
2 + (ũ2)

2 + (ũ3)
2 (25)

I2 = I2 =
1

2
[(tr(σ)2 − tr(σ2)] = 0 (26)

I3 = det(σ) = εijk(u1uj)(u2uj)(u3uj)

= (ũ1ũ2ũ3)
2 − (ũ1ũ2ũ3)

2 − (ũ1ũ2ũ3)
2

+ (ũ1ũ2ũ3)
2 + (ũ1ũ2ũ3)

2 − (ũ1ũ2ũ3)
2

= 0 (27)

Therefore, the characteristic equation of σ in Eq.23 has
three roots as follows

λ1 = 0, λ2 = I1, λ3 = 0. (28)

From spectra representation theory of a symmetric ten-
sor, we can rewrite the tensor σ as follows

σ = λ1ê1 ⊗ ê1 + λ2ê2 ⊗ ê2 + λ3ê3 ⊗ ê3

= λ2ê2 ⊗ ê2, (29)

where the base êi is an eigenvector of σ, which can be
determined by eigenvalue equation

σ · ê = 2kê · ê (30)

where the fluctuation kinetic energy k = 1
2 [(ũ1)

2+(ũ2)
2+

(ũ3)
2], we find

ê2 =
1√
2k

ũℓeℓ (31)

Hence we have

σ = [(ũ1)
2 + (ũ2)

2 + (ũ3)
2]ê2 ⊗ ê2, (32)

Therefore, the Reynolds tress tensor can be also given by

τ = −ρ lim
T→∞

1

T

∫ t0+T

t0

σdt

= −ρ lim
T→∞

1

T

∫ t0+T

t0

[(ũ1)
2 + (ũ2)

2 + (ũ3)
2]ê2 ⊗ ê2dt.

(33)

It is proved once again that both the tensor σ and
the Reynolds stress tensor τ are the only function of
ũ1, ũ2, ũ3. As a summary, the number of unknowns of
the Reynolds stress tensor is listed in the Table II:

TABLE I: Numbers of unknowns in the Reynolds stress

Current literatures This paper
Numbers 6 3
Unknowns τ11, τ12, τ13, τ22, τ23, τ33 ũ1, ũ2, ũ3

Although the Reynolds-averaged Navier-Stokes (RAN-
S) equations are unclosed, however, the four-equations
RANS in Eqs.3 and 4 contain only 7 unknowns instead
of 10 ones. The list of unknowns in the RANS are sum-
marized in the below Table II:

TABLE II: Numbers of unknowns in the RANS
Current literature This paper

Numbers 10 7
Unknowns ū1, ū2, ū3 ū1, ū2, ū3

p̄ p̄
τ11, τ12, τ13, τ22, τ23, τ33 ũ1, ũ2, ũ3

In the future, turbulence modelling will be focus on
velocity fluctuations ũ1, ũ2, ũ3 instead of the Reynolds
stress τij . Advantage of modelling the velocity fluctua-
tions ũ1, ũ2, ũ3 is obvious, since it reduce the 6 compo-
nents of τij into 3 components of velocity fluctuations,
and from experimental point of view, the components of
velocity fluctuations are easy to be measured than the
Reynolds stress tensor.

TRANSPORT EQUATION OF REYNOLDS
STRESS TENSOR

With the above new understanding on the number of
unknowns. In the following, we will present complete new
perception on the higher-order correction of the Reynolds
stress tensor.

In order to get more information about the Reynolds
stress tensor, Reynolds [1] derived velocity fluctuation
equations, and reformulated in index-tensorial form by
Chou [4]. Here we present the equations in a bold-face
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tensorial form as follows

ρũ,t + ρ∇ · (ū⊗ ũ+ ũ⊗ ū+ ũ⊗ ũ) +∇p̃ (34)

= µ∇2ũ+ ρ limT→∞
1
T

∫ t+T

t
∇ · (ũ⊗ ũ)dt,

∇ · ũ = 0. (35)

According to the author’s investigations [38–40], Eqs.3,
3, 3, and 3 form a closed integral-differential equations
system, in which there are 8 equations with 8 unknowns
ū, ũ, p̄, p̃.
After some tensor algebra we arrive at an important

equation on the Reynolds stress tensor as follows

∂τ

∂t
+ ū ·∇τ = −τ ·∇ū−∇ū · τ

+2µI : ∇ũ⊗∇ũ+ ũ⊗ (∇p̃) + (∇p̃)⊗ ũ

+µ∇2τ + ρ∇ · (ũ⊗ ũ⊗ ũ). (36)

In current literature, it is believe that Eq.36 has 31 un-
knowns. However, we have complete different opinion.
We believe the Reynolds stress equation Eq. 36 has only
7 unknowns. Specifically, accoutring for all symmetries,
we have the following listed in the Table III.

