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11 Abstract: Road surface monitoring more specifically crack detection on the surface of the road
12 pavement is a complicated task which is found vital due to critical nature of roads as elements of
13 transportation infrastructure. Cracks on the road pavement is detectable using remotely sensed
14 imagery or car mounted platforms. UAV’s are also considered as useful tools for acquiring reliable
15 information about the pavement of the road. In This paper, an automatic method for crack detection
16 on the road pavement is proposed using acquired videos from UAYV platform. Selecting key frames
17 and generating Ortho-image, violating non road regions in the scene are removed. Then through an
18 edge based approach hypothesis crack elements are extracted. Afterwards, through SVM based
19 classification true cracks are detected. Developing the proposed method, the generated results show
20 75% accuracy in crack detection while less than 10% of cracks are omitted.
21
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23

24  1.Introduction

25 Monitoring of Infrastructures and lifelines is believed to be a never ending story. As a matter of
26  fact, the prominence of those facilities totally rely on perpetual and constant observance and
27  evaluation of functionality of their elements. An undetected failure in water supplement in a
28  populated region or any damage to main highways directly and immediately affects the life of
29  residence. Therefore, a well- defined economic and efficient monitoring method for each and every
30  important infrastructure and lifeline is believed to be vital.

31 Roads network are of the most prominent infrastructure that are systematically classified under
32 the category of transportation lifelines. As Roads are the main transportation mean around the world,
33  carrying goods and services is mostly based on developed and functional system of roads network.
34 Roads are required to be functional almost every time. This eventually imposes tight minoring of the
35  facility. On the other hand, due to the roads’ distributed and elongated nature, the process of
36  monitoring seems to be time consuming and expensive procedures. According to American
37  Association of State Highway and Transportation Officials, maintenance of road cost more than 67 B
38  USdollars annually (koch et al., 2015).

39 Roads are also vulnerable due to natural causes and disasters. Regardless of the more complex
40  structures such as bridges and tunnels, the pavement of roads are also affected by natural and man
41  caused events. Cracks are of the common damages to road pavement occurring mostly due to the
42  constant change in temperature, weight of vehicles, erosion and chemical corruptions (Behnia et al.,
43 2018). Consequently, crack monitoring seems to be promising to analyze and evaluate the current
44 condition of roads. Quality, shape, type, depth and length of cracks are some of the most measures
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45  incrack analysis and monitoring (Mohan and Poobal, 2018). Therefore, acquiring reliable information
46  about cracks on the surface of the roads seems to be vital for efficient maintenance of the road
47  network.

48 The simplest method to inspect road surface is the visual inspection at the location which is
49  considered to be inefficient and expensive. On the other hand, remote sensing techniques are believed
50  tobe one of the most suitable and reliable solutions for monitoring and maintenance of such facilities
51  which are found interesting in nineties. With the advent of technology and the appearance of new
52 imaging sensors, the concept of image based monitoring of roads has peeled and evolved. One of the
53 most brilliant tools are Unmanned Airborne Vehicles also referred to as UAVs. Regardless of the
54 diverse applications of UAVs, they are practically bolded in the process of acquiring high resolution
55  imageries which facilitates more detailed inspection and monitoring through a safe and economic
56 procedure (Aldea et al., 2015; Grandsaert, 2015; Sankarasrinivasan et al., 2015).

57 In this paper reviewing the most recent and the most important researches about crack detection
58  from different sensors, a method to detect and extract asphalt cracks of roads using UAV based

59  imagery is defined.
60

61 2. Crack Detection from Airborne Imagery

62 Automatic crack detection from imagery is categorized with respect to the data acquisition
63  perspective and processing method (Coenen and Golroo, 2017). Considering data acquisition
64  platform, three main imaging methods of terrestrial, Aerial and satellite images are used for remote
65  sensing based crack detection. In terrestrial case, image acquisition systems are usually mounted on
66  amoving vehicle such as cars and trains usually categorized under mobile mapping terms (Quintana
67  etal,2015). Airborne and satellite imaging systems are other information providing sources for crack
68  detection (Schnebele et al., 2015). Due to the limitations of satellite imagery to provide sufficient
69  spatial resolution, airborne systems and recently UAV based imaging systems are widely used for
70 crack detection.

