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Abstract: Road surface monitoring more specifically crack detection on the surface of the road 11 

pavement is a complicated task which is found vital due to critical nature of roads as elements of 12 
transportation infrastructure. Cracks on the road pavement is detectable using remotely sensed 13 
imagery or car mounted platforms. UAV’s are also considered as useful tools for acquiring reliable 14 
information about the pavement of the road. In This paper, an automatic method for crack detection 15 
on the road pavement is proposed using acquired videos from UAV platform. Selecting key frames 16 
and generating Ortho-image, violating non road regions in the scene are removed. Then through an 17 
edge based approach hypothesis crack elements are extracted. Afterwards, through SVM based 18 
classification true cracks are detected. Developing the proposed method, the generated results show 19 
75% accuracy in crack detection while less than 10% of cracks are omitted. 20 

 21 

Keywords: Crack Detection; UAV Imagery; SMV Classification; Aerial Photogrammetry  22 

 23 

1. Introduction 24 

Monitoring of Infrastructures and lifelines is believed to be a never ending story. As a matter of 25 
fact, the prominence of those facilities totally rely on perpetual and constant observance and 26 
evaluation of functionality of their elements. An undetected failure in water supplement in a 27 
populated region or any damage to main highways directly and immediately affects the life of 28 
residence. Therefore, a well- defined economic and efficient monitoring method for each and every 29 
important infrastructure and lifeline is believed to be vital.     30 

Roads network are of the most prominent infrastructure that are systematically classified under 31 
the category of transportation lifelines. As Roads are the main transportation mean around the world, 32 
carrying goods and services is mostly based on developed and functional system of roads network. 33 
Roads are required to be functional almost every time. This eventually imposes tight minoring of the 34 
facility. On the other hand, due to the roads’ distributed and elongated nature, the process of 35 
monitoring seems to be time consuming and expensive procedures.  According to American 36 
Association of State Highway and Transportation Officials, maintenance of road cost more than 67 B 37 
US dollars annually (koch et al., 2015). 38 

 Roads are also vulnerable due to natural causes and disasters. Regardless of the more complex 39 
structures such as bridges and tunnels, the pavement of roads are also affected by natural and man 40 
caused events. Cracks are of the common damages to road pavement occurring mostly due to the 41 
constant change in temperature, weight of vehicles, erosion and chemical corruptions (Behnia et al., 42 
2018). Consequently, crack monitoring seems to be promising to analyze and evaluate the current 43 
condition of roads. Quality, shape, type, depth and length of cracks are some of the most measures 44 
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in crack analysis and monitoring (Mohan and Poobal, 2018). Therefore, acquiring reliable information 45 
about cracks on the surface of the roads seems to be vital for efficient maintenance of the road 46 
network. 47 

The simplest method to inspect road surface is the visual inspection at the location which is 48 
considered to be inefficient and expensive. On the other hand, remote sensing techniques are believed 49 
to be one of the most suitable and reliable solutions for monitoring and maintenance of such facilities 50 
which are found interesting in nineties. With the advent of technology and the appearance of new 51 
imaging sensors, the concept of image based monitoring of roads has peeled and evolved. One of the 52 
most brilliant tools are Unmanned Airborne Vehicles also referred to as UAVs. Regardless of the 53 
diverse applications of UAVs, they are practically bolded in the process of acquiring high resolution 54 
imageries which facilitates more detailed inspection and monitoring through a safe and economic 55 
procedure (Aldea et al., 2015; Grandsaert, 2015; Sankarasrinivasan et al., 2015). 56 

In this paper reviewing the most recent and the most important researches about crack detection 57 
from different sensors, a method to detect and extract asphalt cracks of roads using UAV based 58 
imagery is defined. 59 

