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Abstract : In the implementation of thermal enhanced oil recovery (TEOR) techniques, the 

temperature impact on relative permeability in oil - water systems is of special concern. Hence, 

developing a fast and reliable tool to model the temperature effect on two-phase oil - water 

relative permeability is still a major challenge for precise studying and evaluation of TEOR 

processes. To reach the goal of this work, two promising soft-computing algorithms, namely 

Group Method of Data Handling (GMDH) and Gene Expression Programming (GEP) were 

employed to develop reliable, accurate, simple and quick to use paradigms to predict the 

temperature dependency of relative permeability in oil - water systems (Krw and Kro). To do so, 

a large database encompassing wide-ranging temperatures and fluids/rock parameters, 

including oil and water viscosities, absolute permeability and water saturation, was considered 

to establish these correlations. Statistical results and graphical analyses disclosed the high 

degree of accuracy for the proposed correlations in emulating the experimental results. In 

addition, GEP based correlations were found to be the most consistent with root mean square 

error (RMSE) values of 0.0284 and 0.0636 for Krw and Kro, respectively. Lastly, the comparison 

of the performances of our correlations against those of the preexisting ones indicated the large 

superiority of the introduced correlations compared to previously published methods. The 

findings of this study can help for better understanding and studying the temperature 

dependency of oil - water relative permeability in thermal enhanced oil recovery processes. 
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1. Introduction  

Nowadays, energy demand is expected to rise significantly with the increased prosperity 

in different sectors of industry and with the higher and continues consumption (Tillerson and 

others 2008). As fossil source is still the dominant spring of energy, there have been noticeable 

and significant efforts to promote the standards techniques to improve the outcomes from oil 

reservoirs (Olayiwola and Dejam 2019). Due to this fact, extraction of oil from unconventional 

reservoirs and oil with low API gravity has turned into quite important ways to compensate the 

expected need in the fossil energy (Meyer, Attanasi, and Freeman 2007). The high amount of 

heavy oils and bitumen over the worldwide raises awareness on this supplementary source of 

fossil energy although the deficiencies in the characteristics of associated oil such as the high 

viscosity, low API gravity, and asphaltene content (Saboorian-Jooybari, Dejam, and Chen 

2016; Green, Willhite, and others 1998; Prats 1982; Ameli, Alashkar, and Hemmati-Sarapardeh 

2018). Therefore, one robust procedure to address such extreme conditions is increasing the 

temperature by means of steam or hot water injection, to reduce the viscosity which represents 

the resistance to the flow (Prats 1982). These temperature-based techniques for oil recovery are 

assembled beneath the umbrella of the so-called Thermal Enhanced Oil Recovery (TEOR).  

TOER includes many methods in which the main screening application criterion is based 

on the viscosity values. Accordingly, we distinguish steam-assisted gravity drainage (SAGD) 

process that is applied for the recovery of bitumen, steam flooding which is effective for the 

case of heavy oil extraction and cyclic steam stimulation (CSS) which is appropriate for extra-

heavy oil (Ameli, Alashkar, and Hemmati-Sarapardeh 2018). It is well known that in such 

techniques, temperature has strong influence on the porous medium flow; and hence, various 
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mechanisms of heat transfer such as convection, conduction, and radiation can take place. In 

fact, the increase in the in-situ reservoir temperature brings significant effects in interaction of 

rock-fluid which can impact the behavior of the flow (Akhlaghinia, Torabi, and Chan 2013; 

Esmaeili et al. 2019a; Ashrafi, Souraki, and Torsaeter 2012). It is worth mentioning that in 

addition to the presence of heat transfer mechanisms, related-multiphase phenomena such as 

diffusion and dispersion also make their marks in TOER. As a result, a more complicated 

multiphase flow in porous media is noticed when implementing TEOR techniques. The 

commonly applied mathematical approach to describe the flow is these cases is the outgrowth 

of the Darcy flow equation to multiphase flow (Maini 1998) and thermal-based Darcy flow 

(Ameli, Alashkar, and Hemmati-Sarapardeh 2018). 