71 Crack detection techniques from images are mostly performed in four stages of preprocessing,
72 segmentation, classification and enhancement. At the preprocessing level, basic enhancement
73 techniques such as noise reduction, smoothing, sharpening and edge detection along with some more
74 complex processing including removal of misleading and violating objects such as cars, vegetation,
75  shades, signs and marks are performed. In the segmentation step, candidate crack primitives are
76  extracted mostly based on the similarity of cracks to edge elements. In the next step classification is
77  performed to define crack region and finally the results are enhanced mostly through morphological
78 filtering (Cubero-Fernandez, 2017; Gavilan et al., 2011;).

79 Yokoyama et al., 2017 presented an automatics crack detection technique training artificial
80  neural networks. The results showed in case of classification in two classes of crack and non-crack,
81  the algorithm success rate in 79.9 %. In case of three classes of cracks, non - cracks and white lines,
82  this method is 73.3 percent successful. It is also concluded that the method is successful in case of
83  monitoring the stainless paved surfaces but inspecting concrete surfaces the successfulness of the
84  method drops drastically.

85 Kim et al., 2017 proposed a crack detection method based on integrating different image analysis
86  methods using both imagery and ultra-sonic sensors to measure distance. They focused on discrete
87  crack and the main objective of paper was to measure length and width of cracks. The proposed
88  system showed the successful detection of cracks thicker than 0.1 mm with the maximum length
89  estimation error of 7.3%.

90 Cubero-Fernandez et al., 2017 presents a crack detection technique using edge detection and
91  morphological operations. In this research after preprocessing of spatial data through noise reduction
92  and smoothing, canny edge detection is applied. The results are enhanced through morphological
93  closing for gap removal. Finally, through a decision tree the success rate of 88 % in achieved.

94 Ersoz et al., 2017 proposed a method extracting crack in two steps of segmentation and
95  classification using images of a low traffic road segment. Thresholding the results, the remaining
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96  noise is removed via closing operator. SVM classifier issued to make distinguishes between cracks
97  and non-cracks items considering geometric features. The accuracy of 97% was achieved where the
98  flight was too low inspecting concrete surfaces.

99 Yin et al., 2015 proposed a crack detection technique by creating image pyramid of the acquired
100 UAV images and performing canny edge detection in multiple scales. Final edges representing cracks
101  are detected by aggregating the results of crack detection in different scales.

102 In Aldea and Le Hégarat-Mascle, 2015 crack detection is studied based on two algorithms of
103  minimum path cost analysis and image percolation. Moreover, an improved strategy based on a-
104  contrario modeling which able to withstand the significant motion blur is proposed. Experimenting
105  the proposed method on real image databases, the results showed that the proposed method is
106  successful compared to other similar solution which only work on perfect images and not of
107  significantly degraded images.

108 Chamben et al., 2010 considers a simulated imagery for crack detection. In this approach Markov
109  model and adaptive filtering are used for segmentation and crack detection. In this paper it was
110  attempted to explore the best configuration of parameters considering Markov field direction and
111  window size.

112 Oliveira et al., 2009 proposed a complete workflow for detection and categorization of road
113  surface cracks using imageries from road monitoring vehicles in a fast solution. Morphological
114 operationis used to reduce noise and through dynamic thresholding cracks are generated. Evaluating
115  the results, success rate of 95 percent is achieved.

116 Sankarasrinivasan et al., 2015 proposed an innovative protocol for full field mapping of a large
117 civil structures involving effective use of Unmanned Aerial Vehicles to enable real time structural
118  health monitoring. The proposed framework integrates UAVs, image processing and acquisition
119  procedures for crack detection and assessment of surface degradation. A novel approach is proposed
120  combining hat transform and HSV thresholding technique for crack detection. In addition, grey scale
121  thresholding is employed for the measurement of surface degradations .The demonstrative model is
122 proven to be reliable and feasible for full field mapping and health monitoring for civil
123 infrastructures.

124 In summary;, it is obvious that remote sensing based methods of crack monitoring usually result
125  in satisfying results in case of time and cost and among them UAV based imageries prompt to be
126  more interesting in recent years. In image processing based methods, pre-processing step is crucial
127  for achieving higher accuracy in final results, otherwise, the results are promising, but they are
128  affected by spots or shadows.