 60 

2. Crack Detection from Airborne Imagery 61 

Automatic crack detection from imagery is categorized with respect to the data acquisition 62 
perspective and processing method (Coenen and Golroo, 2017). Considering data acquisition 63 
platform, three main imaging methods of terrestrial, Aerial and satellite images are used for remote 64 
sensing based crack detection. In terrestrial case, image acquisition systems are usually mounted on 65 
a moving vehicle such as cars and trains usually categorized under mobile mapping terms (Quintana 66 
et al., 2015). Airborne and satellite imaging systems are other information providing sources for crack 67 
detection (Schnebele et al., 2015). Due to the limitations of satellite imagery to provide sufficient 68 
spatial resolution, airborne systems and recently UAV based imaging systems are widely used for 69 
crack detection.  70 

Crack detection techniques from images are mostly performed in four stages of preprocessing, 71 
segmentation, classification and enhancement.  At the preprocessing level, basic enhancement 72 
techniques such as noise reduction, smoothing, sharpening and edge detection along with some more 73 
complex processing including removal of misleading and violating objects such as cars, vegetation, 74 
shades, signs and marks are performed. In the segmentation step, candidate crack primitives are 75 
extracted mostly based on the similarity of cracks to edge elements. In the next step classification is 76 
performed to define crack region and finally the results are enhanced mostly through morphological 77 
filtering (Cubero-Fernandez, 2017; Gavilan et al., 2011;).  78 

Yokoyama et al., 2017 presented an automatics crack detection technique training artificial 79 
neural networks. The results showed in case of classification in two classes of crack and non-crack, 80 
the algorithm success rate in 79.9 %. In case of three classes of cracks, non – cracks and white lines, 81 
this method is 73.3 percent successful. It is also concluded that the method is successful in case of 82 
monitoring the stainless paved surfaces but inspecting concrete surfaces the successfulness of the 83 
method drops drastically. 84 

Kim et al., 2017 proposed a crack detection method based on integrating different image analysis 85 
methods using both imagery and ultra-sonic sensors to measure distance. They focused on discrete 86 
crack and the main objective of paper was to measure length and width of cracks. The proposed 87 
system showed the successful detection of cracks thicker than 0.1 mm with the maximum length 88 
estimation error of 7.3%. 89 

Cubero-Fernandez et al., 2017 presents a crack detection technique using edge detection and 90 
morphological operations. In this research after preprocessing of spatial data through noise reduction 91 
and smoothing, canny edge detection is applied. The results are enhanced through morphological 92 
closing for gap removal. Finally, through a decision tree the success rate of 88 % in achieved. 93 

Ersoz et al., 2017 proposed a method extracting crack in two steps of segmentation and 94 
classification using images of a low traffic road segment. Thresholding the results, the remaining 95 
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noise is removed via closing operator. SVM classifier issued to make distinguishes between cracks 96 
and non-cracks items considering geometric features. The accuracy of 97% was achieved where the 97 
flight was too low inspecting concrete surfaces. 98 

Yin et al., 2015 proposed a crack detection technique by creating image pyramid of the acquired 99 
UAV images and performing canny edge detection in multiple scales. Final edges representing cracks 100 
are detected by aggregating the results of crack detection in different scales.  101 

In Aldea and Le Hégarat-Mascle, 2015 crack detection is studied based on two algorithms of 102 
minimum path cost analysis and image percolation. Moreover, an improved strategy based on a-103 
contrario modeling which able to withstand the significant motion blur is proposed. Experimenting 104 
the proposed method on real image databases, the results showed that the proposed method is 105 
successful compared to other similar solution which only work on perfect images and not of 106 
significantly degraded images.  107 

Chamben et al., 2010 considers a simulated imagery for crack detection. In this approach Markov 108 
model and adaptive filtering are used for segmentation and crack detection. In this paper it was 109 
attempted to explore the best configuration of parameters considering Markov field direction and 110 
window size. 111 

Oliveira et al., 2009 proposed a complete workflow for detection and categorization of road 112 
surface cracks using imageries from road monitoring vehicles in a fast solution. Morphological 113 
operation is used to reduce noise and through dynamic thresholding cracks are generated. Evaluating 114 
the results, success rate of 95 percent is achieved. 115 