Relative permeability is considered a vital factor that is involved in the mathematical 

models describing the multiphase flow in porous media, in which TEOR processes belong (Nait 

Amar et al. 2019; Esmaeili et al. 2019b; Maini 1998; Esmaeili et al. 2019a).  Relative 

permeability which is commonly denoted Kr, is recognized as the ratio of effective permeability 

of a fluid at given saturation to the absolute permeability (Ahmed 2018). Relative permeability 

data are a must for a large variety of fluid flow calculations related to TEOR. As a matter of 

fact, modeling and simulation tasks, which are the means to forecast and predict the 

performances that can be achieved under different scenarios of these techniques cannot be done 

without the specification of the relative permeability at reservoir conditions. Hence, it is 

necessary to have accurate and representative values for this parameter to reduce the risks and 

uncertainties in the simulation results. However, it is needed to add that relative permeability 

can be affected by various factors and parameters, among which we can cite the absolute 

permeability, viscosities of water and oil phases and saturation (Honarpour et al. 2006). In 

addition, the changes made in the fluids and rock proprieties by the temperature upsurge 
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influence the relative permeability curves in TEOR (Sinnokrot 1969; Casse, Ramey Jr 1979; 

Ehrlich 1970; Honarpour et al. 2006; Zhang et al. 2017). 

The temperature impact on relative permeability values and the shape of their curves  

has received considerable attention during last decades (Maini 1998; Zhang et al. 2017; Ashrafi, 

Souraki, and Torsaeter 2012; Esmaeili et al. 2019a). Although unanimous agreement is not 

satisfied in this topic, a dominant part of experimental and modeling studies that have been 

published, have noticed the dependency of relative permeability in oil - water systems (Kro and 

Krw) on temperature (Schembre et al. 2005; Weinbrandt et al. 1975; Li et al. 2014; Esmaeili et 

al. 2019b; Esmaeili et al. 2019a). The investigation conducted by (Weinbrandt et al. 1975) 

confirmed this statement using consolidated Boise sandstone and mineral oil. The studies of 

(Schembre et al. 2005) and (Li et al. 2014) demonstrated the effect of temperature on the two-

phase oil-water relative permeability on two distinct cases. In addition, the research performed 

by (Ehrlich 1970) based on the adsorption resulted in analytical paradigm for the temperature 

dependency of oil-water relative permeability. Besides, some other models based on IFT as 

intermediate influencing parameters were developed by  (Amaefule and Handy 1982) and 

(Kumar et al. 1985). To keep the work concise, a deep overview about different studies 

conducted in the literature to inspect the effect of temperature on relative permeability can be 

found in our prior published work (Nait Amar et al. 2019) and other relevant publications 

(Ashrafi, Souraki, and Torsaeter 2012; Esmaeili et al. 2019b; Akhlaghinia, Torabi, and Chan 

2013; Esmaeili et al. 2019a; Zhang et al. 2017). 

Experimentally, the two-phase oil - water relative permeability in heavy oil cases can be 

measured by means of three possible techniques: low / high rate displacement tests; and the 

steady-state co-injection method (Maini 1998). However, the experimental approaches suffer 

from sensitive drawbacks such as the complexity of lab preparation and realization, the long 

time needed to accomplish the tests without forgetting the expensive cost. Therefore, in recent 
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years, addressing these issues by establishing cheap and simple-to-use methods to gain the 

impact of temperature on Kr has triggered a huge amount of scientific inquiry. Zhang et al. 

(Zhang et al. 2017), Mosavat et al. (Mosavat et al. 2016), Torabi et al. (Torabi, Mosavat, and 

Zarivnyy 2016), and Bennion et al. (Bennion et al. 2006) are among the well-known predictive 

correlations that consider the temperature influence on Kr in oil - water systems. A summary 

of the aforementioned correlations is given in Table 1. As it is shown in this table, although the 

form straightforwardness of the prior correlations, they suffer from lack of generalization as 

their applicability domains are limited to restricted ranges of temperature, rock and fluids 

parameters. In addition, it should be added that these preexisting correlations have been 

implemented on the basis of limited databank. In the same context, some other correlations have 

been established by (Esmaeili et al. 2019c), but these models are not unified with respect to the 

types of the rock and fluids, and hence, each of them is applicable for specific case, such as 

consolidated or unconsulated sands interacted with light/heavy. 