TABLE III: Numbers of unknowns in the Reynolds stress e-
quation

Current literature This paper
Numbers 31 7
Unknowns ū (3) ū1, ū2, ū3

ũ⊗ ũ⊗ ũ (10) p̃
I : ∇ũ⊗∇ũ (6) ũ1, ũ2, ũ3

ũ⊗ (∇p̃) (6)
τ (6)

The above statement can be easily proved. For in-
stance,

ũ⊗ ũ⊗ ũ = ũiũj ũkei ⊗ ej ⊗ ek

= [ lim
T→∞

1

T

∫ t0+T

t0

(ũiũj ũk)dt]ei ⊗ ej ⊗ ek, (37)

and

I : ∇ũ⊗∇ũ = (ek ⊗ ek) : (∇ũ⊗∇ũ)

= (ek ⊗ ek) : (∇ũ⊗∇ũ) = (ek ·∇ũ)⊗ (ek ·∇ũ)

= (∇kũ)⊗ (∇kũ) = (∇kũiei)⊗ (∇kũjej)

= (∇kũi)(∇kũj)ei ⊗ ej =
∂ũi

∂xk

∂ũj

∂xk
ei ⊗ ej

= [ lim
T→∞

1

T

∫ t0+T

t0

(
∂ũi

∂xk

∂ũj

∂xk
)dt]ei ⊗ ej .

(38)

It is clear that mean value of ũiũj ũk and ∂ũi

∂xk

∂ũj

∂xk
can

be calculated by the velocity fluctuations ũ1, ũ2, ũ3. It

means that ũ1, ũ2, ũ3 are unknowns. Similarly,

ũ⊗ (∇p̃) = ũi
∂p̃

∂xj
ei ⊗ ej

= [ lim
T→∞

1

T

∫ t0+T

t0

(ũi
∂p̃

∂xj
)dt]ei ⊗ ej . (39)

The mean value of ũi
∂p̃
∂xj

can be calculated by p̃ and

ũ1, ũ2, ũ3.
In the same way, we can still do the fourth order and

higher orders as in [4] and textbooks. However, there is
no more unknowns can be created by any order equation
about the Reynolds stress tensor.

TRANSPORT EQUATION OF TURBULENCE
KINETIC ENERGY

If we do contraction operation for index i and j in
the Eq.36, we have following transport equation for the
turbulence kinetic energy k

ρ(
∂k

∂t
+ ū ·∇k) = τ : ∇ū− µ∇ũ : ∇ũ

+µ∇2k −∇ · (p̃ũ)− 1

2
ρ∇ · [(ũ · ũ)ũ] (40)

where the kinetic energy k = − 1
2τkk = 1

2 ũkũk = 1
2 ũ · ũ.

The number of unknowns in the kinetic energy equation
Eq.40 is listed in the Table IV.

TABLE IV: Numbers of unknowns in the kinetic energy equa-
tion

Current literature This paper
Numbers 21 7
Unknowns k (3) ũ1, ũ2, ũ3

ū (3) ū1, ū2, ū3

τ (6) p̃
∇ũ : ∇ũ (3)

p̃ũ (3)

[(ũ · ũ)ũ] (3)

In order to support the above understanding about
the number of unknowns, let’s present some examples in
the following. The aim of doing these exercise are only
for demonstration purpose: to show general algorithm
to find turbulence solutions. We will not going to give
complete solutions here, so that we can stay on our key
focus, namely, to determine the number of unknowns in
the Reynolds-averaged Navier-Stokes equations.

EXAMPLE 1: ONE DIMENSIONAL BERGER’S
EQUATION

One dimensional Navier-Stokes equation, namely,
Bergers’s equation

u,t + uu,x = νu,xx + S(x, t), (41)
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where the source term S(x, t) is given by

S(x, t) = cos(x+ t) + ν sin(x+ t)

+B cos(x+ t) tanh(A− B

2ν
x)

+ sin(x+ t) cos(x+ t)

− 1

2ν
B2 sin(x+ t)[1− tanh2(A− 1

2ν
Bx)], (42)

where the trigonometric tangent function is defined as

tanh(x) = sinh(x)
cosh(x) =

ex−e−x

ex+e−x , and A, B are constant.