 Sankarasrinivasan et al., 2015 proposed an innovative protocol for full field mapping of a large 116 
civil structures involving effective use of Unmanned Aerial Vehicles to enable real time structural 117 
health monitoring. The proposed framework integrates UAVs, image processing and acquisition 118 
procedures for crack detection and assessment of surface degradation. A novel approach is proposed 119 
combining hat transform and HSV thresholding technique for crack detection. In addition, grey scale 120 
thresholding is employed for the measurement of surface degradations .The demonstrative model is 121 
proven to be reliable and feasible for full field mapping and health monitoring for civil 122 
infrastructures. 123 

In summary, it is obvious that remote sensing based methods of crack monitoring usually result 124 
in satisfying results in case of time and cost and among them UAV based imageries prompt to be 125 
more interesting in recent years. In image processing based methods, pre-processing step is crucial 126 
for achieving higher accuracy in final results, otherwise, the results are promising, but they are 127 
affected by spots or shadows.  128 

Up to now, a few image based crack detection methods have been studied and proposed 129 
specially for UAV based imagery.  Most of these studies are focused on cracks in concrete surfaces 130 
or simple data sets. In this study we proposed an automatic method for asphalt crack detection in 131 
roads which are highly involved with violating objects, noises, spots and so on. 132 

 133 

3. Proposed Crack Detection Method 134 

Considering the capabilities of information UAV imaging systems provide and on the basis of 135 
the researches developed for crack detection in various applications, the proposed method for 136 
automatic crack detection is presented.  As illustrated in figure 1, the proposed method is comprised 137 
of six levels of action. At the first level, aerial imageries along with simultaneous record of onboard 138 
GPS/INS measurements of Exterior Orientation parameters and also GCPs are acquired. In the next 139 
level, through photogrammetric computation, digital Ortho-Image of the region is generated. Next, 140 
in preprocessing section noise reduction, image enhancement and removal of non-crack objects such 141 
as vegetation, cars and shades are performed. Through candidate crack detection, a set of hypothesis 142 
cracks primitives which enjoy structural similarity to typical cracks are generated using edge 143 
detection techniques. In the next level, to verify the true cracks, best features to utilize in classification 144 
process are computed and assessed. Then, SVM classification is used to determine final cracks and a 145 
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modification process is proposed. Finally, in the evaluation step, the results are compared with 146 
respect to ground truth collected by expert. 147 

 148 

 149 

Figure 1. the flowchart of the proposed automatic crack detection method from UAV images 150 

3.1. UAV Based Imaging and Data acquisition 151 

As roads are elongated regions, the use of light multirotor and light sensors with high mobility 152 
and lower flight altitude and speed are considered. To fortify the process of sensor orientation, 153 
onboard GPS/INS information are used. To improve the spatial accuracy of the final map of cracks, 154 
GCPs are acquired through ground surveying.  155 

The most important fact about choosing most suitable UAV and sensor is the imaging speed 156 
which is related to the sensor speed and UAV altitude and speed. Too low speed increases the project 157 
cost and too high speed will result in blurriness of images. On the other hand, the resolution of final 158 
achieved images should be considered in advance at the flight planning step. The optimum resolution 159 
depends on the width of cracks, if it’s less than 3 pixels, the line extraction methods can be applied. 160 
Therefore, it should be defined in a way to provide optimum size of crack in images and also prevent 161 
data redundancy. The flight time is also important in order to prevent large shades which might 162 
result in occluded area. 163 

3.2. Key-frame Extraction 164 

As the sensor used is a video acquisition sensor, after data acquisition, key frames have to be 165 
extracted. Key frames can be selected based on radiometric and geometric aspects. In radiometric key 166 
frame selection, the quality of the frames is checked and the blur low content frames are removed; 167 
but in geometric key frame selection, the frames are checked for geometrical stability vital for 168 
photogrammetric processing. 169 