On the other hand, smart computational techniques have emerged and evolved as 

powerful and advanced approaches that can resolve highly complex related-modeling topics 

(Hobold and da Silva 2019; Xi et al. 2018; Shahsavar et al. 2019; Amirian, Dejam, and Chen 

2018; Hemmati-Sarapardeh et al. 2018; Hemmati-Sarapardeh et al. 2016; Nait Amar, Zeraibi, 

and Redouane 2018a; Nait Amar, Zeraibi, and Redouane 2018b; Nait Amar and Zeraibi 2018; 

Redouane, Zeraibi, and Nait Amar 2018). Among the successful examples of soft computing 

techniques applications, we can cite production forcasting in thermal enhanced oil recovery 

(Amirian et al. 2015; Amirian et al. 2018), optimization of enhanced oil recovery techniques 

(Nait Amar & Zeraibi 2019), reservoir flood control (Chuntian and Chau 2002), hydrology 

(Chau 2017; Wu and Chau 2011; Yaseen et al. 2019), and meteorology related topics (Ghorbani 

et al. 2018; Moazenzadeh et al. 2018). More recently, Esmaeili et al. (Esmaeili et al. 2019b) 

applied least square support vector machine (LSSVM) to model the dependency of oil - water 
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relative permeability on temperature. (Nait Amar et al. 2019) proposed various intelligent 

paradigms as kinds of trustworthy models to estimate oil - water relative permeability in TEOR 

by combining radial basis function (RBF) neural network and LSSVM with some nature-

inspired algorithms. The developed models in the two aforementioned studies showed very 

satisfactory predictions. The present investigation was done with the aim of implementing 

explicit, user-friendly and accurate correlations using group method of data handling (GMDH) 

and gene expression programming (GEP) for predicting the dependency of Kr in the two - phase 

oil - water systems on temperature, so that it could be applicable to a wider range of temperature, 

and fluids and rock proprieties. 

In the present work, group method of data handling (GMDH) and gene expression 

programming (GEP) are applied to establish reliable correlations for estimating temperature-

based oil - water relative permeability through defining five input parameters; namely the 

saturation of water (𝑆𝑤), absolute permeability (K), temperature (T), oil and water viscosities 

(𝜇𝑜 and 𝜇𝑤). To this end, a comprehensive data source of 1223 points gathered from valid 

available literature and covering an extensive range of rock and fluids parameters and 

temperature, is utilized to establish the correlations. After developing GEP and GMDH models, 

they are assessed by means of several statistical criteria and graphical error analyses. Lastly, to 

testify the reliability of the proposed correlations, these ones are compared with pre-existing 

correlations that model the dependency of oil - water relative permeability on temperature. 

There are some important differences between the present study and the previously performed 

studies in literature: (1) the established paradigms in this study have widespread applicability 

ranges, and besides, (2) different user-friendly explicit expressions for modeling temperature 

dependency of Kro and Krw in thermal enhanced oil recovery processes are developed. Fig. 1 

recaps the sketch of the problem.  
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The next sections of the paper are ordered as follows. Section 2 highlights a detailed 

description of the databank employed to establish the correlations. Section 3 describes the 

GMDH and GEP concepts. Results are described and discussed in Section 4. Finally, Section 5 

points out the main outcoming results. 

