Life Cycle Modeling of Structural Defects via Computational Geometry and Time Series Forecasting

Sara Mohamadi 1, * and David Lattanzi 2

1 Ph.D. Candidate, Dept. of Civil, Environmental, and Infrastructure Engineering, George Mason Univ., Fairfax, VA 22030; Email: smoamaha2@gmu.edu
2 Assistant Professor, Dept. of Civil, Environmental, and Infrastructure Engineering, George Mason Univ., Fairfax, VA 22030 (corresponding author). ORCID: https://orcid.org/0000-0001-9247-0680; Email: dlattanz@gmu.edu
* Correspondence: dlattanz@gmu.edu

Abstract: The evaluation of geometric defects is necessary in order to maintain the integrity of structures over time. These assessments are designed to detect damages of structures and ideally help inspectors to estimate the remaining life of structures. Current methodologies for monitoring structural systems, while providing useful information about the current state of a structure, are limited in the monitoring of defects over time and in linking them to predictive simulation. This paper presents a new approach to the predictive modeling of geometric defects. A combination of segmented from point clouds are parametrized using the convex hull algorithm to extract features from detected defects, and a stochastic dynamic model is then adapted to these features to model the evolution of the hull over time. Describing a defect in terms of its parameterized hull enables consistent temporal tracking for predictive purposes, while implicitly reducing data dimensionality and complexity as well. In this study, 2D point clouds analogous to information derived from point clouds were first generated over simulated life-cycles. The evolutions of point cloud hull parameterizations were modeled as stochastic dynamical processes via autoregressive integrated moving average (ARIMA) and vectorized autoregression (VAR) and compared against ground truth. The results indicate that this convex hull approach provides consistent and accurate representations of defect evolution across a range of defect topologies and is reasonably robust to noisy measurements, however assumptions regarding the underlying dynamical process play a significant role in predictive accuracy. The results were then validated on experimental data from fatigue testing with high accuracy. Longer term, the results of this work will support finite element model updating for predictive analysis of structural capacity.

Keywords: Remote sensing; Photogrammetry; Life cycle modeling; Time series forecasting; Structural damage; Stochastic modeling; Convex Hull; ARIMA; VAR; Fatigue crack prediction

1. Introduction

This paper presents a method for modelling the time-history evolution of defects quantified through remote sensing technologies such as laser scanning, photogrammetry, or digital imaging. The goal is to expand the use of structural assessment information commonly collected during routine inspections and improve the structural life-cycle assessment process.

Conventional structural assessments are typically based on visual inspections, embedded sensor systems, nondestructive evaluation (NDE) techniques, or some combination thereof [1–7]. In almost all cases, the goal is the nondestructive detection and identification of structural performance changes and damage, as well as to assess the reliability and safety of monitored structures[8,9]. In addition to immediate structural evaluation, these assessments ideally help engineers to estimate the remaining life of structures. This is commonly done by reviewing historical performance records and holistically...
identifying temporal trends from the assessment data. However, most assessment data are not structured in a way that explicitly captures the life cycle performance of a structure, and it is therefore challenging to quantitatively evaluate the evolution of inspection data over time and carry out a predictive analysis of the future state of the structure. Life-cycle data modelling advancements could provide more precise and robust structural information, leading to better system asset management decision-making, with apparent safety and financial benefits.

1.1. Prior Work

Damage identification, localization and quantification have been extensively studied in the last decades. Using state-of-the-art NDE methods, crack can be identified and located using vibration-based methods [10–12], also large cracks and voids in concrete as well as corrosion and cracks in steel can be identified and located using ultrasonic tests [13–15]. Acoustic wave techniques can also be used to identify and locate imperfections such as the initiation of crack and the growth rate of fatigue cracks and corrosion [16], to classify crack modes in concrete [17–19] and to quantify the severity of damage [20,21]. Furthermore, it is possible to detect and locate hidden and subsurface defects using radiographic tests [22,23] and electromechanical method such as ground penetration radar [24]. Although these studies have shown the capacity to identify and assess damage to structures, the long-term contribution to structural evaluation is limited. They focus primarily on improving the accuracy of the measurement of defects and efforts have not been made to model these measured changes/defects as time-dependent phenomena.