129 Up to now, a few image based crack detection methods have been studied and proposed
130  specially for UAV based imagery. Most of these studies are focused on cracks in concrete surfaces
131  or simple data sets. In this study we proposed an automatic method for asphalt crack detection in
132 roads which are highly involved with violating objects, noises, spots and so on.

133

134 3. Proposed Crack Detection Method

135 Considering the capabilities of information UAV imaging systems provide and on the basis of
136  the researches developed for crack detection in various applications, the proposed method for
137  automatic crack detection is presented. Asillustrated in figure 1, the proposed method is comprised
138  of six levels of action. At the first level, aerial imageries along with simultaneous record of onboard
139  GPS/INS measurements of Exterior Orientation parameters and also GCPs are acquired. In the next
140  level, through photogrammetric computation, digital Ortho-Image of the region is generated. Next,
141  in preprocessing section noise reduction, image enhancement and removal of non-crack objects such
142 asvegetation, cars and shades are performed. Through candidate crack detection, a set of hypothesis
143 cracks primitives which enjoy structural similarity to typical cracks are generated using edge
144 detection techniques. In the next level, to verify the true cracks, best features to utilize in classification
145  process are computed and assessed. Then, SVM classification is used to determine final cracks and a
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146  modification process is proposed. Finally, in the evaluation step, the results are compared with
147  respect to ground truth collected by expert.
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151  3.1. UAV Based Imaging and Data acquisition

152 As roads are elongated regions, the use of light multirotor and light sensors with high mobility
153  and lower flight altitude and speed are considered. To fortify the process of sensor orientation,
154  onboard GPS/INS information are used. To improve the spatial accuracy of the final map of cracks,
155  GCPs are acquired through ground surveying.

156 The most important fact about choosing most suitable UAV and sensor is the imaging speed
157  whichis related to the sensor speed and UAYV altitude and speed. Too low speed increases the project
158  cost and too high speed will result in blurriness of images. On the other hand, the resolution of final
159  achieved images should be considered in advance at the flight planning step. The optimum resolution
160  depends on the width of cracks, if it’s less than 3 pixels, the line extraction methods can be applied.
161  Therefore, it should be defined in a way to provide optimum size of crack in images and also prevent
162  data redundancy. The flight time is also important in order to prevent large shades which might
163  result in occluded area.

164  3.2. Key-frame Extraction

165 As the sensor used is a video acquisition sensor, after data acquisition, key frames have to be
166  extracted. Key frames can be selected based on radiometric and geometric aspects. In radiometric key
167  frame selection, the quality of the frames is checked and the blur low content frames are removed;
168  but in geometric key frame selection, the frames are checked for geometrical stability vital for
169  photogrammetric processing.

170 In this study, for radiometric frame selection, the BluM metric is applied. The output of this
171  algorithm is a score between 0 to 1. Results close to 0 represent the best and results close to 1 represent
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172  the worst sharpness of images, respectively. Using a predefined threshold, acceptable and non-
173 acceptable frames are selected (Crete et al., 2007; Arofteh et. al., 2017).

174 Geometric Robust Information Criterion (GRIC) factor which is presented by Torr et al. (1996) is
175  applied for geometrical evaluation of frames. GRIC evaluates which of the Fundamental epipolar
176  geometry model (F) or homography model (H) is best suited to explain the geometrical relation of
177  two sequences (Arofteh et. Al., 2017). GRIC is defined as:

GRIC = Z p(e?) + Aydn + A,k )
178 and
2 e’
pled) =1 oz %, @
Lr—d) —>0r-d)
o
179 Where d= Dimension of the selected motion model (H has the dimension two and F has

180 dimension three);r= Dimension of the data (i.e. four for two views; k= Number of the estimated
181 model parameters (seven for F and eight for H); n= Number of tracked features; o = Standard
182  deviation of the error on each coordinate; e; = Distance between a feature point transferred through
183  H and the corresponding point in the target image or the Euclidian distance between the epipolar line
184  of a feature point and its corresponding point in the target image.