Substituting the Reynolds velocity decomposition u =
ū(x)+ũ(x, t) into Eq.41, after time-averaging, we can get
its RANS as follows

ūū,x + ũũ,x = νū,xx + S̄, (43)

namely

ūū,x + lim
T→∞

1

T

∫ t0+T

t0

ũũ,xdt = νū,xx + S̄, (44)

where the mean source term S̄ = 1
2 . Obviously, the Eq.44

has only two unknowns, one is the mean velocity ū and
another is velocity fluctuation ũ, as stated in the previous
part.
Since we have only one integral-differential equation

Eq.44, therefore, the Eq.44 is not closed. To solve the
Eq.44, we have to model either the mean field ū or fluc-
tuation ũ.
We can use the steady solution of ūū,x = νū,xx as the

1st order approximate solution of mean field. Hence, the
1st order exact solution is given by

ū(x) = B1 tanh(A1 −
B1

2ν
x), (45)

where the constants A1, B1 will be determined later.
For fluctuation field ũ, since its mean ũ must be zero,

namely, limT→∞
1
T

∫ t0+T

t0
ũdt ≡ 0, hence, we can take the

1st order velocity fluctuation proposed by Reynolds [1] as
an approximate solation

ũ(x, t) =
√
2a sin(ωt+ κx), (46)

where a, frequency ω and wave number κ are to be de-
termined.
Substituting both Eqs.45 and 46 into Eq.44, we obtain

a =
1√
2κ

(47)

Therefore, we have the 1st order velocity field as follows

u(x, t) = B1 tanh(A1 −
B1

2ν
x) +

1√
2κ

sin(ωt+ κx). (48)

For initial-boundary conditions u(0, 0) = 1, u,x(0, 0) = 1,
we get B1 =

√
1 + ν, tanh(A1) = 1√

1+ν
u,t(0, 0) =

1, u,xx(0, 0) = 1, and obtain ω =
√
κ and κ =

1+ν+
√
1+ν

2ν2 − 1.
Hence, the 1st order solution is obtained

u(x, t) =
√
1 + ν tanh(A1 −

√
1 + ν

2ν
x)

+
1√
2κ

sin(
√
κt+ κx). (49)

(1) The 1st order turbulence velocity u1st is different
from the exact solution of the Bergers equation in Eq.41.
The exact solution of Berger’s equation is given by

uexact(x, t) = B tanh(A− B

2ν
x) + sin(x+ t). (50)

(2) In particular, when x → ∞, their asymptotic be-
havior are totally different. The exact solution is going
to be uexact = B + sin(x + t), due to the property of
limx→∞ tanh(x) → 1, while the turbulence solution

u(x, t) =
√
1 + ν +

1√
2κ

sin(
√
κt+ κx).. (51)

(3) The turbulence kinetic energy is given by k =
1/(2κ)

For a better approximation, the velocity fluctuations
can be assumed as ũ(x, t) =

√
2a(x) sin(ωt).

EXAMPLE 2: TURBULENT BOUNDARY LAYER
FLOW OF SEMI-INFINITE SURFACE

Here velocity components u = u1, v = u2, directions
1 → x, 2 → y are adopted respectively.

According to Prandtl’s boundary layer concept [2, 42],
the two dimensional Navier-Stokes equations can be sim-
plified to following boundary layer equations

u,t + uu,x + vu,y = U
dU

dx
+ µu,yy, (52)

u,x + v,y = 0, (53)

where U(x) is incoming velocity, U = const. for infinite
surface, hence U,x = 0.

In duct and boundary layer flow, we can approximate
with excellent accuracy a simpler turbulent boundary
layer equations

ρ(ūū,x + v̄ū,y) = U
dU

dx
+ τxx,x + τxy,y, (54)

ū,x + v̄,y = 0, (55)

where total stress

τxx = −ρũũ = −ρ lim
T→∞

1

T

∫ t0+T

t0

ũũdt, (56)

τxy = µū,y − ρũṽ = µū,y − ρ lim
T→∞

1

T

∫ t0+T

t0

ũṽdt. (57)
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To solve the above equations, we firstly omit the fluctu-
ation term and reduce Eqs.54 and 55 into followings

ρ(ūū,x + v̄ū,y) = µū,yy, (58)

ū,x + v̄,y = 0, (59)

Blasius [42] has obtained their solutions as follows

ū = Uf ′(ξ), (60)

v̄ =
1

2

√
νU

x
(ξf ′ − f), (61)

where ξ = y
√

U
νx , U is incoming velocity, f ′ = df

dξ , and

function f(ξ) is the solution of equation ff ′′ + 2f ′′′ = 0
under conditions f(0) = f ′(0) = 0, f ′(∞) = 1.
For fluctuation field ũ and ṽ, since their mean must be

vanish, hence, we can take the 1st order velocity fluctu-
ation suggested by Reynolds [1] as their solutions