In addition to the development of NDE and SHM techniques, there are increasing studies on the use of remote sensing and imaging technologies such as LiDAR or photogrammetry to provide new sources of inspection information. These remote sensing technologies provide high resolution 2D images or 3D point cloud models of structures, and can capture the small scale defects that are critical to understanding structural performance [25–29]. In complement to the expanding use of these technologies, there are now a variety of methods for isolating and extracting defects from 2D or 3D images [30,31], and advancements in deep machine learning methods portend future improvements [32,33]. A key advantage of these data sources is the direct link between quantified geometric changes and changes in the underlying mechanical performance that can be captured in finite element analysis, as has been evidenced by a variety of prior work [34–36]. While such capabilities provide valuable tools for structural assessment, they do not explicitly quantify life-cycle dynamics and forecasts of future defect conditions.

The question of the reliability of an engineered system has led researchers to investigate the growth of defects such as fatigue cracks and corrosion over the life-cycle of the systems. To study fatigue crack growth, model-based estimation methods such as Bayesian methods [37], Extended Kalman filtering [38] and Monte Carlo sampling [39] have been used for quantification of the estimation uncertainty. For corrosion, theoretical models and simulation tools have been developed for a better understanding of the nature of the pitting corrosion process, to allow prediction of the time evolution of maximum pit depth in corroding structures. In recent studies, stochastic approaches have also been applied to simulate corrosion [40–43]. All these efforts primarily focus on estimating the reliability of a system with given estimates of the current state of a defect, rather than quantifying the future state of defect in a way that provides a support for predictive capacity assessments.

1.2. Contribution of This Research

As stated, a critical aspect of long-term structural monitoring is the modeling of detected defects as time-dependent phenomena. Temporal modeling of defects leads to the ability to predict future defect states, and thus the future condition of the structure. While prior studies have investigated the temporal behavior of defects from an empirical perspective [44,45], efforts to quantify the dynamics of defect observations captured in remote sensing have been limited. The main objective of this study was to address these limitations for life cycle modeling of remotely sensed defects using a computational geometry approach to defect parametrization combined with time-series modeling. Presented in this paper is a novel algorithm to model the life cycle of defects manifested as either 2D...
or 3D point clouds. Point cloud data are a geometric representation of defects that can serve as a consistent record of the state of a structure at a given inspection interval and provide a basis for finite element analysis, among other uses [25,34]. This algorithm extracts latent features from these defect point clouds through computational geometry, fits a time-series process model to the evolution of those features, and uses stochastic forecasting model to predict future state of the defect. Consequently, a predictive analysis with regards to the future condition of the structure could be carried out by linking the modeled evolution of defects to a numerical simulation, which ultimately helps to provide a complete representation of structural performance and integrity over time. This paper does not consider the predictive analysis aspect of this process, and the readers is referred to [34–36,46] for potential applications in this domain.

The remainder of this paper is structured as follows. First, the complete analytical methodology is presented. This is followed by a presentation of synthetic experimental results designed to illustrate the key behavioral aspects of the algorithm. This is followed by experimental evaluation using fatigue crack propagation data. The paper concludes with an overall assessment of the algorithm and avenues for future work.

2. Materials and Methods

The methodology presented here consists of several steps (Figure 1). Once a defect in the structure is detected, the defect must be parametrized in a way that can support a dynamic modeling of defect evolution over time. Parameterization is achieved with feature extraction from the point cloud through computational geometric modeling of the convex hull of the cloud, resulting in a combination of hull simplexes and vertices. These parameterizations are computed for multiple time steps over the life-cycle of the structure. Once parameterized, a time-series model is fit to the sequence of parameterizations in order to capture the underlying process of evolution. This model fitting also enables the estimate the future state of the defect via out-sample forecasting. The defect shape is then reconstructed by reversing the parameterizations back to a geometric point set. While not considered in this work, this reconstructed point set can then be used to update a finite element model of the structural component based on the predicted future defect topology, leading to predictive structural assessment.