185 The GRIC has used for key frame extraction with tuning parameters of 1.4, and 1; with:
A =In(). 2, =In(rn). A3 =2 (3)
186 In practice, to avoid selecting too many key-frames, it is proposed to pick a key-frame at the last

187  frame for which:

ni = 0.9ne (4)
188 where ni = Number of valid tracked features; ne = Number of valid tracks when the Epipolar
189  geometry model overtakes the Homography model.
190 After initializing the first frame of the sequence as key-frame and proceeding frame by frame,
191  the next key-frame is selected if the GRIC value of the motion model F is less than the GRIC value
192 of H.
193

194 3.3. Photogrammetric Computation

195 In the photogrammetric computation, the acquired imagery and extracted frames are elaborated
196  to digital Ortho-image. The process as it is so called Structure From Motion (SFM) starts with the
197  extraction of tie points in imagery using image matching usually being performed automatically
198  through point extraction and matching algorithms. Then, block bundle self-calibration is performed,
199 firstly to estimate interior and exterior orientation parameters of images and secondly to estimate 3D
200  ground coordinates of tie points. Then, through dense matching algorithm, Digital Elevation Model
201  of the region is generated. Using a backward projection technique, the Digital Ortho-photo is

202  generated. The flowchart of Photogrammetric Computation step is depicted in figure 2.
203
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205 Figure 2. Ortho image generation through Structure form motion procedure.
206  3.4. Preprocessing
207 The preprocessing section considers two phases of low and high level preprocessing procedures.

208  In the low level process, noise reduction or any further image enhancement and filtering is applied.
209  High level preprocessing includes the removal of non-road regions or regions where the existence of
210  any crack is impossible or improbable or simply not required. In other words, the road region in the
211  digital Ortho-image could be inspected for road regions which is mostly applicable by overlaying
212  digital maps of the road and masking target road regions. On the other hand, there are some non-
213  road objects on the surface of the road which may violate the process of crack detection. In this case
214 violating non target objects such as cars, shades and signs are removed.

215

216  3.4.1. Image Enhancement and noise removal

217 In order to reduce the noisy content of image and to enhance the image in a way that the cracks
218  become more distinctive than the background, this study proposed a combination of smoothing filter
219  and top hat and bottom hat operation based on relation (5).

220

F = ((SH + tophat(SH)) — bothat(SH)) (5)
221 where F is the enhanced image, SH is the input image which is smoothed based on a Gaussian
222  filter.

223  3.4.2. Removing Marginal Non- Road Regions

224 In this step, roads regions are extracted from the scene so the process of crack detection is only
225  conducted on the road region to decrease the amount of unnecessary computation and false positive
226  detections. Therefore, road network is projected on the Ortho-image and according to the width of
227  the road segment, the corresponding road regions are extracted. It should be noted that the quality
228  of generated Ortho-image and the accuracy of road network has direct impact on the extracted road
229  region. Therefore, an accurately generated Ortho-image and updated accurate vector road network
230  isnecessary.

231

232  3.4.3. Removing Non target disturbing objects

233 Road surface presented in the digital Ortho-image is always violated by occlusions imposed by
234 the scene configuration of objects. The existence of vegetation, cars, signs and lines, shades and
235  occlusion from neighboring elevated objects such as buildings, may disturb the process of crack
236  detection through increasing high frequencies to the digital imagery and increasing the number of
237  detected edges and as a results increasing the percentage of False Negative detections.

238 Threshold applying is the main tool to remove most of the violating objects. For vegetation
239  removal NDVIin case the Ortho-image enjoys Infra-Red channel or Greenness value where only RGB
240  channels are available, are often used (Samadzadegan and Zarrinpanjeh, 2008). For shade removal
241  the same procedure considering illumination in THS space along with Hue value is used. For car
242 detection, morphological geodesic filtering is believed to be promising [Zarrinpanjeh and
243  Dadrassjavan, 2017]. In this case the size of extracted cars is inspected with respect to conventional
244 car sizes.

245 3.5. Crack primitive detection

246 The process of crack primitive extraction in this research is mainly based on edge detection
247  techniques. As cracks appearing on the surface of the road pavement demonstrate sudden changes
248  in grey value, it is reflected through high frequencies in the imagery. It should be noted that as high
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249  frequencies appear in the form of various objects such as dots and ramps, the most important
250  elements in choosing proper detector is extremely vital. According to the linear characteristic of
251  cracks Canny edge detection is used as a solution (Gonzalez and Woods, 2002).

