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Abstract: Industrial manipulators and parallel robots are often used for tasks like drilling or 
milling, that require three translational, but only two rotational degrees of freedom (“3T2R”). While 
kinematic models for specific m echanisms f or t hese t asks e xist, a  g eneral k inematic m odel for 
parallel robots is still missing. This paper presents the definition of the rotational component of 
kinematic constraints equations for parallel robots based on two reciprocal sets of Euler angles for 
the end-effector orientation and the orientation residual. The method allows to completely remove 
the redundant coordinate in 3T2R tasks and to solve the inverse kinematics for general serial and 
parallel robots with the gradient-descent algorithm. The functional redundancy of robots with full 
mobility is exploited using nullspace projection.

Keywords: Parallel robot; five-DoF t ask; 3 T2R t ask; f unctional r edundancy; t ask redundancy; 
redundancy resolution; reciprocal Euler angles; inverse kinematics11

1. Introduction12

Industrial tasks like welding, gluing, milling or drilling represent a major part the of applications13

of industrial robots, which generally have full mobility, i. e. the operational space of their end-effector14

has three translational and three rotational (“3T3R”) degrees of freedom (“DoF”). Parallel robots like15

the Stewart-platform have especially been proposed for milling tasks regarding their high structural16

stiffness. The task space of the named applications can be defined by three translational DoF and only17

two rotations due to a symmetry around the tool axis (“3T2R”). This results in a functional or task18

redundancy, which is not exploited to full extend yet for parallel robots.19

1.1. Inverse Kinematics and Resolution of Task Redundancy for Serial Robots20

Various general gradient-based methods exist to solve the inverse kinematics for serial robots;21

either by augmenting the joint space [1] or by reducing the task space [2–5]. The different approaches22

each define a residual vector and a gradient matrix considering the properties of 3T2R tasks, e. g. by23

adding a virtual joint axis [1], orthogonal decomposition of the task space [2], rotation of the residual24

into a task frame and removing the corresponding component [4], defining the tool axis by two points25

for constructing a nullspace [3] or by defining the absolute orientation and the orientation residual with26

two reciprocal sets of Euler angles [5]. The gradient matrices corresponding to the different residuals27

are used for an iterative Newton-Raphson algorithm [6,7] by exploiting the functional redundancy28

with a null space projection of additional performance criteria [6]. Without the definition of a proper29

gradient, a global optimization has to be performed outside of the inverse kinematics algorithm [8,9].30

1.2. Overview of Parallel Robots Structures for 3T2R tasks31

Parallel robots in 3T2R tasks can be ordered in classes according to their kinematic structure into32
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I mechanisms with full platform mobility (3T3R) that are redundantly controlled to five DoF,33

II mechanisms with 3T2R platform mobility enforced with a passive five-DoF constraining leg and34

five other legs with six DoF each,35

III mechanisms with 3T2R platform mobility resulting from the mobility of five actuated legs with36

five or six DoF each,37

IV mechanisms with 3T2R platform mobility and five legs with only five DoF each.38

The classes I and II were introduced in [10], where class IV is analyzed regarding leg symmetry39

and singularities. Class III is mainly influenced by the systematic synthesis of [11] and several existing40

prototypes and is demarcated against class II by the absence of the passive constraining leg. Class41

IV can be seen as a subclass of III, but is differentiated in this paper due to its characteristics. Other42

classifications are provided e. g. by [12], where IV and II are termed “families”.43

Examples for the first class are hexapods1 (6UPS) [13] or the Eclipse [14] machine tool44

(2PPRS-PPRS). Any other parallel robot with full mobility (see e. g. [11,15,16]) may be used as well.45

The second class allows for more variety, since the six-DoF mechanism and the five-DoF46

constraining leg can manifest in different kinematic structures: The UPS structure is used for the47

six-DoF part of the mechanism by [17] with a focus on kinematic analysis of 5UPS/US, by [18]48

with a focus on kinetostatic modeling at the example of 5UPS/RUU (see Fig. 1 a), by [19] with focus49

on trajectory control of 5UPS/PRPU and by [20] for pose measurement with the passive leg of50

5UPS/PRPU. Other possible general base structures are RUS at the 5RUS/US example in [17], PUS,51

which has been investigated for the control of a redundantly actuated 6PUS/UPU regarding the control52

of the redundant leg with inverse-dynamics control [21] or force control [22].53

The most-straightforward member of the third class is the 4UPS-UPU of Fig. 1 b, which is54

investigated in [23] for a simulation and feasibility study together with a survey on possible55

architectures for a technical realization of this class. Other possible structures are the 4URS-URU, which56

is analyzed kinematically in [24] and the 4PSU-PU*U, which has a special parallelogram structure in57

one leg (termed “U*”) and is presented in [25]. A sub-class of III consists of mechanisms [26–28], where58

the last joint axis of the legs is coaxial with the tool axis and is constructed as rotating ring. It contains59

the Metrom machine tool (4SPRR-SPR), depicted in Fig. 1 c, which is analyzed regarding inverse60

and forward kinematics in [26] or its variants, the redundant 4SPRR-PSPR from [28] or the hybrid61

4URHU-URHR with an additional linear actuator at the platform [27]. A structural synthesis based62

on linear transformations and evolutionary morphology [11] led e. g. to the Isoglide5 mechanisms63

(3PRRRRR-2PRRRR), which are analyzed and optimized regarding the isotropy of the Jacobian in [29].64

The simplest member of class IV, the 5UPU is shown in [30] with the help of screw theory to65

only have local mobility and no global mobility, since the twist systems of the leg chains have no66

intersection and the resulting twist system of the platform is empty. Members of class IV have been67

found by systematic structural synthesis with screw theory, which has been performed in [31] for68

symmetric 3T2R mechanisms. The resulting 5RPUR of Fig. 1 d and 5PRUR are analyzed in [10,32].

U

P

R
R
P
U
R

P

U

S

UU
P

S

U S
P

R
R

R
P
S

(a) 5UPS/RUU (class II) (b) 4UPS-UPU (class III) (d) 5RPUR (class IV)

U

(c) 4SPRR-SPR (Metrom, class III)

Figure 1. Typical mechanisms of the different classes. Taken from [18] (a), [23] (b), [28] (c), [10] (d).69

1 The joint structure is denoted by the number of the legs and the order of universal (“U”), prismatic (“P”), spherical (“S”),
helical (“H”) and revolute (“R”) joints in the leg chains. Different actuated legs are connected by dashes (“-”), passive
constraint legs are connected by a slash (“/”). Actuated joints are underlined.
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In a practical application with competing requirements on workspace, stiffness, costs and70

precision, each of the existing systems has its legitimization. Nevertheless, each of the classes has71

inherent disadvantages: In tasks like milling with high process forces and requirements on stiffness72

and precision, robots from class II with one constraining leg have the drawback, that the passive73

leg takes the complete reaction wrench in the blocked rotational degree of freedom, which strongly74

affects the mechanisms stiffness in this direction [18]. The same is argued by [27] at the example of75

the Metrom machine tool, but can be extended to all the members of class III, where most leg chains76

have six DoF and usually only one leg chain has five DoF. This leg chain also has to take the reaction77

moments in the blocked DoF which affects the overall stiffness. Therefore members of the classes78

I and IV can be expected to reach a higher stiffness. Mechanisms of the class IV may further suffer79

from an increased sensitivity of manufacturing tolerances, which may cause a high pretension of the80

bearings or even reduce the DoF, since the five DoF of all leg chains have to coincide exactly to allow81

the platform to also have five DoF. Additionally, only members of class I provide redundancy which82

allows to use the additional DoF for performance optimizations e. g. to avoid singularities and to83

compensate the smaller workspace caused by the sixth leg.84

Therefore, the remainder of the paper focuses on mechanisms of the first class to allow an85

optimization of their performance criteria using the degree of task redundancy.86