![Figure 1. Schematic overview of the proposed methodology for life cycle modeling of remotely sensed defects](image)

2.1 Defect Parameterization
Once a remotely sensed defect in a structural component has been detected through computer vision [34], the first step in the modeling process is to parameterize it so that a stochastic dynamic model can be reliably fit the extracted parameters, or “feature vector” to track the defect evolution over time. The complex nature of point cloud data necessitates this low dimensional parameterization, as tracking each individual point in a cloud would lead to an intractably high number of time-series model coefficients.

Here, we propose that the feature extraction can be done using the concept of a geometric convex hull. The convex hull of a point set is a unique representation of a point set in \mathbb{R}^n, defined as the smallest convex polygon that surrounds all points in the point set (Figure 2) [47]. In \mathbb{R}^3 or higher dimensional data spaces, the convex hull is similarly defined as the minimum convex polyhedron of the point set.

The convex hull of point cloud P is a uniquely defined convex polygon. A natural way to represent a generalized polygon is by listing its vertices in clockwise order, starting with an arbitrary starting point. As such, the problem to be solved is: given a point set $P = \{p_1, p_2, \ldots, p_m\}$ in \mathbb{R}^n, compute a list that contains those points from P that are the vertices of the convex hull, $\text{CH}(P)$. To find those vertices the algorithm sorts all points through a “divide and conquer” approach [52]. The convex hull algorithm finds two points with maximum and minimum spatial coordinates in a single dimension and computes a line joining these two points. This line divides the whole set into two halves. For a given half it finds the points with a maximum distance from the dividing line, forming a triangle defined by minimum and maximum point distances. Those points inside the triangle are determined not to be part of convex hull. Then, these steps are iteratively repeated to search for points with maximum distance from the separating line, until there is no point left outside of the computed triangles. The points selected at this step constitutes the convex hull. The convex hull results in a vector containing the Cartesian coordinates of the hull vertices. This extracted vector of vertices is the numerical descriptor that is later fit to a stochastic process model (Figure 3).

2.2 Hull Time-series Modeling
Once the hull vertices are extracted, the data must be presented in a time history context. Therefore, it is required that multiple stages of a defect be parameterized and compiled into a matrix of vertices representing the evolution of the defect over time. To do so, first multiple hulls computed in the previous step are aligned and registered into a common spatial reference frame. For this work, manual registration and transformation was used. However, registration can be done through approaches such as the Iterative Closest Point algorithm or by determining the 2D or 3D homography between point sets via feature-based computer vision methods [53,54]. Each vertex at \(t=t_1 \) is then spatially tracked. In this study, it is assumed that vertices of a hull in stage 1 (hull1) are matched to their nearest neighbor (NN) vertices in hull2 and likewise those are equivalent to their NN vertices in hull3 and so on [55]. The nearest neighbor is found based on the smallest Euclidean distance between vertex sets. Equation 1 shows the nearest neighbor search in Hull(Q) : \(\{q_1,q_2,...,q_n\} \) from \(p_i \in \) Hull(P) : \(\{p_1,p_2,...,p_m\} \) in 2D space (Hull(Q) and Hull(P) are two consecutive descriptor vectors):

\[
d(p_i,q) = \sqrt{(q_{ix} - p_{ix})^2 + (q_{iy} - p_{iy})^2},
\]

At each time step, the NN of vertices in two time-steps are determined, and the change in magnitude and orientation between matched vertices is computed. Once distances and orientations between matched vertices are found, they are used for building a dataset for dynamic modeling. This dataset consists of the distances and orientations of vertex changes between subsequent hull stages throughout a time series. This dataset is illustrated for identified and aligned multiple stage of a defect with a polygon shape in Figure 4.