252 To enhance detected cracks, Connected Component Analysis and Top-Hat morphological
253 filtering are performed. This makes the extracted candidate crack primitives to be enhanced and
254  considered as an image objects rather than pixels. Because the results of edge detection are supposed
255  tobe accompanied by similar linear objects such a lines and repaired pavements, crack enhancement
256  helps removing the scattered non-crack edges. Nevertheless, the detected edges also include false
257  cracks that should finally be verified. Smoothing and morphological filters might help removing
258  these artifacts but they might remove sections of cracks as well. As a result, a sliding window filtering
259  method is proposed in this study. Based on the proposed strategy, a window with size smaller than
260  the smallest crack size of the dataset is sliding through the whole image and any objects fully

261  bounded by this window is removed.
262

263 3. 6. Crack and non-crack classification

264 After extraction of crack primitives those are considered as the candidate cracks are introduced
265  to classification process to define the true cracks and to remove false positives. The classification
266  process is composed of two main stages as feature extraction and SVM classification of extracted
267  features.

268

269  3.6.1. Feature extraction

270 To consider SVM classifier to distinguish between crack and non-crack hypothesis primitives,
271  alist of features is considered and computed. In this research, a set of spectral, textural and structural
272  features are studied and used. Table (1) defines the feature to be computed for inspection of
273  extracted candidate cracks.

274
275 Table 1. Feature for Crack detection from satellite imagery.
R,GB Red, Green, Blue Channels of the Digital Othro-image
Spectral
Mean Mean value of spectral bands
Contrast Contrast of the neighborhood Box of the evaluated pixel
Correlation Contrast of the neighborhood Box of the evaluated pixel
Textural s :
Energy Computes the energy of the neighborhood Box [haralick]
Homogeneity Computes the Homogeneity of the neighborhood Box [haralick]
Extent The area of the Bounding Box of the Crack
Eccentricity The eccentricity value of the Bounding ellipse
Structural Minor axis Length The Minor axis length of the bounding ellipse
Major axis Length The Major axis length of the bounding ellipse
Orientation The angle of the major Axis with respect to horizontal axis
276
277 Features used in this research are mostly chosen by inspecting the specification and

278  characteristics of cracks. Therefore, more structural features are chosen rather than spectral where
279  the spectral difference of cracks compared to non-crack paved regions is not so prominent.

280

281  3.6.2. SVM Classification

282 Training regions are extracted and SVM classifier is used for classification of candidate cracks.
283  Training the SVM classifier, all candidate cracks are introduced to the trained SVM and the extracted
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284  candidate cracks are evaluated. As SVM is defined to classify patterns in two classes, it is found

285  suitable to detect cracks from non-cracks objects in this application (Cortes and Vapnik, 1995).
286

287  3.7. Evaluation

288 To evaluate the successfulness of the results, two levels of evaluation is proposed. In the first
289  one, the capability of SVM classifier in being trained by the training data is evaluated based on the
290  test data set. The test data set is a random selection of pixels as test and training data. Moreover, for
291  accuracy assessment of the result of the proposed automatics crack detection method, they are

292  compared to the cracks detected manually by the expert as independent ground truth.
293

294 4. Results

295 To experiment the capabilities of the proposed method in successful detection and mapping of
296  the cracks in the road pavement, the proposed method is implemented and tested for UAV based
297  aerial imagery and the generated results are evaluated and discussed.

298

299  4.1. UAV based Image Acquisition

300 For image acquisition, a multirotor UAV equipped with a GoPro4 camera and GPS/IMU systems
301  isused. Table (2) defines the specifications of the platform. Images are acquired from a road in south
302  east of Tehran, Iran. The overall view of selected road and the summary of flight plan parameters are
303  provided in figure (3).

304
Table2: The aerial platform specification
Flight Endurance 40 min
Max Flight Height 2000m
Dimension 1.2m
Optimum Speed 20 km/h
305

Flight Time 10 min
Flight Height 60 m
CSD 3.6 cm

Flight Speed 20 km/h
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Figure 3. Data set and flight plan parameters
306  4-2- Key-frame selection
307 To execute photogrammetric process key frames are selected from video string and images

308  suffering from lower quality in terms of illuminance, focus and motion blur are removed. Moreover,
309  to prevent data redundancy, key frames are selected based on geometrical stability for bundle block
310  adjustment based on GRIC algorithm. Figure 4, shows some samples of rejected frames.