In this study, for radiometric frame selection, the BluM metric is applied. The output of this 170 
algorithm is a score between 0 to 1. Results close to 0 represent the best and results close to 1 represent 171 
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the worst sharpness of images, respectively. Using a predefined threshold, acceptable and non-172 
acceptable frames are selected (Crete et al., 2007; Arofteh et. al., 2017). 173 

Geometric Robust Information Criterion (GRIC) factor which is presented by Torr et al. (1996) is 174 
applied for geometrical evaluation of frames. GRIC evaluates which of the Fundamental epipolar 175 
geometry model (F) or homography model (H) is best suited to explain the geometrical relation of 176 
two sequences (Arofteh et. Al., 2017). GRIC is defined as: 177 

𝐺𝑅𝐼𝐶 = ∑ 𝜌(𝑒𝑖
2

𝑖

) + 𝜆1𝑑𝑛 + 𝜆2𝑘 (1) 

and 178 

𝜌(𝑒𝑖
2) = {

𝑒2

𝜎2

𝜆3(𝑟 − 𝑑)

 
𝑒2

𝜎2
< 𝜆3(𝑟 − 𝑑)

     
𝑒2

𝜎2
≥ 𝜆3(𝑟 − 𝑑)

 (2) 

Where 𝑑 = Dimension of the selected motion model (𝐻 has the dimension two and 𝐹  has 179 
dimension three);𝑟= Dimension of the data (i.e. four for two views; 𝑘= Number of the estimated 180 
model parameters (seven for 𝐹  and eight for 𝐻); 𝑛= Number of tracked features; 𝜎  = Standard 181 
deviation of the error on each coordinate; 𝑒𝑖 = Distance between a feature point transferred through 182 
𝐻 and the corresponding point in the target image or the Euclidian distance between the epipolar line 183 
of a feature point and its corresponding point in the target image. 184 

The GRIC has used for key frame extraction with tuning parameters of 𝜆1. 𝜆2 𝑎𝑛𝑑 𝜆3 with: 185 

             𝜆1 = ln(𝑟).  𝜆2 = ln(𝑟𝑛) .  𝜆3 = 2 (3) 

In practice, to avoid selecting too many key-frames, it is proposed to pick a key-frame at the last 186 
frame for which: 187 

𝑛𝑖 ≥  0.9𝑛𝑒 (4) 

where 𝑛𝑖 = Number of valid tracked features; 𝑛𝑒 = Number of valid tracks when the Epipolar 188 
geometry model overtakes the Homography model. 189 

After initializing the first frame of the sequence as key-frame and proceeding frame by frame, 190 
the next key-frame is selected if the GRIC value of the motion model 𝐹 is less than the GRIC value 191 
of 𝐻. 192 

 193 

3.3. Photogrammetric Computation 194 

In the photogrammetric computation, the acquired imagery and extracted frames are elaborated 195 
to digital Ortho-image. The process as it is so called Structure From Motion (SFM) starts with the 196 
extraction of tie points in imagery using image matching usually being performed automatically 197 
through point extraction and matching algorithms. Then, block bundle self-calibration is performed, 198 
firstly to estimate interior and exterior orientation parameters of images and secondly to estimate 3D 199 
ground coordinates of tie points. Then, through dense matching algorithm, Digital Elevation Model 200 
of the region is generated. Using a backward projection technique, the Digital Ortho-photo is 201 
generated. The flowchart of Photogrammetric Computation step is depicted in figure 2. 202 

 203 

 204 
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Figure 2. Ortho image generation through Structure form motion procedure. 205 

3.4. Preprocessing 206 

The preprocessing section considers two phases of low and high level preprocessing procedures. 207 
In the low level process, noise reduction or any further image enhancement and filtering is applied. 208 
High level preprocessing includes the removal of non-road regions or regions where the existence of 209 
any crack is impossible or improbable or simply not required. In other words, the road region in the 210 
digital Ortho-image could be inspected for road regions which is mostly applicable by overlaying 211 
digital maps of the road and masking target road regions. On the other hand, there are some non-212 
road objects on the surface of the road which may violate the process of crack detection.  In this case 213 
violating non target objects such as cars, shades and signs are removed. 214 