1.3. Inverse Kinematics of Parallel Robots for 3T2R Tasks87

The parallel robots with five DoF presented previously have a kinematic structure, that allows88

for an analytic model of the inverse kinematics. All references define the end-effector orientation89

with two consecutive elementary rotations, i. e. define two Euler angles to represent the tool axis90

orientation in minimal coordinates [10,19–22,26,28,32,33], which is called “partial pose” in [13]. The91

inverse kinematics problem (IKP) is first solved for the first chain, which is called “leading chain” in92

this paper. Due to the geometry of the leading chain, this solution can be found algebraically. Then the93

IKP is solved for the other “following” chains with the given orientation from the leading chain and94

standard methods. For robots of class II, the constraining leg is selected as the leading leg chain and95

for class III the 3T2R leg is selected.96

To the best knowledge of the authors, only one reference [13] for the IKP of functionally redundant97

parallel robots of the class I is known. The reason presumably is that a solution of the 3T3R IKP for98

these robots is possible with standard methods, as used in [14] for the 3T3R Eclipse. It is always99

possible to transfer the 3T2R IKP into 3T3R by adding an arbitrary value for the desired rotation100

around the tool axis. An optimization of additional performance criteria is possible by varying the101

redundant rotation angle [8,9]. This approach was chosen in [13] by first defining the IKP with the102

redundant rotation as a parameter and then performing an optimization of this parameter using103

analytical computation of the dexterity and interval analysis to ensure a minimum determinant of the104

inverse Jacobian. The drawback of this method is the need for a cascaded optimization which is more105

complex than a gradient-based approach presented in this paper.106

1.4. Motivation and Summary of the State of the Art107

The overview over the literature shows, that no general, machine-independent methods for the108

resolution of functional redundancy for 3T3R PKM in 3T2R tasks exists. The works either focus on a109

general structural synthesis of machines e. g. via screw theory [31] or linear transformations [29] or the110

description and improvement of specific, manually selected, machines. To choose the best machine for111

given requirements, a structural synthesis is only the first step. Additionally, a dimensional synthesis112

should be performed for all possible structures to select the most suitable mechanism. This combined113

structural and dimensional synthesis [34] is sketched in Fig. 2. To be able to perform the dimensional114

synthesis for all structures, the inverse kinematics has to be implemented in a general form, to calculate115

the performance criteria over a given trajectory for further optimization of the structures and their116

comparison. For the generation of task redundant parallel robots, the inverse kinematics has to117
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Figure 2. Overview of the procedure for combined structural and dimensional synthesis.

include an optimization of the performance criteria and the restrictions such as joint limits, to ensure a118

comparability of the results. To address this, the contributions of this paper are119

• a general kinematics model for parallel robots using the concept of reciprocal Euler angles [5],120

• a complete elimination of the redundant operational space coordinate in this formulation for121

3T2R tasks allowing a nullspace optimization in the gradient-based inverse kinematics,122

• proofs, examples and simulations to show the performance for single serial kinematic leg chains123

and complete parallel robots.124

The remainder of the paper is structured as follows: The description of the inverse kinematics125

problem and prior definitions are given in Sec. 2 and the concept of reciprocal Euler angles from126

[5] is adapted in Sec. 3 for parallel robots. This leads to the full kinematic constraints of parallel127

robots in 3T2R tasks, introduced in Sec. 4 and applied to the differential kinematics in Sec. 5. The128

theoretical analysis is followed by examples and simulations in Sec. 6. The appendix contains proofs129

and additional details on the mathematical formulation.130

2. Inverse Kinematics Problem for Parallel Robots131

Before addressing the specific model for parallel robots in 3T2R tasks in the next section, the
standard kinematics model of kinematics of parallel kinematic machines (“PKM”) is repeated in the
following, corresponding to the state of the art [11,15,35] and serving as a reference to highlight its
shortcomings for 3T2R tasks. The regarded parallel robot consists of m legs, which each have the
joint coordinates qi. All joints are considered as single-DoF and additionally to the active joints qi,a
explicitly all passive joints at the base and at the platform qi,p are included in the coordinates qi of leg i.
The coordinates

x =
[

xT
t xT

r

]T
∈ R6 (1)

of the end-effector platform describe the position and orientation of the end-effector frame FD with
respect to the base frame F0. In the equations, this is marked with left subscript “(0)” for vectors and
left superscript “0” for rotation matrices. The platform-related end-effector frame is the desired frame
in the inverse kinematics problem and is therefore abbreviated with “D”. The position

xt = (0)rD ∈ R3 (2)

is defined as the origin of the platform frame and the rotation matrix

0RD(xr) =
[
nD oD aD

]
∈ SO(3) (3)

of the platform frame is expressed with Euler angles

xr =
[

β1 β2 β3

]T
=: β ∈ R3 (4)

as a minimal representation of the orientation coordinates. The symbol “β” will be used to denote
orientations relative to the base frame throughout this paper. The X-Y-Z-notation

R(β) = Rx(β1)Ry(β2)Rz(β3) ∈ SO(3) (5)
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is used for the Euler angles without loss of generality. The relation between joint coordinates q
and platform coordinates x is established with the kinematic constraint equations, for which most
commonly the vector loop

Φt,i(qi, x) = −(0)rAi Bi
(x) + (0)rAi Bi

(qi) (6)

between the position of the platform coupling point Bi relative to the base coupling point Ai is used
for each leg chain i [15]. The second term (0)rAi Bi

(qi) corresponds to the forward kinematics of the
serial leg chain. The vector

(0)rAi Bi
(x) = −(0)rAi

+ xt +
0RD(xr)(D)rBi

(7)

includes the term 0RD(xr) that depends on the full orientation xr of the end-effector. For the bigger
part of existing parallel robots, the passive joint coordinates can be eliminated analytically from the
equations (6), e. g. by using the Euclidian distance for UPS or RPR leg chains or via trigonometry for
RRR-chains. This is termed “minimal kinematics set” in [15] and leads to the scalar constraint equation

Φi = Φi(qi,a, x) (8)

for each leg i, which can be assembled to the vector of constraint equations

Φ(qa, x) =
[
Φ1 Φ2 · · · Φm

]T
(9)

for all m legs of the PKM . The differential kinematics of the PKM is calculated with the time derivative

d
dt

Φ(qa, x) = Φ∂qa
q̇a + Φ∂x ẋ = 0 (10)

where the passive joint coordinates qp do not occur, since they have been eliminated in a previous step.
The inverse-kinematics matrix2

Φ∂qa
=

∂Φ

∂qa
=


Φ1,∂q1,a

0 0 0

0 Φ2,∂q2,a

. . . 0

0
. . . . . . 0

0 0 0 Φm,∂qm,a

 (11)

of this model has diagonal form and the direct-kinematics matrix

Φ∂x =
∂Φ

∂x
=


∂Φ1/∂x
∂Φ2/∂x

...
∂Φm/∂x

 (12)

is fully populated. This definition of the constraints has the following drawbacks:132

1. For parallel robots with arbitrary leg chains like those generated by a structural synthesis133

[11,31,34], it is generally not possible to analytically eliminate the passive joint coordinates.134

2. If more than three joint coordinates per leg influence the coupling point position Bi, the three135

kinematic constraints per joint in (6) are not sufficient to generate enough equations for the136

matrix of (11) to become invertible. The velocity-based theory of linear transformations used by137

2 We follow the argumentation from [11] to avoid the term “Jacobian”, since the matrix is not a Jacobian in the mathematical
sense to project between two spaces. The name results from the inversion of this matrix in the inverse kinematics problem.
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[11] allows to determine the mobility of arbitrary parallel robots. The linear transformation is138

generalized in [12] to accuracy and stiffness modeling by means of screw theory resulting in the139

“generalized Jacobian”. Both concepts do not provide a direct appliance to solve the IKP, since140

this requires a formulation of the orientation at position level, not velocity level.141

3. Exploiting the reduction of end-effector coordinates for 3T2R tasks is not possible, since all142

end-effector coordinates are included in (7).143

An alternative kinematic model to encounter the combination of these points is presented in the next144

section, where the concept of reciprocal sets of Euler angles for the inverse kinematics problem for145

serial link robots [5] is transferred to the leading leg of parallel robots.146

3. Reciprocal Sets of Euler Angles for the Kinematics of a Serial Leg Chain147

To take the rotational symmetry around the tool axis in 3T2R tasks into account, a new set of task
space coordinates