Figure 4. Samples of rejected fames according to BluM procedure.

311  4-3- Photogrammetric Computation

312 As a result of key-frame extraction step, images with minimum 70 percent overlap are selected
313  those are higher in quality and enjoy stable epipolar geometry. Conducting the photogrammetric
314  procedure, the ortho-image of the region is generated. Figure 5, illustrates the camera position and
315  generated ortho-image. The block bundle adjustment is conducted with the accuracy of 0.01 meters.

a

Figure 5. a) Photogrammetric process of selected images b) resulted digital Ortho-image.

316  4-4- Preprocessing

317 Image enhancement and noise removal

318 In the first step of image preprocessing, image enhancement is applied to reduce noise content
319  of images and also to enhance the image for crack detection based on Canny operation. For the
320  purpose, image is firstly smoothed based on Mean filter and then the combination of Top Hat and
321  Bottom Hat operation is applied as discussed previously. The parameters for these operators are set
322  asSE =3, Sigma=0.2 and Hsize = 5.

323
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a b C d

Figure 6. a) Original Image; b) Results of Smoothing step; c) Results of Canny edge detection; d) results of canny
Algorithm after Top Hat operation

324 Non-target removal

325 In this step, non-target regions violating the process of crack detection are omitted. At first, the
326  road segment of image is extracted and the back ground is removed. This process is based on the pre-
327  information about the road map and the width of road based on scale of image. Figure (7) presents
328  the result of road extraction process. The accuracy of this step is evaluated based on the map
329  generated by digitizing the ortho-image by expert which is determined as 97 percent. The main
330  reason of the lower accuracy is the vegetation covering the marginal part of the road which is also
331  removed based on threshold applying on the Red band of images. Doing so, the final quality
332  increased to 98.8 percent. The road white lines can also be removed easily based on applying
333 threshold.

334
335
a b c
Figure 7. a) Original image; b) road extraction and white line filtering; c)vegetation filtering
336 The point that might challenge the automatic extraction of cracks is the margin of road after

337  extraction of road from the back ground. This margin should be removed from the image before crack
338  detection process. In figure (8) results of this step is presented. The operation of Canny line extractor
339  before and after this step is also presented to prove the necessity of this process.
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Figure 8. road margin removal

340 The large shadows on the road are also non objects elements that might violate the crack
341  detection process. For the purpose, shallows are removed based on applying threshold value and
342  remaining isolated small objects are also removed based on morphological filters. Results are
343  presented in figure (9). The successfulness of this process is also evaluated based on expert generated

344  data.
Total number of Algorithm result
pixels Non-
1920000 shallow | low
Expert | THOW | 713718 22969
result Non-
shallow 3272 1180041
Total accuracy 98.6%
Figure 9. shallow removal and the accuracy assessment
345 Cars and large non targets elements are also removed by applying geodesic filter following by a
346  closing morphological filter with the accuracy of 97.7%. Results are presented in figure (10).

347

Total Pixels | Algorithm result
36000000 INon-Road| Road

Non- | 51984175 | 340413
Expert Road
1t
TeSUR | Road | 456589 [13218823
Total accuracy 97.7%

d d

Figure 10. Cars and big objects removal and the accuracy assessment
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348  4-5- Crack primitive extraction

349 After extraction of road and removing the non-target elements, Canny edge detection technique
350  isexecuted and edges are extracted. Through proposed Top-Hat algorithm and the recursive window
351  sliding process, results are enhanced and as it is depicted in figure 11, the results are more similar to
352  cracks through visual inspection, compared to the unfiltered ones, as most of noises which may cause
353  false crack detection are removed. Afterwards, using morphological operation, extracted edges are
354  combined as distinctive objects and are introduced to next processing step as candidate cracks.