Figure 4. Dataset representing the extracted vertices for a time-series evolution of an arbitrary polygonal defect.

2.3 Time Series Modeling

Once the dataset representing the evolution of defects has been built from previous step, a stochastic model can be fit to the dataset to model the dynamics of defect evolution. Time series forecasting is performed in order to capture the underlying long-term life-cycle trends in inspection data. The model can then be used to extrapolate the time series into the future. This modeling approach is particularly useful when the temporal behavior is stochastic, as opposed to understood deterministic evolution, and where the relationship between parameterization variables is not well understood [56]. For example, in the problem presented later in this paper, there is no knowledge available on the boundary conditions (i.e., applied load and support reactions) of the tested structural component, and there is no established deterministic model for the propagation of fatigue cracks.
There are several different approaches to time series modeling including autoregressive, moving average, exponential smoothing, ARIMA and multivariate time series VAR. All mentioned models are linear, meaning that their predictions of the future values are constrained to be linear functions of past observations. Because of their relative simplicity in understanding and implementation, linear models have been the main research focus and applied tools during the past few decades and similarly linear stochastic models were used in this study. Nonlinear modeling approaches such as recurrent neural networks were not considered here due to the limited training data available for observing defect evolution.

From the available time series models, ARIMA and VAR models were selected for this study and their performances were compared against each other. The autoregressive integrated moving average model (ARIMA) methodology developed by Box and Jenkins [57] is able to handle non-stationary time series, in other words scenarios where the statistical properties of the time series measurements do not remain constant over time. As such, it relaxes the requirement that time-series data be covariance-stationary prior to modeling, and is well-suited to the challenging variations in field conditions that impact remote sensing-based inspection practices [58]. With ARIMA, the future value of a variable is assumed to be a linear function of several past observations and random errors. ARIMA model contain two processes (autoregressive, moving average process) and explicitly includes differencing in the formulation to account for the non-stationarity of the data. ARIMA has gained enormous popularity in many areas and research practice confirms its power and flexibility [59–61]. A generalized form of the ARIMA time series model is shown in Equation 2:

\[
Y_{t} = \phi_0 + \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \cdots + \theta_q \epsilon_{t-q},
\]

Where \(Y_t\) and \(\epsilon_t\) are the actual value and random error at time \(t\), respectively. \(\phi_i\) (\(i=1, 2, \ldots, p\)) and \(\theta_j\) (\(j=0,1,2, \ldots, q\)) are the vectorized model coefficients. \(p\) and \(q\) are integers and often referred to as orders of the model.

As an alternative, vector autoregressive (VAR) models are effective for multivariate time series data where there is a potential dependency between model variables. Therefore, unlike an ARIMA model that estimates the present value of a variable based only on its past values, VAR models consider past values of other variables as well. This model was used here to study the dependency and effect of the movement of convex hull vertices on other vertices. VAR model [62] has been used for damage detection studies previously [63,64] but it has not been any effort to model life-cycle of defect to date. The general form of autoregressive model is shown in Equation 3. Similar to ARIMA, the VAR model relates the current value of a variable to its past values.

\[
Y_{t} = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \epsilon_t,
\]

Where \(\epsilon_t\) is random error (random shock) and \(\phi_i\) are constants. And similarly, VAR model relates current value of a vector to its past values and each variable depends not only on its own past values but on these other variables as well in which is \(K\times1\) random vector, \(\phi_i\) are fixed (\(K\timesK\)) coefficient matrices and \(\epsilon_t = (\epsilon_{t1}, \ldots, \epsilon_{tK})\) is \(K\)-dimensional random error [62]. To summarize, the power of ARIMA modeling stems from its ability to handle non-stationary time series with non-constant statistical properties over time. On the other hand, VAR is suitable for analyzing stationary multivariate time series with constant statistical properties and dependancy among variables.