η =
[
ηT

t ηT
r

]T
∈ R5 (13)

has to be defined. The translational part

ηt = xt = (0)rD ∈ R3 (14)

remains unchanged relative to the operational space coordinates x. The rotational part

ηr =
[

β1 β2

]T
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=Pηr

xr ∈ R2 (15)

only contains the first two rotational coordinates of x. The last operational space coordinate β3, the
rotation around the z-axis aD of FD, is excluded from the task space by the selection matrix Pηr

. To be
able to set the rotational DoF around the tool axis in 3T2R tasks arbitrarily and use gradient-based
inverse kinematics, β3 has to be eliminated completely from the kinematics equations (6). To simplify
the following elaborations, the platform frame FD is still identified as the desired frame of the inverse
kinematics problem and the end-effector frame that results from the joint angles of leg i is now termed
FE, which corresponds to the forward kinematics of the leg chain. For a formulation without the tool
axis rotation, a different constraint definition

Φt,i(qi, x) = −(0)rD + (0)rE(qi) = −xt + (0)rE(qi) ∈ R3 (16)

containing the vector loop from the robot base frame F0 to the platform FD and the leg chain148

end-effector FE can be used, where in contrast to (6) only the translational part xt of the end-effector149

coordinates appears and not the rotational part xr. The vector loop is depicted in Fig. 3 for a planar150

robot with opened (Fig. 3 a, b) and closed loops (Fig. 3 c). The triangle represents the end-effector151

platform and only one leg chain is drawn in the figure.152

r0D(x)

r0E(qi)

r0D = r0E

E

D

(a) (b) (c)

Φt,1 6= 0
Φr,1 6= 0
Ψr,1 6= 0

Φt,1 = 0
Φr,1 6= 0
Ψr,1 = 0

Φt,1 = 0
Φr,1 = 0
Ψr,1 = 0

O
Ai

Bi

Ai
Ai

Bi
Bi

Figure 3. Different cases for the kinematic constraints of the leading chain for the 3RRR example:
(a) no constraints complied; (b) position and tool axis rotation complied; (c) all constraints complied.
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As a drawback of (16), all joint angles qi of the leg i and not only the coordinates of the first joints
counted from the base are now included in the vector

(0)rE(qi) = (0)rAi
+ (0)rAi Bi

(qi) +
0RBi (qi)(Bi)

rE. (17)

This implies, that the platform is now part of the last link of the considered leg chain, as sketched in
Fig. 3 by the dashed triangle. To account for the increased number of included joints in (17), the full
kinematic constraints

Φi =
[
ΦT

t,i ΦT
r,i

]T
∈ R6, (18)

have to be considered, including the rotational part

Φr,i(qi, x) =
[
α1 α2 α3

]T
= α

(
DRE(xr, qi)

)
= α

(
0R

T
D(xr)

0RE(qi)
)

, (19)

which is needed to generate enough equations for an invertible matrix in the differential equations.153

The constraints again contain the deviation between the desired end-effector frame FD expressed with154

x and the actual robots end-effector frame FE expressed with q. Fig. 3 (b) and (c) show cases, where155

the translational constraints are met, but the rotational constraints have different values. For 3T3R156

tasks, only Fig. 3 (c) represents a valid solution of the inverse kinematics. For 3T2R tasks, Fig. 3 (b) and157

(c) represent valid solutions.158

The goal of eliminating the tool rotation β3 from the equations is not achieved yet, since all three
components of the platform orientation xr affect the rotation matrix 0RD. This can be addessed by the
selection of the Euler angles: Similar to the definition of the rotational operational space coordinates xr

in (4), the constraints Φr,i are also expressed with a set of Euler angles α. In the following, “α” will
always refer to the rotation error/residual and “β” to an orientation relative to the base frame. The
Euler angle convention of α can be chosen independently of the choice for the orientation representation
in β. The intuitive approach of choosing

R(α∗) := Rx(α
∗
1)Ry(α

∗
2)Rz(α

∗
3) ∈ SO(3) (20)

the same way as β leads to a set of transformations depicted in Fig. 4 (a) where the intermediate steps159

of the single elementary rotations are omitted since they have no technical meaning. The upperscript160

asterisk in (20) demarcates this specific example and the following elaborations on the calculation of α.161

To be able to remove the redundant coordinate β3 from the rotational constraints of (19), it is
necessary to change the expression of the orientation error α to be reciprocal to the expression of the
absolute orientation β. By using the Z-Y-X-Euler angles with

R(α) := Rz(α1)Ry(α2)Rx(α3) ∈ SO(3) (21)

only the error component α1 is affected by rotations around the tool axis, which is the z-axis of the
intermediate frames FA1, FA2 and the platform frame FD in Fig. 4 (b), where the frame rotations with

F0 FD

Rx(β1)Ry(β2)

FE
0RE(q1) Ry(α2)Rx(α3)

FA1

FA2
Rz(α1)

Rz(β3 + α1)

Rz(β3)

F0 FD

0RD(xr) = Rx(β1)Ry(β2)Rz(β3)

FE
0RE(q1)

Rx(α∗1)Ry(α∗2)Rz(α∗3)(a) (b)

Figure 4. Overview of the different frames (a) for six-DoF tasks with standard Euler angle notation and
(b) for five-DoF tasks with reciprocal Euler angle notation; taken from [5].
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the reciprocal set of Euler angles are sketched. The mathematical proof is given in appendix A.1 and in
[5]. The new, reduced rotational part of the kinematic constraints

Ψr,i(qi, η) =
[
α2 α3

]T
=

=PΨr︷ ︸︸ ︷[
0 1 0
0 0 1

]
Φr,i(qi, x) ∈ R2 (22)

does not contain the tool rotation any more. The full kinematic constraints for the reduced coordinates

Ψi =
[
ΦT

t,i ΨT
r,i

]T
∈ R5 (23)

can be used for the inverse kinematics of the leg chain i in 3T2R tasks, where Ψi = 0 leads to a valid162

position and orientation of the tool axis. The condition Φi = 0 leads to a valid configuration of leg i of163

the parallel robot in 3T3R tasks. In the following, “Φ” is always used for 3T3R3 kinematic descriptions164

and “Ψ” for 3T2R.165

4. Full Kinematic Constraints for Parallel Robots using Reciprocal Sets of Euler Angles166

The definition of the full kinematic constraints (16,19,18) of a single leg chain of the parallel robot
from the previous chapter can be used to write the kinematic constraints in a general form. The full
kinematic constraint equations can only be defined for 3T3R tasks without further adaptions as

Φ =
[
ΦT

1 ΦT
2 · · · ΦT

m

]T
. (24)

The constraints Ψi from (23) for the reduced coordinates η can only be defined for one leg chain:167

Fig. 5 (a) show an open-loop second leg chain for a given first leg chain from Fig. 3. By also closing168

the 3T2R kinematic constraints Ψ2 for the second loop, as depicted in Fig. 5 (b), the tool axis stays169

arbitrary and the platform pose demanded from the two legs would be different and therefore would170

not be a valid solution for the complete mechanism, i. e. Φ2 6= 0. Only if the second leg fulfills the171

3T3R kinematic constraints for all platform coordinates, as shown in Fig. 5 (c), a valid configuration172

of the mechanism emerges. This approach has already be used for many specific robots systems, as173

introduced in Sec. 1. As a generalization, the first leg of the parallel robot is now termed the “leading174

leg chain” (Index “1”) and the other legs are termed as “following leg chains” (Index “j”).175

The translational part of the constraints is not coupled by the platform orientation and therefore
left unchanged relative to (16) with

Φt,j(qj, x) = −(0)rD + (0)rE(qj) = −xt + (0)rE(qj) ∈ R3 (25)

3 By omitting the corresponding lines in the operational space coordinates x and the constraint equations Φ, it is also possible
to use the 3T3R approach for systems with reduced mobility of 2T1R, 3T0R and 3T1R platform DoF.