ũ =
√
2c1 cos(φ), (62)

ṽ =
√
2c2 cos(φ), (63)

where phase function φ = ωt+κxx+κyy, and constants
c1, c2.
Substituting Eqs. 60,61,62 and 63 into Eq. 54, we

obtain

(c21)κx + (c1c2)κy = U
dU

dx
= 0. (64)

to determine c1, c2, we need mass conversation law of
fluctuation field ũ,x + ṽ,y = 0, namely κx = −κy = κ,
find the c1 = c2 = C, hence, we can write down velocity
field as follows

u = Uf ′(ξ) +
√
2C cos(ωt+ κx− κy), (65)

v =
1

2

√
νU

x
(ξf ′ − f) +

√
2C cos(ωt+ κx− κy), (66)

where frequency ω, wave number κ and constant C can
be determined by 3 initial-boundary conditions.
In the future, for a better approximation, we can take

ũ =
√
2c1(x, y) cos(ωt) and ṽ =

√
2c2(x, y) cos(ωt).

We must point out here that the one and/or two di-
mensional Navier-Stokes model can not represent a real
turbulence, since turbulence motion is always three di-
mensional [7].

EXAMPLE 3: THREE DIMENSIONAL
TURBULENT FLOW SOLUTION ALGORISM

Although there are different views about turbulence,
there is a consensus that the deterministic Navier-Stokes
equation probably contains all information, which is rel-
evant to turbulence [18].

For three dimensional turbulent flow, we propose fol-
lowing algorithm:

(1) Find solution of corresponding equations of steady
flow ū:

∇ · (ū⊗ ū) = ν∇2ū. (67)

(2) Calculate pressure (source term) p̄:

∇2p̄ = −ρ∇ · (ū ·∇ū). (68)

(3) Propose an approximate solution for velocity fluctu-
ations ũ:

ũ =
√
2C(x) cos(ωt). (69)

(4) Calculate the Reynolds stress tensor τ :

τ = −ρ lim
T→∞

1

T

∫ t+T

t

(ũ⊗ ũ)dt (70)

= −ρ(C ⊗C).

(5) Determine the coefficient vector an: Substitute
ū, p̄, τ into the RANS, hence we have

∇ · (ū⊗ ū)− ν∇2ū = −1

ρ
∇p̄−∇ · (C ⊗C). (71)

Since ū is the solution of ∇ · (ū⊗ ū) = ν∇2ū, therefore,
the left side of the above equation is zero, hence

∇ · (C ⊗C +
1

ρ
p̄I) = 0, (72)

This relation reveals that the fluctuation magnitude is
proportional to pressure, the turbulence can not main-
tained without continua source supplying.

(6) Calculate pressure fluctuation p̃

∇2p̃ = −ρ∇ · [ū ·∇ũ+ ũ ·∇ū+ ũ ·∇ũ]− τ . (73)

(7) Calculate total pressure p:

p = p̄+ p̃. (74)

(8) Calculate total velocity field u

u = ū+C(x) cosωt. (75)

In the similar way, you can get higher order solutions.

CONCLUSIONS

In summary, this article has re-visited a fundamental
problem in turbulence analysis, namely, how many un-
knowns are there in the Reynolds stress? This study not
only clarified the number of unknowns in the formula-
tions of the Reynolds-averaged Navier-Stokes equation,
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but also discovered the number of unknowns is much less
than the conventional accoutring.

As application of this study, we have resolved the Berg-
er’s equation and turbulent Pranddtl boundary layer e-
quations. All solutions have no any adjustable param-
eters. It is found that the Reynolds stress is mainly
depends on the source term (ie. flow pressure), which
means that the turbulence can not maintained if there is
no source supplying.

Although the Reynolds-Averaged Navier-Stokes-
Equations (RANS) has been formulated for more 100
years, unfortunately, all current literature have a wrong
understanding on the numbers of unknowns. This
situation must be corrected immediately, otherwise,
it will be very harmful to scientific environment and
definitely obstructing the understanding and solving of
turbulence phenomena. The ideas and methodology of
this paper are also applicable to the compressible turbu-
lence Navier-Stokes equations. The study in the paper
might shed a light to understand the well-known closure
problem of turbulence, and will help to understand the
puzzle and modelling of turbulence closure problem that
has eluded scientists and mathematicians for centuries.
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