2.3.1 Model Parameter Identification

Prior to fitting the coefficients of the time-series model, the model order must be optimized. The ARIMA model contains three components for which an order must be determined: Autoregressive (AR), Integrated (I) and Moving Average (MA) (Equation 2). The AR component uses the dependent
relationship between an observation and some number of lagged observations. The order of the AR component \((p)\) is the number of lag observation included in the model. The Integrated component \((I)\) employs differencing of raw observation data in order to make the time series stationary, and its order \((d)\) is the number of times that the raw observation is differenced. The MA component uses the dependency between an observation and a residual error, and its order \((q)\) is the size of the moving average window. In this study, ARIMA model orders \((p, d \text{ and } q)\) were evaluated based on a mean squared error. A prototyping dataset was divided into train and test sets and, upon the optimized combination of model orders were chosen such that they produced the least mean squared error in the test set. For the VAR model, the model order \(p\), the number of past observations included in the model, was selected based on Hannan-Quinn information criterion (HQIC) [65]. This criterion was applied because this is used to consistently estimate the order under fairly general conditions [66]. The criterion is shown in Equation 4:

\[
HQIC = -2 \ln(L_{\text{max}}) + 2k \ln(n),
\]

where \(n\) is the number of observations, \(k\) is the number of parameters to be estimated (e.g. the Normal distribution has mu and sigma) and \(L_{\text{max}}\) is the maximized value of the log-Likelihood for the estimated model. The coefficients for \(k\) indicate the level to which the number of model parameters is being penalized. The objective is to find the model order of the selected information criterion with the lowest value HQIC value.

2.3.2 Forecasting and Defect Reconstruction

Once a model is fitted to a sequence of defect observations, the future state of the convex hull parameterizations can be predicted by the forecasting model. Once predicted, the future defect shape can then be reconstructed by converting the feature vector into a hull shape. A complication is that the number of extracted features may be inconsistent at different time steps, and this discrepancy in the length of the vectors in some cases leads to an inaccurate defect prediction. This case will happen when number of features extracted by convex hull computation at early time steps is significantly smaller than those in the later time steps. To handle this issue, a statistical assumption is employed. For features that have not been fit to a model, and therefore their values have not been predicted by dynamic modeling, the arithmetic mean of other features can be used as their expected value.

The pseudocode for the complete methodology is presented algorithm is shown in Figure 5. Upon reconstruction of the predicted geometric configuration of a defect, it is then possible to update a numerical simulation to account for the predicted change in the structure’s geometry due to the defect. This updating process is not tested here, but such capabilities have been developed in prior related work, including efforts by the authors [34–36].

```
start
#input: Point cloud of defects in time order
#output: The shape of defect in the next time step
Align all point clouds and register into a common spatial reference For each point cloud Compute convex hull Extract vertices of hull as feature descriptors For each feature in feature descriptor vector at t = t0 Search for nearest neighbor from feature vector(t=1) based on smallest Euclidean distance Store distance and angle between each pair of features Track those found nearest neighbors over time based on their Euclidean distance from the consecutive features vectors Build dataset from stored magnitude and orientation of spatial movement of features For each column of dataset determine model orders for timeseries model based on chosen criteria Build time series model with determined model order and fit the model to timeseries dataset Forecast variable/feature values in next time step Check the consistency between first and last feature vector If they are consistent Do nothing Else Apply arithmetic mean of all predicted features as expected value of those not predicted Reverse the predicted features to a discrete point set and reconstruct shape of defect in next time step
end
```

Figure 5. Pseudo code for the proposed methodology
This section presents and discusses the results of experiments designed to evaluate the developed methodology. Two series of tests are presented. The first are a set of experiments performed on synthetic data sets. These data sets were designed to highlight key aspects of the modeling approach and provide insight into algorithm behaviors. The second set of tests are derived from laboratory scale tests of fatigue crack propagation in aluminum tensile specimens, in order to illustrate the behavior of the modeling approach in a realistic use case.