 215 

3.4.1. Image Enhancement and noise removal 216 

In order to reduce the noisy content of image and to enhance the image in a way that the cracks 217 
become more distinctive than the background, this study proposed a combination of smoothing filter 218 
and top hat and bottom hat operation based on relation (5). 219 

 220 

F = ((SH +   tophat(SH)) −  bothat(SH)) (5) 

where F is the enhanced image, SH is the input image which is smoothed based on a Gaussian 221 
filter. 222 

3.4.2. Removing Marginal Non- Road Regions 223 

In this step, roads regions are extracted from the scene so the process of crack detection is only 224 
conducted on the road region to decrease the amount of unnecessary computation and false positive 225 
detections. Therefore, road network is projected on the Ortho-image and according to the width of 226 
the road segment, the corresponding road regions are extracted. It should be noted that the quality 227 
of generated Ortho-image and the accuracy of road network has direct impact on the extracted road 228 
region. Therefore, an accurately generated Ortho–image and updated accurate vector road network 229 
is necessary. 230 

 231 

3.4.3. Removing Non target disturbing objects 232 

Road surface presented in the digital Ortho-image is always violated by occlusions imposed by 233 
the scene configuration of objects. The existence of vegetation, cars, signs and lines, shades and 234 
occlusion from neighboring elevated objects such as buildings, may disturb the process of crack 235 
detection through increasing high frequencies to the digital imagery and increasing the number of 236 
detected edges and as a results increasing the percentage of False Negative detections.  237 

Threshold applying is the main tool to remove most of the violating objects. For vegetation 238 
removal NDVI in case the Ortho-image enjoys Infra-Red channel or Greenness value where only RGB 239 
channels are available, are often used (Samadzadegan and Zarrinpanjeh, 2008). For shade removal 240 
the same procedure considering illumination in IHS space along with Hue value is used.  For car 241 
detection, morphological geodesic filtering is believed to be promising [Zarrinpanjeh and 242 
Dadrassjavan, 2017]. In this case the size of extracted cars is inspected with respect to conventional 243 
car sizes. 244 

3. 5. Crack primitive detection 245 

The process of crack primitive extraction in this research is mainly based on edge detection 246 
techniques. As cracks appearing on the surface of the road pavement demonstrate sudden changes 247 
in grey value, it is reflected through high frequencies in the imagery. It should be noted that as high 248 
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frequencies appear in the form of various objects such as dots and ramps, the most important 249 
elements in choosing proper detector is extremely vital. According to the linear characteristic of 250 
cracks Canny edge detection is used as a solution (Gonzalez and Woods, 2002). 251 

To enhance detected cracks, Connected Component Analysis and Top-Hat morphological 252 
filtering are performed. This makes the extracted candidate crack primitives to be enhanced and 253 
considered as an image objects rather than pixels. Because the results of edge detection are supposed 254 
to be accompanied by similar linear objects such a lines and repaired pavements, crack enhancement 255 
helps removing the scattered non-crack edges. Nevertheless, the detected edges also include false 256 
cracks that should finally be verified. Smoothing and morphological filters might help removing 257 
these artifacts but they might remove sections of cracks as well. As a result, a sliding window filtering 258 
method is proposed in this study. Based on the proposed strategy, a window with size smaller than 259 
the smallest crack size of the dataset is sliding through the whole image and any objects fully 260 
bounded by this window is removed. 261 

 262 

3. 6. Crack and non-crack classification  263 

After extraction of crack primitives those are considered as the candidate cracks are introduced 264 
to classification process to define the true cracks and to remove false positives. The classification 265 
process is composed of two main stages as feature extraction and SVM classification of extracted 266 
features. 267 

 268 

3.6.1. Feature extraction 269 

 To consider SVM classifier to distinguish between crack and non-crack hypothesis primitives, 270 
a list of features is considered and computed. In this research, a set of spectral, textural and structural 271 
features are studied and used.  Table (1) defines the feature to be computed for inspection of 272 
extracted candidate cracks. 273 