(a) (b) (c)

L

r0L(q1)

r0E(q2)

E

O

Φt,2 6= 0
Φr,2 6= 0
Ψr,2 6= 0

Φt,2 = 0
Φr,2 6= 0
Ψr,2 = 0

Φt,2 = 0
Φr,2 = 0
Ψr,2 = 0

Figure 5. Different cases for the kinematic constraints of the following chain: (a) wrong position and
orientation; (b) correct position and wrong orientation; (c) all kinematic constraints are complied.
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for the following legs j. The orientation for the platform is given with the rotation matrix

0RL(q1) := 0RE(q1) (26)

which gives the reference end-effector frame FL resulting from the leading leg 1. The rotational part of
the kinematic constraints

Φr,j(qj, q1) = α(0R
T
L(q1)

0RE(qj)) (27)

for the following leg is given by the Euler angle representation of the deviation between the orientation
of the platform frame FL given by the leading (“L”) leg and the frame FE given by the respective
following leg j. The choice of the Euler angle notation is arbitrary. The full kinematic constraints for
the complete parallel robot with m legs for 3T2R tasks

Ψ =
[
ΨT

1 ΦT
2 · · · ΦT

m

]T
(28)

are assembled from the 3T2R constraints Ψ1 from (23) for the leading leg and the 3T3R constraints176

Φj, 2 ≤ j ≤ m from (25,27) for the following legs. The index “j” is used to distinguish the following177

legs of the 3T2R case and all legs “i” of the general case in Sec. 3. The full constraints of (28) lead178

to a 35-dimensional vector for the kinematic constraints for parallel robots with six legs in 3T2R179

tasks, which are aggregated as class I in Sec. 1.2. This formulation can be reduced by combining the180

mechanism-specific approach for the constraints from (6) with the principle of leading and following181

legs of this section. For the 6UPS structure this would result in a 10-dimensional constraint vector with182

five entries for the leading leg and only one entry for each following leg.183

5. Differential Kinematics for Parallel Robots184

To be able to compute the differential kinematics of the constraints Φ (24) and Ψ (28) to

d
dt

Φ(q, x) = Φ∂qq̇ + Φ∂x ẋ = 0 and
d
dt

Ψ(q, η) = Ψ∂qq̇ + Ψ∂ηη̇ = 0, (29)

the full geometric matrices of inverse kinematics

Φ∂q(q, x) =


Φ1,∂q1

0 0 0

0 Φ2,∂q2

. . . 0
...

. . . . . . 0
0 0 0 Φm,∂qm

 and Ψ∂q(q, η) =


Ψ1,∂q1

0 0 0

Φ2,∂q1
Φ2,∂q2

. . . 0
...

. . . . . . 0
Φm,∂q1

0 0 Φm,∂qm


(30)

and the full geometric matrices of direct kinematics

Φ∂x(q, x) =
∂Φ

∂x
=


Φ1,∂x
Φ2,∂x

...
Φm,∂x

 and Ψ∂η(q, η) =
∂Ψ

∂η
=


Ψ1,∂η

Φ2,∂η
...

Φm,∂η

 (31)

have to be calculated for the 3T3R and the 3T2R case respectively. The gradient Φ∂q has block diagonal185

form, indicating that the inverse kinematics problem can be solved for each leg independently. The186

structures of the gradient Ψ∂q results from the coupling of the leading and following joints in the187

rotational constraints equation.188

The gradient matrices Φ∂q and Φ∂x contain nested nonlinear functions related to the orientation189

error, therefore the geometric Jacobian of the leg chains can not be exploited for the rotational part, as190

derived in appendix A.2. The gradients are calculated with the chain rule and a syntax for stacking191
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matrix columns to avoid differentiating matrices or with respect to matrices, which was introduced192

in [5]. The product operator Π, the stacking operator R and the transpose operator PT used for the193

implementation in the next section are explained in appendix A.3.194

5.1. Constraint Gradients for the Leading Leg of the 3T2R and all Legs of the 3T3R case195

The constraint definition Ψ1 for the leading leg of the 3T2R case (28) and Φi with i = 1, ..., m for
all legs of the 3T3R case (24) are subject to the same model of (16,19,18). In the following, the 3T3R
constraints are displayed. The form Ψ1 for the 3T2R case is obtained by removing the corresponding
line of the rotational component according to (22) and replacing “Φ” by “Ψ” in the following equations.
For the analysis, the constraint gradient matrix w. r. t. the joint coordinates has to be divided out to

Φ1,∂q1
=
[
ΦT

t,1,∂q1
ΦT

r,1,∂q1

]T
, (32)

where the translational component can be calculated with the geometric Jacobian of the leg chain, as196

derived in appendix A.2. The rotational part is written down as a function composition of the three197

functions α (Euler angles), ∏ (matrix product) and 0RE (rotation matrix) as198

Φr,1,∂q1
=

∂

∂q1
α
(

0R
T
D(x)0RE(q1)

)
=

∂

∂q1
α
(
∏
(

0R
T
D(x), 0RE(q1)

))
, (33)

which is then expanded with the chain rule for differentiation and the stack operators to

Φr,1,∂q1
=

∂α

∂R︸︷︷︸
I∈R3×9

∂∏
(

0RT
D, 0RE

)
∂0RE︸ ︷︷ ︸

II∈R9×9

∂0RE(q1)

∂q1︸ ︷︷ ︸
III∈R9×dim(q1)

∈ R3×dim(q1). (34)

The two first partial derivatives from (34) are sparse matrices and can be calculated efficiently as shown
in appendix A.3. The factor “I” contains (A20) with R = DRE(xr, q1) and the factor “II” is (A23) with

the contents of 0RT
D(xr). The last partial derivative “III” can be derived with computer algebra systems

from the analytic expression of the rotation matrix 0RE(q1). The leading legs constraint gradient matrix
w. r t. the platform coordinates can be expanded in the same manner into

Φ1,∂x =

[
Φt,1,∂xt Φt,1,∂xr

Φr,1,∂xt Φr,1,∂xr

]
=

[
−1 0
0 Φr,1,∂xr

]
, (35)

where the definitions from (16) and (19) only leave the rotational part

Φr,1,∂xr =
∂

∂xr
α

((
0R

T
E(q1)

0RD(xr)
)T
)
=

∂

∂xr
α
(

PT∏
(

0R
T
E(q1),

0RD(xr)
))

(36)

=
∂α

∂R︸︷︷︸
I∈R3×9

PT︸︷︷︸
II∈R9×9

∂∏
(

0RT
E, 0RD

)
∂0RD︸ ︷︷ ︸

III∈R9×9

∂0RD(xr)

∂xr︸ ︷︷ ︸
IV∈R9×3

∈ R3×3,

where the simplicity of the single expression “I”-“IV” is demonstrated in appendix A.3. The factors are199

(A20) with R = DRE(xr, q1) in “I”, the permutation matrix for transposition from (A19) in “II”, (A23),200

where the contents of 0RT
E are inserted in “III” and (A21) with the elements of xr for β in “IV”.201

5.2. Constraint Gradients for the Following Leg in the 3T2R Case202

As explained regarding (24), the constraints (16) and (19) and their gradients (34) and (36) are
used for all legs in the 3T3R case and the leading leg in the 3T2R case. For the following legs in the
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3T2R case, the gradients Φj,∂q1
, Φj,∂qj

and Φj,∂x with j = 2, ..., m from the right part of (30) and (31)
have to be calculated in a similar way. Due to the abscence of the platform orientation in (27), (35)
simplifies for the following leg to

Φj,∂x =

[
−1 0
0 0

]
. (37)

The gradient w. r. t. the joint coordinates of the following leg contains again the translational part of
the legs Jacobian regarding the end-effector platform position in Φt,j,∂qj

and has the rotational part

Φr,j,∂qj
=

∂

∂qj
α
(

0R
T
L(q1)

0RE(qj)
)
=

∂

∂qj
α
(
∏
(

0R
T
L(q1),

0RE(qj)
))

(38)

=
∂α

∂R︸︷︷︸
I∈R3×9

∂∏
(

0RT
D, 0RE

)
∂0RE︸ ︷︷ ︸

II∈R9×9

∂0RE(qj)

∂qj︸ ︷︷ ︸
III∈R9×dim(qj)