3.1 Synthetic Data Set

To initially test the accuracy and robustness of the presented methodology, synthetic 2D point clouds analogous to data derived from remote sensing (e.g. laser scanning or photogrammetry) were generated over simulated defect life-cycles. Synthetic point clouds with distribution characteristics representing different flaw topologies (e.g. rectangle, circle, and generalized polygon) were generated. Additionally, varying evolution time histories were generated synthetically, representing a variety of stochastic processes (e.g. linear, quadratic, random Gaussian, and random uniform). For every combination of defect shape and stochastic process, a set of twenty defect time steps was generated. White noise was also introduced into the point clouds for each time step, in order to simulate more realistic measurements. Finally, uniform and non-uniform feature evolution were considered. Uniform feature evolution refers to a case where all vertices of the convex hull (features in the extracted descriptor vector) have the same expansion magnitude regardless of the trend of evolution. Cases where vertices were allowed to expand at varying magnitudes over a life-cycle simulation were considered non-uniform.

3.1.1 Time Series Stationarity Assessment

Time series are stationary if the statistics calculated on the time series (e.g. the mean or variance of the observations) are consistent over time. Most statistical modeling methods assume or require the time series to be stationary to be effective. There are many methods to check whether a time series is stationary or non-stationary such as reviewing a time series plot, reviewing the summary statistics for time series, or using statistical tests. The Augmented Dickey-Fuller test [67], one of the more widely used, was used in this study. It uses an autoregressive model and optimizes an information criterion across multiple different lag values. The null hypothesis (H0) of the test is that the time series can be represented by a unit root that it is not stationary (i.e. it has some time-dependent structure). The alternate hypothesis (rejecting the null hypothesis) is that the time series is stationary.

<table>
<thead>
<tr>
<th>Defect Shape</th>
<th>Triangle</th>
<th>Rectangle</th>
<th>Circle</th>
<th>Polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>0.002</td>
<td>0.002</td>
<td>0.020</td>
<td>0.030</td>
</tr>
<tr>
<td>Quadratic</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Random Uniform</td>
<td>0.950</td>
<td>0.950</td>
<td>0.390</td>
<td>0.940</td>
</tr>
<tr>
<td>Random Gauss</td>
<td>0.960</td>
<td>0.960</td>
<td>0.990</td>
<td>0.950</td>
</tr>
<tr>
<td>Non-uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Uniform</td>
<td>0.950</td>
<td>0.950</td>
<td>0.96</td>
<td>0.990</td>
</tr>
</tbody>
</table>

Table 1 shows the average p-values of each generated time series, which is used in the Augmented Dickey-Fuller test to evaluate stationarity for various defect shapes and evolutions. A p-
value above 0.05 suggests that a test fails to reject the null hypothesis (H0) and it is concluded that such time series models are non-stationary. This analysis shows that all of the generated time series simulations, with the exception of the simplest linear evolution process, are non-stationary. As such, it was anticipated that the ARIMA approach would perform better than the VAR approach for the synthetic data sets.

3.1.2 Time Series Modeling

After the synthetic data sets were generated, ARIMA and VAR model orders were selected prior to fitting to time series. For the VAR models, all extracted feature vectors were input as a matrix at once and the model order (p) was set as the same for all features, whereas for the ARIMA model, each feature vector was considered individually and model order suitable to each time series were chosen based on least mean squared error. Models were then fit to the time series.

3.1.3 Metrics

The key metric for evaluating the time-series model behavior was defect reconstruction accuracy. To evaluate the results, the predicted defect shape for a future time step was compared against an established ground truth for each scenario. Two geometric metrics were computed: the percentage difference between the area of two shapes and their overlap area percentage. These two metrics were necessary in order to identify scenarios where the predicted and ground truth defect sizes were similar, but where there was a divergence in the geometric topology.