 274 
Table 1. Feature for Crack detection from satellite imagery. 275 

Feature Description 

Spectral 
R,G,B Red, Green, Blue Channels of the Digital Othro-image 

Mean Mean value of spectral bands 

Textural 

Contrast Contrast of the neighborhood Box of the evaluated pixel 

Correlation Contrast of the neighborhood Box of the evaluated pixel 

Energy Computes the energy of the neighborhood Box [haralick] 

Homogeneity Computes the Homogeneity of the neighborhood Box [haralick] 

Structural 

Extent The area of the Bounding Box of the Crack 

Eccentricity The eccentricity value of the Bounding ellipse 

Minor axis Length The Minor axis length of the bounding ellipse 

Major axis Length The Major axis length of the bounding ellipse 

Orientation The angle of the major Axis with respect to horizontal axis 

 276 
Features used in this research are mostly chosen by inspecting the specification and 277 

characteristics of cracks. Therefore, more structural features are chosen rather than spectral where 278 
the spectral difference of cracks compared to non-crack paved regions is not so prominent.  279 

 280 

3. 6.2. SVM Classification 281 

Training regions are extracted and SVM classifier is used for classification of candidate cracks. 282 
Training the SVM classifier, all candidate cracks are introduced to the trained SVM and the extracted 283 
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candidate cracks are evaluated. As SVM is defined to classify patterns in two classes, it is found 284 
suitable to detect cracks from non-cracks objects in this application (Cortes and Vapnik, 1995). 285 

 286 

3.7. Evaluation 287 

To evaluate the successfulness of the results, two levels of evaluation is proposed. In the first 288 
one, the capability of SVM classifier in being trained by the training data is evaluated based on the 289 
test data set. The test data set is a random selection of pixels as test and training data. Moreover, for 290 
accuracy assessment of the result of the proposed automatics crack detection method, they are 291 
compared to the cracks detected manually by the expert as independent ground truth. 292 

 293 

4. Results 294 

To experiment the capabilities of the proposed method in successful detection and mapping of 295 
the cracks in the road pavement, the proposed method is implemented and tested for UAV based 296 
aerial imagery and the generated results are evaluated and discussed. 297 

 298 

4.1. UAV based Image Acquisition 299 

For image acquisition, a multirotor UAV equipped with a GoPro4 camera and GPS/IMU systems 300 
is used. Table (2) defines the specifications of the platform. Images are acquired from a road in south 301 
east of Tehran, Iran. The overall view of selected road and the summary of flight plan parameters are 302 
provided in figure (3). 303 

 304 

Table2: The aerial platform specification 

 

40 min Flight Endurance 

2000m Max Flight Height 

1.2 m Dimension 

20 km/h Optimum Speed  

 305 

 

Flight Time 10 min 

Flight Height 60 m 

CSD 3.6 cm 

Flight Speed 20 km/h 
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Figure 3. Data set and flight plan parameters 

 

4-2- Key-frame selection 306 

 To execute photogrammetric process key frames are selected from video string and images 307 
suffering from lower quality in terms of illuminance, focus and motion blur are removed. Moreover, 308 
to prevent data redundancy, key frames are selected based on geometrical stability for bundle block 309 
adjustment based on GRIC algorithm. Figure 4, shows some samples of rejected frames.   310 

  

Figure 4. Samples of rejected fames according to BluM procedure. 

4-3- Photogrammetric Computation 311 

As a result of key-frame extraction step, images with minimum 70 percent overlap are selected 312 
those are higher in quality and enjoy stable epipolar geometry. Conducting the photogrammetric 313 
procedure, the ortho-image of the region is generated. Figure 5, illustrates the camera position and 314 
generated ortho–image. The block bundle adjustment is conducted with the accuracy of 0.01 meters. 315 

  

b a 

Figure 5. a) Photogrammetric process of selected images b) resulted digital Ortho-image. 