∈ R3×dim(qj),

which is similar to the expression in (34). The factors of the equation (38) are (A20) with R = LRE(q1, qj)

in “I”, (A23), where the elements of 0RT
L(q1) have to be inserted in “II” and the partial derivative of

the platform orientation calculated from leg j w. r. t. the legs joint coordinates in “III”, similar to term
“III” from (34). The gradient w. r. t. the joint coordinates of the leading leg

Φr,j,∂q1
=

∂

∂q1
α

((
0R

T
E(qj)

0RL(q1)
)T
)
=

∂

∂q1
α
(

PT∏
(

0R
T
E(qj)

0RL(q1)
))

(39)

=
∂α

∂R︸︷︷︸
I∈R3×9

PT︸︷︷︸
II∈R9×9

∂∏
(

0RT
E, 0RL

)
∂0RL︸ ︷︷ ︸

III∈R9×9

∂0RL(q1)

∂q1︸ ︷︷ ︸
IV∈R9×dim(q1)

∈ R3×dim(q1).

is similar to the expression in (36). The order of the residual expression (27) has to be switched203

by exploiting the associative property of matrix transposition to avoid differentiating a transposed204

matrix. The factors of equation (39) are (A20) with R = LRE(q1, qj) in “I”, the permutation matrix for205

transposition from (A19) in “II”, (A23) with 0RT
E(qj) in “III” and the term “III” from (34) in “IV”.206

5.3. Gradient-Based Solution of the Inverse Kinematics Problem with Redundancy Resolution207

The presented kinematic constraints and their gradient matrices can be used to solve the inverse
kinematics problem (IKP) of single leg chains and complete parallel robots. Since all active and passive
joint angles are involved for the case of parallel robots, solving their IKP results in solving the IKP for
all leg chains. As first introduced in [7] for Euler angle residuals in the IKP, the Taylor series expansion
of Φ(q, x) leads to the definition of

Φ(qk+1, x) = Φ(qk, x) +
∂

∂q
Φ(q, x)

∣∣∣∣
qk
(qk+1 − qk) (40)

in an iterative algorithm at the step k + 1, which can be used to solve the IKP using a given initial
value q0 and the condition

Φ(qk+1, x) = 0. (41)

Defining the solution of the IKP as the main task (“T”), the step-wise solution for the joint coordinates
results to

∆qk = ∆qk
T = qk+1 − qk = −Φ†

∂q(q
k, x)Φ(qk, x). (42)
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Depending on the dimension, (·)† denotes the matrix inverse or the pseudo-inverse. Again, the208

equations (40-42) can be written with “Ψ” from (28) instead of “Φ” from (24) for the 3T2R case.209

In the latter case, the corresponding gradient matrix Ψ∂q(q, η) from (30) allows the definition
of a nullspace in the case of dim(q1) > dim(η). This redundancy can be exploited by using the
nullspace (“N”) projection ∆qN from [6] additionally to the solution ∆qT of the IKP in (42) with the
new increment

∆qk = qk+1 − qk = ∆qk
T + ∆qk

N = −Ψ†
∂qΨ + (1−Ψ†

∂qΨ∂q)h∂q (43)

in the iterative algorithm. The optimization of additional performance criteria h requires their gradient
h∂q w. r .t the joint positions. One criterion is the summed W1-weighted quadratic distance

h1(q) =
1
2
(q− q̄)TW1(q− q̄), h1,∂q =

∂h1

∂q
= W1(q− q̄) (44)

of the joint positions q from their respective reference position q̄, e. g. used in [2,36]. Defining q̄ to
be in the middle of the joint limits and minimizing h1(q) reduces the risk of joints reaching their
technical limits, but does not guarantee it, since exceeding the limit for one joint can be compensated
by improving other joints. The W2-weighted hyperbolic joint limit distance

h2(q) =
1
n

n

∑
i=1

w2,i
(qi,max − qi,min)

8

(
1

(qi − qi,min)2 +
1

(qi − qi,max)2

)
(45)

from [8] (written element-wise for n = dim(q)) circumvents this problem by generating infinitely high
values when reaching the limits. In contrast to h1, the criterion h2 is only defined for joints within their
limits with qi,min < qi < qi,max, which is ensured by setting w2,i = 0 for joints exceeding their limits
and w2,i = 1 otherwise. To combine the effect of drawing joint positions to their middle with h1 of (44)
and of strongly rejecting joints directly near their limits with h2 of (45), their weighted sum

h3(q) = Kh1 h1(q) + Kh2 h2(q) (46)

is used in the simulation studies of Sec. 6. Other criteria not related to the joint limits are for example210

stiffness [9] or singularity avoidance via Frobenius-norm condition number [8] or squared condition211

number [3]. The method can be used for serial link robots as well by removing all entries for the212

following legs from the formulas, as presented in [5]. The platform pose x/η corresponds to the desired213

pose for the serial robots end-effector and the kinematic constraints Φ/Ψ correspond to the residual of214

the IKP.215

In the practical implementation, it has proven to be useful to extend the basic principle of (43) to

∆qk = KLim(qk)KRel(q
k)(KT∆qk

T + KN∆qk
N), (47)

where the constant damping coefficients KT for ∆qk
T and KN for ∆qk

N were introduced to avoid216

overshooting of the solution for the prize of slower convergence. The damping term KN has to217

be chosen according to the optimization criterion. Further damping was introduced for the 3T2R218

case with task redundancy to reduce a ∆qk that would lead to overshoot over the joint limits with219

KLim(qk). The value KLim = 1 is set if no limits would be violated by the increment ∆qk. For the 3T3R220

case, KLim := 1 is set permanently, since slowing down when approaching the limits does not change221

the direction of the increment and violating the limits is inevitable. The maximum step size for one222

iteration ∆qk was ensured with KRel(qk) to stay below 5 % of the joint limit range to prevent leaving the223

validity of the first-order linearization of (40). For smaller increments, KRel = 1 holds. The damping224

terms are always applied to the full vector and not to single elements and therefore only change the225

norm and not the direction of ∆qk.226
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5.4. Differential Kinematics for the Parallel Robot and its Applications227

The reasonings so far only considered the inverse kinematics of the parallel robot. The kinematic
definitions can also be used in the differential kinematics (29) to establish the connection between joint
and platform velocity. This was already presented in general form in [15] and also corresponds to the
theory of linear transformation which is the base of the works of Gogu on structural synthesis [11].
The derivation in this paper is based on the position and orientation, but comes to the same result as
the already-existing velocity-based approach. Further, using Ψ/η as elaborated before allows for the
first time to define differential kinematics specifically for 3T2R tasks in a general form. The differential
equation of (29) is expanded to

d
dt

Φ(qa, qp, x) = Φ∂qa
q̇a + Φ∂qp

q̇p + Φ∂x ẋ = 0 (48)

to distinguish active (“a”) and passive (“p”) joints. The latter also contain the coordinates of the
platform-connecting joints. Reordering the equation leads to the full inverse differential kinematics

Φ∂x ẋ = −
[
Φ∂qa

Φ∂qp

] [q̇a
q̇p

]
= Φ∂ap

[
q̇a
q̇p

]
,

[
q̇a
q̇p

]
= −Φ−1

∂apΦ∂x ẋ, (49)

which has been adressed in the previous sections, and the full direct differential kinematics

Φ∂qa
q̇a = −

[
Φ∂x Φ∂qp

] [ ẋ
q̇p

]
= Φ∂xp

[
ẋ

q̇p

]
,

[
ẋ

q̇p

]
= −Φ−1

∂xpΦ∂qa
q̇a. (50)