3.1.4 Results and Discussion

Table 2 and 3 show the comparison of predicted defect shapes for both the ARIMA and VAR models against the ground truth. The time series generated from linear, quadratic expansion models are defined as deterministic time series, as their future value can be exactly computed by a mathematical function. These mathematical functions are $y_t = \theta^0$ for linear expansion, and $y_t = \theta \times d^{(t-1)}$ for quadratic expansion (θ and d are both constants). As expected, the predicted feature state from both models completely matched with the ground truth, regardless of the defect shape. The ability to forecast such a simple deterministic process is inherent to both ARIMA and VAR modeling approaches and was used to validate basic model performance.

<table>
<thead>
<tr>
<th>Defect Shape</th>
<th>Triangle</th>
<th>Rectangle</th>
<th>Circle</th>
<th>Polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrics</td>
<td>Overlap</td>
<td>Area_Diff</td>
<td>Overlap</td>
<td>Area_Diff</td>
</tr>
<tr>
<td>Uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Quadratic</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Random Uniform</td>
<td>100</td>
<td>15</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Random Gauss</td>
<td>100</td>
<td>4</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Non-uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Uniform</td>
<td>95</td>
<td>7</td>
<td>96</td>
<td>5</td>
</tr>
</tbody>
</table>
More interesting results can be seen for the Gaussian and uniform random stochastic time series, which are more realistic representations of defect life-cycle dynamics in practical problems. Such stochastic processes are more challenging for any predictive model. As can be seen, ARIMA models provide relatively better prediction, though results show many similarities. The reason for the difference in predictive accuracy is the capability of ARIMA in handling nonstationary time series, as well as the assumptions of variable dependencies in VAR. Also, results show that both models can predict a defect with a Gaussian underlying process better than those with a uniform random evolution. The reason lies in the difference between the statistical properties of the two processes. Gaussian processes have a single most likely value in the distribution (the mean), whereas in uniform distributions every allowable value is equally likely, degrading predictive capabilities. Overall, the results of these synthetic experiments indicated that the convex hull parameterization approach and time series modeling provides reliable and accurate representations of defect evolution across a range of defect topologies and is reasonably robust to noisy measurements. As anticipated, ARIMA provided higher prediction accuracy as stationarity assumptions became increasingly unrealistic.

3.2 Experimental Data Set

To further evaluation of the methodology under more realistic conditions, a data set from prior experimental testing was repurposed. In these laboratory tests, aluminum tensile coupons were tested to observe fatigue crack growth under cyclic fatigue loading. Marine grade aluminum 5052-H32, with a nominal thickness of 2.29 mm was used. Specimen had machined elliptical flaw in the center and increasing load caused initiation and growth of cracks on both the right and left sides of this notch. Cycling tension loading was performed over 80k cycles and the state of crack growth was captured at 30 intermediate intervals during the test, using an inspection microscope. The captured images were then segmented to isolate the crack, and the crack patterns were transformed from pixels into point clouds (Figure 6). The convex hulls of these point clouds were computed, and features evolution were exported as time series, per the methodology delineated in Section 2. An analysis of the data sets yielded an average p-value of 0.35, indicating that the statistical uncertainty of the experimental measurements was non-stationary. Three different tests are presented in this section to evaluate the performance of the proposed methodology including single step prediction, multiple step prediction, and prediction during nonlinear system dynamical behavior.

3.2.1 Single Step prediction

Performance of the proposed algorithm for predicting a single future step is evaluated in this section. Both ARIMA and VAR model were used to find the pattern of crack growth and predict the future state of crack. The convex hull of the right and left crack at 80k cycles load were computed and held out as the ground truth for one single step prediction. Results are shown in Table 4 and Figure 7. Since the performance of ARIMA and VAR model is almost the same, the predicted shape from both models has overlap and only ARIMA model can be seen in the Figure 7.

Figure 6. Extracted point cloud from the captured image

| Table 4 – Comparison of predicted crack shape from ARIMA and VAR against ground truth |
3.2.2 Multiple Step Prediction

To evaluate the capability of the proposed algorithm for prediction of multiple steps, 20 steps of the right-side crack, corresponding to approximately 40 thousand loading intervals, were used to fit to the ARIMA and VAR models. The true convex hulls of the crack at time steps 21 to 30 were then computed and held out as the ground truth. Then, prediction of 1 to 10 time steps were computed and evaluated. Table 5 shows the results from the ARIMA model. Since the performance of ARIMA and VAR was very similar for this specific problem, only ARIMA is shown here.