4-4- Preprocessing 316 

Image enhancement and noise removal 317 
In the first step of image preprocessing, image enhancement is applied to reduce noise content 318 

of images and also to enhance the image for crack detection based on Canny operation. For the 319 
purpose, image is firstly smoothed based on Mean filter and then the combination of Top Hat and 320 
Bottom Hat operation is applied as discussed previously. The parameters for these operators are set 321 
as SE = 3, Sigma = 0.2 and Hsize = 5. 322 

 323 
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d c b a 

Figure 6. a) Original Image; b) Results of Smoothing step; c) Results of Canny edge detection; d) results of canny 

Algorithm after Top Hat operation 

Non-target removal 324 
In this step, non-target regions violating the process of crack detection are omitted. At first, the 325 

road segment of image is extracted and the back ground is removed. This process is based on the pre-326 
information about the road map and the width of road based on scale of image. Figure (7) presents 327 
the result of road extraction process. The accuracy of this step is evaluated based on the map 328 
generated by digitizing the ortho-image by expert which is determined as 97 percent. The main 329 
reason of the lower accuracy is the vegetation covering the marginal part of the road which is also 330 
removed based on threshold applying on the Red band of images. Doing so, the final quality 331 
increased to 98.8 percent. The road white lines can also be removed easily based on applying 332 
threshold. 333 

 334 
 335 

   

a b c 

Figure 7. a) Original image; b) road extraction and white line filtering; c)vegetation filtering 

The point that might challenge the automatic extraction of cracks is the margin of road after 336 
extraction of road from the back ground. This margin should be removed from the image before crack 337 
detection process. In figure (8) results of this step is presented. The operation of Canny line extractor 338 
before and after this step is also presented to prove the necessity of this process. 339 
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Figure 8. road margin removal 

The large shadows on the road are also non objects elements that might violate the crack 340 
detection process. For the purpose, shallows are removed based on applying threshold value and 341 
remaining isolated small objects are also removed based on morphological filters. Results are 342 
presented in figure (9). The successfulness of this process is also evaluated based on expert generated 343 
data. 344 

 

 

Algorithm result Total number of 

pixels 

1920000 
Non- 

shallow 
shallow 

22969 713718 shallow 
Expert 

result 
1180041 3272 

Non- 

shallow 

98.6% Total accuracy 

Figure 9. shallow removal and the accuracy assessment 

Cars and large non targets elements are also removed by applying geodesic filter following by a 345 
closing morphological filter with the accuracy of 97.7%. Results are presented in figure (10).  346 

 347 

  

 

Algorithm result Total Pixels 

36000000 Road Non-Road 

340413 21984175 
Non-

Road Expert 

result 
13218823 456589 Road 

97.7% Total accuracy 

a b 

  

c d 

Figure 10. Cars and big objects removal and the accuracy assessment 
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4-5- Crack primitive extraction 348 

After extraction of road and removing the non-target elements, Canny edge detection technique 349 
is executed and edges are extracted. Through proposed Top-Hat algorithm and the recursive window 350 
sliding process, results are enhanced and as it is depicted in figure 11, the results are more similar to 351 
cracks through visual inspection, compared to the unfiltered ones, as most of noises which may cause 352 
false crack detection are removed. Afterwards, using morphological operation, extracted edges are 353 
combined as distinctive objects and are introduced to next processing step as candidate cracks. 354 

 355 

    

d c b a 

Figure 11. a)Original Image; b) Results of Canny edge detection; c) results of canny Algorithm after filtering 

process; d) final crack candidate elements 

4-6-Crack and non-crack classification  356 

By extraction of crack candidates, the test and training data are prepared. The training data are 357 
gathered in two different solution of object based and pixel based as it is depicted in figure (12). 358 

    

cracks Non-cracks cracks Non-cracks 

Figure 12. training data generation, left) object based; right) pixel based strategy 

After definition of training and test data sets, candidate cracks are introduced to the SVM 359 
classifier. For the classification process, 4 different scenarios of feature selection are implemented and 360 
evaluated as Spectral/Textural/Structural and the combination of all features. Achieved results are 361 
presented in figure (13). 362 
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Spectral Features 