By only selecting the first rows for q̇a in (49) and for ẋ in (50), the well-known analytic Jacobian4 of the228

parallel robot [11,15], relating actuator velocities q̇a and platform velocities ẋ, can be obtained from229

both equations. For the case of task or kinematic redundancy, the pseudo-inverse can be used for Φ∂ap230

in (49) as shown in Sec. 5.3. The case of task redundancy does not affect (50), since the full platform231

velocity ẋ is obtained from given actuator velocities q̇a.232

6. Results233

To evaluate the inverse kinematics algorithm presented in the previous section 5.3, first the234

solution of the IKP is shown for the trajectory of a serial-link industrial robot in Sec. 6.1 and for the235

trajectory of a parallel robot in Sec. 6.2. The results are generalized by the statistical analysis of random236

point-to-point movements of arbitrary serial link chains in Sec. 6.3.237

6.1. Resolution of Functional Redundancy of a Serial-Link Six-DoF Robot in 3T2R tasks238

The first evaluation of the inverse kinematics algorithm from Sec. 5.3 is performed with239

simulations at the basic example of a six-DoF industrial robot with a rectangular trajectory. The240

manipulator Fanuc M-710 iC/50 was taken from the example of [36] with the tabulated kinematics241

parameters and a sketch of the trajectory in Fig. 6. Deviations in the parameters relative to [36] result242

from the use of the modified Denavit-Hartenberg5 notation for the joint transformation according to243

KHALIL and the use of only positive αi parameters for axis alignment for consistency with the results244

of the structural synthesis from [34]. The trajectory is a rectangle with 500 mm× 800 mm and a desired245

alignment of the z-axis pointing into the ground plane.246

4 This matrix is related to the time derivatives ẋr of the platform Euler angles and is called “design Jacobian” in [11] and
“Euler angles inverse jacobian matrix” in [15] in contrast to the Jacobian related to angular velocities of the platform.

5 The four DH parameters contain the minimal set of kinematic parameters for single joint transformations which correspond
to distances and angle offsets between joint axes.
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i αi di θi ri qi,min qi,max
Rx Tx Rz Tz

1 0 0 q1 0 −180◦ 180◦

2 90◦ 150 mm q2 0 30◦ 165◦

3 0 870 mm q3 0 −132◦ 230◦

4 90◦ 170 mm q4 1016 mm −360◦ 360◦

5 90◦ 0 q5 0 −125◦ 125◦

6 90◦ 0 q6 -175 mm −360◦ 360◦

Figure 6. Left: Table with the kinematic parameters of the industrial manipulator Fanuc M-710 iC/50.
Right: sketch of the robot scenario.

The IKP is solved with two settings: Setting the tool axis rotation to different constant values β3247

with the 3T3R algorithm and solving the IKP only for the desired pointing direction with the 3T2R248

algorithm. The algorithm from (43) was used in the extended version of (47) for both cases with249

different settings caused by their nature. For the 3T3R case, KT = 0.7 and KN = 0.7 were set. The terms250

KN and KLim have no effect, since no nullspace movement is possible. For the 3T2R case, with Kh1 = 0251

and Kh2 = 1 only the hyperbolic limit rejection criterion from (45) was used. The first criterion was not252

used, since in the trajectory example the limits are not even temporarily exceeded by principle. All253

IKP algorithms had the same initial value from Fig. 6.254

The results of the inverse kinematics for different settings are given in Fig. 7, where the255

representative joint coordinates q1 and q5, the redundant coordinate of the end-effector orientation256

β3, as well as the optimization criterion (45) are depicted over time for the trajectory from Fig. 6. The257

positions are normalized to the joint limits from -1 to 1. The first three lines in Fig. 7 represent IKP258

solutions with a given constant end-effector orientation β3 of −150◦, −15◦ and 45◦ and the 3T3R259

algorithm. The 3T2R algorithm without nullspace optimization is plotted with dotted lines for each260

first sample of the 3T3R cases as initial value with the same colors. Using these initial values for a261

3T2R IK with optimization leads to strong nullspace movements at the beginning, quickly converging262

to a local minimum. Therefore the 3T2R case with optimization, plotted as the green line with triangle263

markers, is shown only for the initial condition from Fig. 6. It can be observed, that the optimization264

of the criterion leads to the best solution of the IKP. The lines for the criterion for β3 = −150◦ and265

β3 = −15◦ partly exceed the limits of the plot, indicating that the limit is violated, which can also be266

seen at the plot for q5. This exposes the need for keeping the solution always within the limits by the267

measures described. The 3T2R IK without optimization with dotted lines tends to lower changes in the268

joint positions than the 3T3R IK, since this corresponds to the solution of the matrix pseudo-inverse in269

(43).270
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Figure 7. Results of the inverse kinematics with different settings for the trajectory of Fig. 6.
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6.2. Resolution of Functional Redundancy of a Parallel Robot in 3T2R tasks271

As elaborated in Sec. 4 and 5, the solution of the IKP for 3T2R and 3T3R tasks is necessary to solve272

the problem for parallel robots. Therefore the trajectory evaluation for a 6UPS parallel robot6 in this273

section is preceded by the trajectory example for a serial link chain in the previous section. This robot274

belongs to the first class presented in Sec. 1.2, which is primarily addressed in this paper.275

The robot has a Gough-structure [15] with symmetric alignment of the universal joint base276

couplings on a circle with radius ‖r0Ai‖ = 1 m and the spherical joint platform couplings on a circle277

with radius ‖rBiE‖ = 0.4 m. The initial pose was set to a center position xT
t = [0, 0, 0.5 m] and the initial278

orientation xr was set to zero, meaning an alignment of base and platform frame. The joint positions279

for each leg were defined to have the initial values qT
i = [30◦,−30◦, 0.583 m, 0◦, 30◦, 60◦] for the given280

initial platform pose to avoid switching±π within the trajectory and to avoid gimbal-lock-singularities.281

The joint limits were set around the resulting zero position to ±0.5 m for the prismatic joint and ±60◦282

for all single revolute joints representing the universal and spherical joints. The values are higher than283

typical values for real robots to emphasize the effect of the nullspace movement in a bigger simulated284

workspace of the robot. The settings for the IK solver are similar as in Sec. 6.1, since both cases regard285

solving the IKP for a trajectory.286

The time evolution of platform pose and optimization criteria is depicted in Fig. 8. The reference287

trajectory can be seen at the platform position in Fig. 8 a and the platform orientation expressed in288

X-Y-Z-Euler angles (β1-β3) relative to the base frame in Fig. 8 b. The IKP is solved using two different289

methods: Only solving the IKP for the legs separately, called “ser. IK” in Fig. 8 and solving the IKP290

for all legs together, called “par. IK” in Fig. 8. Both methods perform an optimization with only h2 of291

(45), as justified in Sec. 6.1. The first approach only performs this optimization according to Sec. 3 for292

the first leg using the 3T2R method and then solves the IKP for all other legs with the 3T3R method.293

The second approach uses the optimization for all legs together according to the 3T2R method from294

Sec. 4. This results in improved values for the performance criteria depicted for h1 in Fig. 8 c and for h2295

in a logarithmic scale in Fig. 8 d. Since the first approach does not regard the limits of the following296

legs, the optimization criterion gives high values indicating many joint limit violations. The second297

approach only shows peaks at t = 1.5 s in Fig. 8 d that result from a joint position getting near to the298

limit, but not exceeding it. For the practical implementation, the computation time is only weakly299

influenced by the selection of the method, since calculating the (pseudo)-inverse for six 5× 6 and 6× 6300

or one 35× 36 matrices does not present a challenge for current computing hardware. Therefore the301

“par. IK”-method should be preferred.302

6 For solving the full IKP, the actuation (such as “6UPS”) does not have to be considered.
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Figure 8. Results of the inverse kinematics of a 6UPS robot in a 3T2R task. (a) platform positions, (b)
platform orientation in Euler angles, (c) optimization criterion h1(q), (d) optimization criterion h2(q).
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6.3. Statistic Results for the Inverse Kinematics of Serial Link Chains303

To emphasize the generality of the presented approach, the inverse kinematics is solved for a set of304

309 serial kinematic chains with six joints. This set of six-DoF kinematics is generated by permutations305

of their Denavit-Hartenberg parameters and is reduced with the isomorphism detection of [34] to a306

minimal set, representing all possible six-DoF serial kinematics with full mobility. The approach is307

similar to the results of the evolutionary morphology of parallel robot leg chains of [11]. In contrast308

to the trajectory evaluations in the previous sections focusing on nullspace movement, the inverse309

kinematics is solved in this section for arbitrary reachable poses of the serial chain in its individual310

workspace. Therefore, different settings proved to be necessary, since for point-to-point movements,311

intermediate steps may be outside of the joint limits. In the trajectory case, the initial value for the312