<table>
<thead>
<tr>
<th>Metric</th>
<th>ARIMA</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overlap (%)</td>
<td>Area_Diff (%)</td>
</tr>
<tr>
<td>Right Crack</td>
<td>100.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Left Crack</td>
<td>99.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Figure 7. Comparison of the predicted crack shape against the ground truth for a) right and b) left cracks.

3.2.3 Prediction During Nonlinear System Behavior

The goal of this study was to evaluate the performance of the model during a nonlinearity in the evolution of a defect over time. For the crack fatigue problem studied here, there was a sudden change in the direction of crack growth after 48k load cycles. Of course, the predictive time series models could not accurately forecast the convex hull immediately after this event. Rather, the question here was how long it would take the time series models to correct for this nonlinearity in the dynamic evolution. The results for both ARIMA and VAR models are shown in Tables 6 and 7. As can be seen, the ARIMA model quickly adapts after only two time steps (at 50,000 load cycles). The VAR model struggles to adjust for far longer, only regaining consistent predictive accuracy after 60,000 load cycles, equivalent to an additional 4 model time steps.
The proposed methodology has a number of advantages over current practices. First, it provides engineers with an intuitive and consistent representation of remotely sensed information over a structure's life-cycle through the reduced dimension convex hull representation. Tracking the evolution of damages and their connections to structural performance also results in more reliable forecasting capabilities and a more complete understanding of structural performance, particularly compared to existing NDE techniques that often do not quantify damage evolution through time. This process also does not require extrapolation from other data sets for prediction, rather it builds up a time-series representation based solely on the observed evolution of a given defect.

This study was part of an on-going research program and various parts of the presented methodology are being considered for further improvement. The parametrizations and hull modeling are being studied for temporal tracking of non-geometric changes such as color change in structures. The hull parametrization method is being extended to high-dimensional feature space analyses, supporting...
the fusion of multiple sensors and survey information for holistic life-cycle modeling. As it was presented in the methodology description, the results of this work will be used to support finite element model updating for predictive analysis of structural capacity as well. One notable avenue for future work is to adapt the algorithm to more realistically parameterize defect shape using a combination of a convex and concave hull algorithm [68]. Such an approach would allow for more accurate depiction of complex geometric topologies similar to the fatigue cracks evaluated in this work. In addition, nonlinear time series modeling methods such as Recurrent Neural Network can be studied for more complex defect evolutions, however such machine-learning driven approaches need much larger datasets to be employed.

Author Contributions: conceptualization, S.M and D.L; methodology, S.M.; validation, S.M.; formal analysis, S.M.; resources, D.L.; writing—original draft preparation, S.M.; writing—review and editing, S.M. and D.L; supervision, D.L.; project administration, D.L.; funding acquisition, D.L.

Funding: This work was supported in part by a grant from the Office of Naval Research (No. N00014-18-1-2014). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research.

Acknowledgments: The authors would like to thank Dr. Hugh Bruck and Paul Lara (University of Maryland) for providing access to experimental data used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

11. Doebling SW; Farrar CR; Prime MB; Shevitz DW. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review [Internet]. Other Information: PBD: May 1996. 1996 [cited 2018 Nov 8]. Available from: https://digital.library.unt.edu/ark:/67531/metadc663932/

27. Cabaleiro M; Riveiro B; Arias P; Caamaño JC. Algorithm for beam deformation modeling from LiDAR data. Measurement. 2015 Dec;76:20–31.

49. Akl SG; Toussaint GT. EFFICIENT CONVEX HULL ALGORITHMS FOR PATTERN RECOGNITION APPLICATIONS. In 1979 [cited 2018 Aug 29]. Available from: https://nyu-