85% 

Textural Features 

 81% 

Geometrical Features 

 84% 

All Features 

 92% 

Green: cracks; Violet: Non-cracks; Red: Non-cracks labeled as cracks; Yellow: cracks labeled as non-crack 

Figure 13. SMV classifier results 

In order to improve the results of classification, object level post-processing of results is 363 
considered.  In this strategy, after classification of the pixels of candidate cracks, the pixel content of 364 
each object (candidate crack) is evaluated. By considering the majority and minority condition, the 365 
object as a whole is labeled instead of the pixels. Figure (14) depicted the labeling rule in this content. 366 
Based on this strategy, the accuracy of test data improved from 87% to 92%.  367 

 368 
 369 

 

Figure 14. Object based assessment of cracks 

4-7-Evaluation of results 370 

Final results of the proposed crack detection strategy for the whole study area are presented in 371 
figure (15). The validity assessment of the results is performed based on the ground truth extracted 372 
by the digitizing process of an expert for the whole study area which is presented in table (3).  373 

 374 
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a b 

Figure 15. Final Crack detection result, a) the ground truth; b) samples of crack detection results, 

Green: cracks; Yellow: Non-cracks; Red: Non-cracks Labeled as Cracks; Orange: Cracks labeled as 

Non-crack 

Table 3. The validity assessment of the resuls. 
 

Algorithm Results Total Pixels 

237735 Non-Crack Crack 

22892 105012 Crack 
Expert 

Results 
73076 34955 

Non-

Crack 

74/9% Total accuracy 

5. Discussion and Conclusion 375 

Few methods have been proposed to detect cracks from drone images, while there is no certain 376 
method which can detect all cracks, automatically. Previous study mostly focused on images taken 377 
from concrete structures or by road health monitoring vehicles. These images are high in quality and 378 
cracks are usually more prominent than aerial images acquired from roads with asphalt surface. 379 

In automatic crack detection, pre-processing is an important step which plays a critical role in 380 
removing violating elements and also decreasing the processing time and cost. Road extraction, 381 
image smoothing, noise removal and non-target elements removal are the pre-processing steps 382 
discussed in this study. 383 

Moreover, the candidate crack detection is the next step works as pre-crack detection and 384 
enhancement. For the enhancement of detected pre-cracks, a recursive strategy based on a sliding 385 
window checking extracted objects is proposed which improve the results by removing small non 386 
crack objects prominently. 387 

For final classification of candidate cracks in two classes of cracks and non-cracks, SVM classifier 388 
with three spectral, textural and geometrical feature classes is applied. Results on test data presented 389 
that using textural features leads to the lowest accuracy as 81% which is predictable because the 390 
textural behavior of cracks are not very different from other parts of image specially in asphalt based 391 
roads. Moreover, applying spectral and structural features separately resulted in the accuracy about 392 
85% which is the result of different behavior of cracks in color and shape with respect to non-cracks 393 
parts. Finally, applying all the spectral, textural and structural features improve the accuracy on the 394 
test data up to 92%. 395 

Moreover, the object level process, which consider the cracks based on Connected Component 396 
Analysis as an object, helps to improve the accuracy from 87% to 92%. 397 
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Finally, the reliability analysis of the proposed strategy was applied based on the ground truth 398 
data generated by expert. Results showed the final accuracy of 74.9%. Although this value seems not 399 
interesting enough, but considering the complexity of aerial imagery and the non-uniformity texture 400 
and variety in shape, size and look of cracks in asphalt roads surface, it could be acceptable for an 401 
automatic process. Moreover, results presented that less than 10 percent of cracks are lost, which 402 
means that the algorithm missed only a few number of cracks. This failure rate in comparison with 403 
the time and cost of the expert based and mobile vehicle based monitoring methods, presents the 404 
superiority of the proposed UAV based automatic monitoring of cracks. 405 

 406 
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