IKP of the continuous trajectory is always very close to the desired pose of the next trajectory sample.313

Preventing the algorithm completely from leaving the allowed joint positions reduces the IK success314

rate. Therefore, the damping term for limit violation was not used in this evaluation, resulting to a315

constant KLim(q) = 1 in (47). To reach again an allowed configuration when approaching the goal pose316

from intermediate steps with limit violations, the combined criterion h3(q) from (46) with Kh1 = 0.99317

and Kh2 = 0.01 was used. Further empirically determined values for all different serial chains were the318

damping coefficients KT = 0.6 and KN = 0.01 in (47). Since these values provide good results for all319

serial chains with random geometric parameters and for random configurations, they can be regarded320

as a good choice generally.321

To create a general evaluation case, the poses for testing the IK algorithm were generated by the322

forward kinematics of 50 different joint configurations of the chains uniformly distributed between323

the joint limits of ±π for rotational joints and ±0.5 m for prismatic joints. Additionally, the Denavit324

Hartenberg parameters were set to 50 different sets of uniformly distributed parameters between 0325

and 1 meters or radians resulting to 2500 combinations for each of the 309 chains in total. The inital326

value q0 for the solution of the IKP of (47) was set to random values from a uniform distribution within327

the joint limits. The inverse kinematics was calculated for the full pose with the 3T3R algorithm and328

only using the pointing direction together with the resolution of functional redundancy in the 3T2R329

algorithm. A maximum of 15 tries with random initial values was allowed to search for a solution330

of the IKP within the limits. After that, five more tries were allowed to find a solution violating the331

limits, but presenting a solution of the IKP to be able to distinguish the two cases, which allows further332

reasoning on the functionality and possible improvements. A success of the IK is defined as a solution333

within the joint limits.334

The aggregated results are presented as histograms in Fig. 9 for different settings of the algorithm.335

The histograms show, that for the worst case in 3T2R (3T3R) tasks, the success rate is 87 % (69 %),336

marked by the position of the first bars in Fig. 9 (a) and (c). These results can be vastly improved by337

setting the initial guess q0 within 20 % (w. r. t. the joint limit range) around the pose, from which the338

desired end-effector pose has been calculated. This improves the worst success rate of all kinematic339

chains to 98 % for 3T2R (Fig. 9 b) and 95 % for 3T3R tasks (Fig. 9 d).340

A detailed investigation on the success rates of all possible serial chains is performed in Fig. 10.341

The 309 serial kinematics are sorted according to their number of rotational joints and are listed on342

(c)

70 80 90 100

(d)

98 99 100

(a)

90 95 100
0

0.5

1

cu
m

u
la

te
d
 f

re
q
u
. (b)

98 99 100

IK success in percent

Figure 9. Histograms with cumulated frequency of the IK success for all kinematic chains with different
settings: 3T2R tasks (a-b) vs. 3T3R tasks (c-d) and arbitrary initial value (a,c) vs. initial near goal pose.
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Figure 10. Detailed Statistics of the success of the inverse kinematics algorithm for 3T2R tasks (a-b)
and 3T3R tasks (c-d). The Success of the IK solver is shown in different shades of green for increasing
numbers of required tries. Different initial values q0 are distinguished in (a,c) and (b,d).

the horizontal axis of the figure: They contain three rotational joints up to no. 98, four R-joints up to343

no. 240, and five R-joints up to no. 301. The eight structures from 302 to 309 with six R-joints differ344

in the parallelism of their joint axes. The first 240 kinematic chains with more than one prismatic345

joint can be seen as a rather academic example and are listed for the sake of completeness. The most346

prominent chains are the UPS-chain from Sec. 6.2 at no. 266 and the six-DoF industrial robot from347

Sec. 6.1 at no. 309. Each bar represents the stacked relative frequency of the IK result state in percent for348

one kinematic chain. The result state is defined as the number of tries or the success. All bars add up349

to 100 %, which corresponds to the 2500 configurations per chain. Beginning at the bottom, the number350

of tries necessary for the solution of the IKP is marked with colors from bright green to orange. Only351

cases with a violation of the limits (bright red) or wrong position (dark red) correspond to a failure of352

the algorithm, which has been addressed in the analysis of Fig. 9, representing an aggregated form of353

Fig. 10. The subfigures (a)-(d) of Fig. 10 correspond to the ones in Fig. 9. It can be observed, that the354

quality of the results is clustered according to the kinematic groups. Structures with at most one P-joint355

show a considerably better performance of the algorithm with a worst success rate of 97.16 % for five356

R-joints and 99.36 % for six R-joints for the 3T2R case (a), which can be seen at the very small red357

top parts of the bars in the corresponding range of the diagram. The worse performance of the 3T3R358

algorithm, mostly caused by limit violations, can be explained by joints changing their configuration,359

i. e. from “elbow up” to “elbow down”, which causes limit violations but does not affect the 3T3R IK.360
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7. Discussion361

A general kinematics model for parallel robots is introduced to solve the inverse kinematics362

problem for any kind of parallel robot in tasks with one redundant rotational DoF (3T2R). The prize363

of the generality of the approach is the increased size of the geometric matrices, which is 10× 11364

for robots with a simple UPS structure instead of 6× 6 for the non-redundant kinematics and grow365

up to 35× 36 for general task redundant parallel robots with full mobility. This makes symbolic366

calculations of the kinematic matrices impossible, allowing only studies on mobility, singularities and367

other properties of the Jacobian matrix based on numeric calculations. The application of the proposed368

method can therefore be seen mainly in finding optimal trajectories for task redundant parallel robots369

in milling or drilling scenarios regarding stiffness, dexterity or joint limits. Due to the performance370

of the method demonstrated at exemplary cases, an online implementation is possible but has to be371

proved in future works to converge in real-time conditions for specific machines. The generality of372

the approach allows to use it in a combined structural and dimensional synthesis sketched in Fig. 2,373

extending the purely structural synthesis of parallel robot kinematics from [11,31] to a dimensional374

synthesis of all structures as shown in [34] for serial robots.375
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Abbreviations382

The following abbreviations are used in this manuscript:383

384

PKM parallel kinematic machine (parallel robot)
IKP inverse kinematics problem
DoF degrees of freedom
xTyR x translational and y rotational degrees of freedom

385

Appendix A Mathematical Symbols for Reciprocal Euler Angles in Inverse Kinematics386

The following appendix contains additional detailed information about the kinematic constraint387

formulation of this paper. Sec. A.1 contains a mathematical proof for the properties of reciprocal Euler388

angles in inverse kinematics, which is only outlined in equ. 18 of [5]. The justification for using the389

approach of partial derivatives instead of the geometric Jacobian is derived in Sec. A.2. The matrix390

operations for the partial derivatives are replicated from [5] in Sec. A.3 and the contents of the single391

partial derivatives are given in Sec. A.4 to facilitate the understanding and implementation by the392

reader.393

Appendix A.1 Proof for the Properties of Reciprocal Euler angles394

This section derives the effect of the reciprocity of Euler-angles at the example of the kinematics
description of Sec. 3 and the frames of Fig. 4 (b): An end-effector orientation β = xr gives the rotation
matrix7

DRE(β, q) = 0R
T
D(β)0RE(q) (A1)

7 The matrix rotates vectors from FE to FD
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from the actual end-effector frame FE to the desired or platform end-effector frame FD, where using
the X-Y-Z-Euler angles and exploiting the properties of SO(3) rotation matrices yields

0R
T
D(β) = Rz(−β3)Ry(−β2)Rx(−β1) (A2)

as introduced in (5). With an additional rotation −δ around the z-axis for the desired orientation, the
resulting new Euler angles β′ are

β′1 = β1, β′2 = β2, β′3 = β3 − δ. (A3)

The additional rotation corresponds to the tool axis defined in Sec. 3 and leads to a new residual
orientation error expressed as a rotation matrix

DRE(β′, q) = 0R
T
D(β′)0RE(q)

=
(

0RD(β)Rz(−δ)
)T 0RE(q)