355

a b c d
Figure 11. a)Original Image; b) Results of Canny edge detection; c) results of canny Algorithm after filtering
process; d) final crack candidate elements

356  4-6-Crack and non-crack classification

357 By extraction of crack candidates, the test and training data are prepared. The training data are
358  gathered in two different solution of object based and pixel based as it is depicted in figure (12).

cracks Non-cracks cracks Non-cracks

Figure 12. training data generation, left) object based; right) pixel based strategy

359 After definition of training and test data sets, candidate cracks are introduced to the SVM
360  classifier. For the classification process, 4 different scenarios of feature selection are implemented and
361 evaluated as Spectral/Textural/Structural and the combination of all features. Achieved results are
362  presented in figure (13).
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Spectral Features Textural Features Geometrical Features All Features
85% 81% 84% 92%

Green: cracks; Violet: Non-cracks; Red: Non-cracks labeled as cracks; Yellow: cracks labeled as non-crack

Figure 13. SMV classifier results

363 In order to improve the results of classification, object level post-processing of results is
364  considered. In this strategy, after classification of the pixels of candidate cracks, the pixel content of
365  each object (candidate crack) is evaluated. By considering the majority and minority condition, the
366  object as a whole is labeled instead of the pixels. Figure (14) depicted the labeling rule in this content.
367  Based on this strategy, the accuracy of test data improved from 87% to 92%.

368

369

Number of pixels in object
before classification

Are the majority of pixels
labeled as Crack?!

Yes
Are the Crack labeled No
pixels more than a pre
defined number?
No
Yes
The object is a The object is not
Crack a Crack
Figure 14. Object based assessment of cracks
370 4-7-Evaluation of results
371 Final results of the proposed crack detection strategy for the whole study area are presented in

372 figure (15). The validity assessment of the results is performed based on the ground truth extracted

373 by the digitizing process of an expert for the whole study area which is presented in table (3).
374
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a b

Figure 15. Final Crack detection result, a) the ground truth; b) samples of crack detection results,
Green: cracks; Yellow: Non-cracks; Red: Non-cracks Labeled as Cracks; Orange: Cracks labeled as
Non-crack

Table 3. The validity assessment of the resuls.

Total Pixels Algorithm Results
237735 Crack Non-Crack
Expert | K | 105012 22892
Results | Nom
Crack 34955 73076
Total accuracy 74/9%

375 5. Discussion and Conclusion

376 Few methods have been proposed to detect cracks from drone images, while there is no certain
377  method which can detect all cracks, automatically. Previous study mostly focused on images taken
378  from concrete structures or by road health monitoring vehicles. These images are high in quality and
379  cracks are usually more prominent than aerial images acquired from roads with asphalt surface.
380 In automatic crack detection, pre-processing is an important step which plays a critical role in
381  removing violating elements and also decreasing the processing time and cost. Road extraction,
382  image smoothing, noise removal and non-target elements removal are the pre-processing steps
383  discussed in this study.

384 Moreover, the candidate crack detection is the next step works as pre-crack detection and
385  enhancement. For the enhancement of detected pre-cracks, a recursive strategy based on a sliding
386  window checking extracted objects is proposed which improve the results by removing small non
387  crack objects prominently.

388 For final classification of candidate cracks in two classes of cracks and non-cracks, SVM classifier
389  with three spectral, textural and geometrical feature classes is applied. Results on test data presented
390  that using textural features leads to the lowest accuracy as 81% which is predictable because the
391 textural behavior of cracks are not very different from other parts of image specially in asphalt based
392  roads. Moreover, applying spectral and structural features separately resulted in the accuracy about
393  85% which is the result of different behavior of cracks in color and shape with respect to non-cracks
394  parts. Finally, applying all the spectral, textural and structural features improve the accuracy on the
395  test data up to 92%.

396 Moreover, the object level process, which consider the cracks based on Connected Component
397  Analysis as an object, helps to improve the accuracy from 87% to 92%.
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398 Finally, the reliability analysis of the proposed strategy was applied based on the ground truth
399  data generated by expert. Results showed the final accuracy of 74.9%. Although this value seems not
400  interesting enough, but considering the complexity of aerial imagery and the non-uniformity texture
401  and variety in shape, size and look of cracks in asphalt roads surface, it could be acceptable for an
402  automatic process. Moreover, results presented that less than 10 percent of cracks are lost, which
403  means that the algorithm missed only a few number of cracks. This failure rate in comparison with
404 the time and cost of the expert based and mobile vehicle based monitoring methods, presents the

405  superiority of the proposed UAV based automatic monitoring of cracks.
406
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