= Rz(δ)
0R

T
D(β)0RE(q)

= Rz(δ)
DRE(β, q). (A4)

The first residual orientation error from (A1) corresponding to β is defined as a rotation matrix

DRE(β, q) =

nx ox ax

ny oy ay

nz oz az

 (A5)

and as a Z-Y-X-Euler angle representation8

α =

α1

α2

α3

 =

 arctan2
(
ny, nx

)
arctan2

(
−nz,

√
az2 + oz2

)
arctan2 (oz, az)

 . (A6)

The second residual corresponding to β′ only differs regarding the additional rotation δ. Combining
(A4) and (A5) leads to

DRE(β′, q) =

n′x o′x a′x
n′y o′y a′y
n′z o′z a′z

 =


Cδ nx − Sδ ny Cδ ox − Sδ oy Cδ ax − Sδ ay

Cδ ny + Sδ nx Cδ oy + Sδ ox Cδ ay + Sδ ax

nz oz az

 ,

where Cδ = cos(δ) and Sδ = sin(δ). The Z-Y-X-Euler angles from this rotation matrix are

α′ =

α′1
α′2
α′3

 =


arctan2

(
n′y, n′x

)
arctan2

(
−n′z,

√
a′z

2 + o′z
2
)

arctan2 (o′z, a′z)

 =

arctan2
(
(Cδ ny + Sδ nx), (Cδ nx − Sδ ny)

)
arctan2

(
−nz,

√
az2 + oz2

)
arctan2 (oz, az)

 , (A7)

8 Utilizing the sign-aware operator arctan2(y, x) instead of arctan(y/x) allows angles to be in (−π,+π], removes ambiguities
and provides global differentiability.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2019                   

Peer-reviewed version available at Robotics 2019, 8, 68; doi:10.3390/robotics8030068

https://doi.org/10.3390/robotics8030068


20 

where δ only influences the first component α′1. This allows the conclusion, that β3 only influences α1

and results in the dependencies

α′1 = α′1(q, β1, β2, β3) (A8)

α′2 = α′2(q, β1, β2) = α2 (A9)

α′3 = α′3(q, β1, β2) = α3 (A10)

with the consequences for the kinematic modeling of robots in 3T2R tasks described in Sec. 3.395

Appendix A.2 Relation of the Gradient Matrices to the Geometric Jacobian of the Serial Chain396

As introduced in Sec. 5, the rotational part of the gradient matrices can not be derived with
the commonly available Jacobian of the serial link kinematics of the legs. Defining the residual
of the orientation for the inverse kinematics with Euler angles was first introduced in [7], where
the calculation of the partial derivatives was referred to the geometric Jacobian without further
clarification. The relationship between the gradient matrices from Sec. 5 and the Jacobian can be
obtained by comparing the platform or end-effector velocity

ẋ = J1q̇1,

[
ẋt

ẋr

]
=

[
Jt,1(q1)

Jr,1(q1)

]
q̇1 (A11)

obtained with the Jacobian with the velocity obtained by the gradient matrices of (18). Using the
differential form (29) only for the first kinematic leg chain of the parallel robot gives

d
dt

Φ1(q1, x) = Φ1,q(q1, x)q̇1 + Φ1,x(q1, x)ẋ = 0 (A12)

and results reorganized to the form of (A11) with (32) and (35) to[
ẋt

ẋr

]
= −

[
−1 0
0 Φ−1

r,1,∂xr

] [
Φt,1,∂q1

Φr,1,∂q1

]
q̇1 =

[
Φt,1,∂q1

0
0 −Φ−1

r,1,∂xr
Φr,1,∂q1

]
q̇1. (A13)

By equating coefficients of (A11) and (A13) the relations

Φ1,q(q1) = −Φ1,x(q1, x)J1(q1), (A14)

Φt,1,∂q1
(q1) = Jt,1(q1) and (A15)

Φr,1,∂q1
(q1, x) = −Φr,1,∂xr(q1, x)Jr,1(q1) (A16)

can be obtained between the gradient matrices and the analytic Jacobian of the serial leg chain. The397

dependency on q1 and x has been added to highlight the main requirement, namely the zero equality398

condition of (A12). In the inverse kinematics procedure of Sec. 5.3 the residual at step k in (40) is399

unequal to zero. For the partial derivative (36)/I a value of DRE 6= 1 will be inserted in (A20), which400

will break (A16). The translational part is unaffected, as can be seen in (A15).401

Appendix A.3 Matrix Operations for Partial Derivatives402

To simplify the calculations of the gradient matrices of the residuals in Sec. 5, operators for
matrices are replaced by operators for vectors, to avoid differentiating matrices or w.r.t. matrices which
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would require multi-dimensional tensors. The column operator R for rotation matrices R to stack the
coordinate systems unit vectors n, o, a ∈ R3 vertically instead of horizontally is defined as

R(R) =

n
o
a

 ∈ R9 with R =
[
n o a

]
=

nx ox ax

ny oy ay

nz oz az

 ∈ SO(3) (A17)

to avoid differentiating matrices or w.r.t. matrices. The special properties of the SO(3) group are not
exploited and the operator can be used for R3×3 as well. Matrix multiplication is expressed with the
matrix product operator Π such that

1R3 = ∏
(

1R2, 2R3

)
= R(1R3) with 1R3 = 1R2

2R3. (A18)

The transposition operator PT is a 9× 9 permutation matrix such that

2R1 = PT
1R2 = R(1R

T
2 ) =

1R
T
2 ∈ R9 with 2R1 = 1R

T
2 ∈ SO(3) and 1R2 = R(1R2). (A19)

Writing 1RT
2 instead of PT

1R2 serves for the clarity of the expressions (34,36,38,39) and overloads the403

transposition operator for R9 noted with the bar.404

Appendix A.4 Contents of the Partial Derivatives405

The single expressions derived in Sec. 5 can be calculated with low computational effort
from the definition of the X-Y-Z- and Z-Y-X-Euler angles from (5), (21) and (A6). With R =

[nx, ny, nz, ox, oy, oz, ax, ay, az]T the gradient “I” in (34,36,38,39) for Z-Y-X angles becomes

∂α(R)

∂R
=


− ny

nx2+ny2
nx

nx2+ny2 0 0 0 0 0 0 0

0 0 −
√

az2 + oz2 0 0 nz oz√
az2+oz2

0 0 nz az√
az2+oz2

0 0 0 0 0 az
az2+oz2 0 0 − oz

az2+oz2

 (A20)

and the inverse gradient “IV” in (36) for X-Y-Z angles yields

∂R(β)

∂β
=



0 −S2 C3 −C2 S3

C1 S2 C3 − S1 S3 S1 C2 C3 −S1 S2 S3 + C1 C3

S1 S2 C3 + C1 S3 −C1 C2 C3 C1 S2 S3 + S1 C3

0 S2 S3 −C2 C3

−C1 S2 S3 − S1 C3 −S1 C2 S3 −S1 S2 C3 − C1 S3

−S1 S2 S3 + C1 C3 C1 C2 S3 C1 S2 C3 − S1 S3

0 C2 0
−C1 C2 S1 S2 0
−S1 C2 −C1 S2 0


(A21)

with Ci = cos(βi), Si = sin(βi). The property(
∂β

∂R

)(
∂R(β)

∂β

)
= 1 ∈ R3×3 (A22)
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can be used to test the implementation, if (A20, A21) are defined for the same Euler-angle notation.
The gradient of the matrix product (A18) w.r.t. the second factor used in (34)/II, (36)/III, (38)/II and
(39)/III is

∂

∂R2
∏
(

R1, R2
)
=

R1 0 0
0 R1 0
0 0 R1

 (A23)

and to complete the enumeration the gradient w.r.t. the first factor is

∂

∂R1
∏
(

R1, R2
)
=

diag(nx) diag(ox) diag(ax)

diag(ny) diag(oy) diag(ay)

diag(nz) diag(oz) diag(az)

 , (A24)

where nx, ny, ... are the entries of R2 and the diag-matrices are 3× 3. By transposing the elements of406

the matrix product (A18), only the first form (A23) had to be used in this paper.407
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