2. Data description 

To develop reliable correlations that can ensure the generalization and accuracy, a 

comprehensive and a large databank with widespread conditions must be considered. Due to 

this fact, in this study, 1223 experimental data points were collected from published literature 

(Poston et al. 1970; Maini and Okazawa 1987; Ashrafi, Souraki, and Torsaeter 2012; Ashrafi, 

Souraki, and Torsaeter 2014; Torabi, Mosavat, and Zarivnyy 2016; Weinbrandt et al. 1975; Lo 

and Mungan 1973; Ali A Sinnokrot et al. 1971; Akhlaghinia, Torabi, and Chan 2013). The 

collected data cove a wide range of temperature and fluid/rock conditions. Among the 1223 

points, 648 points describe the oil relative permeability (𝐾𝑟𝑜) cases, while the remaining 575 

correspond to the relative permeability of water (𝐾𝑟𝑤). The considered inputs to develop the 

correlations are the following: temperature (T), water saturation (Sw), water viscosity (𝜇𝑤), oil 

viscosity (𝜇𝑜) and the absolute permeability (K). Table 2 reports a full description of the 

employed databank in this study. It should be mentioned that these data have already been used 

in our previous paper (Nait Amar et al. 2019).  

To establish the correlations using GEP and GMDH, the database was divided randomly 

into training data covering 80% of the whole databank, and testing data including the remaining 

20%. The training data were used to investigate for the best correlations, while the testing data 

were exploited to evaluate the behavior of the correlations with blind data. 

3. Models 

3.1. Group Method of Data Handling (GMDH) 
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Group Method of Data Handling (GMDH) known also as polynomial neural network is 

one of the most promising families of artificial neural networks (ANNs) (Dargahi-Zarandi et 

al. 2017). Beside the reliability shown by GMDH in modeling complex systems, it ensures the 

advantage of providing user-friendly polynomial formula to the system being studied. The 

conception of GMDH technique consists in employing multiple nodes which belong to 

intermediate layers. The generated value by each GMDH node is calculated based on a 

quadratic polynomial model that includes the previous neuron. This GMDH version 

corresponds to the earliest model that was introduced by Ivakhnenko (A.G. Ivakhnenko, G.I. 

Krotov 1970). As the earliest version of GMDH presented some generalization lacks, a 

modified version, known also as hybrid version, was proposed as an extensive version that 

includes more interactions between the nodes and variables; hence, this version ensures more 

flexibility for modeling more complex systems (Rostami et al. 2019). The GMDH hybrid 

version follows the below-shown rule:  

                𝑦𝑖 = 𝑎 + ∑ ∑ … ∑ 𝑐𝑖𝑗…𝑘𝑥𝑖
𝑛𝑥𝑗

𝑛 … 𝑥𝑘
𝑛𝑑

𝑘=1
𝑑
𝑗=1     𝑛 = 1,2, … , 2𝑚𝑑

𝑖=1                  (1) 

where 𝑦𝑖 , 𝑥𝑖𝑗…𝑘 stand for the inputs and output parameters of the model, respectively; 𝑐𝑖𝑗…𝑘 

denote the polynomial coefficients; 𝑚 and 𝑑 mean respectively, the size of layers and the input 

parameters number. 

Afterwards, the full-form mathematical formulation can be done by partial polynomials 

with predefined orders to combine between the nodes in previous layers; hence, new nodal 

variables (i.e. O1, O2, …) are created. For the case of two neurons related with a quadratic 

polynomial model, the following equation is applied:  

                              𝑂𝑖
𝐺𝑀𝐷𝐻 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖

2 + 𝑎5𝑥𝑗
2                (2)  

To adjust the coefficients of the above-shown equation, the least square method (LSM) 

is applied. Therefore, the following expression is formulated:  
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                 𝛿𝑗
2 = ∑ (𝑦𝑖 − 𝑂𝑖

𝐺𝑀𝐷𝐻)
2𝑁𝑡

𝑖=1                𝑗 = 1,2, … , (
𝑑
2

)                          (3) 

In which 𝑑 is the variables number and Nt is the size of the training set. 

To solve this problem, this latter if transformed to a matrix form as (Dargahi-Zarandi et al. 

2017; Hemmati-Sarapardeh and Mohagheghian 2017): 

 𝑦 = 𝐴𝑇𝑋                                                                                                                    (4) 

The LSM generates the solution of Eq. (4) as follows: 

𝐴𝑇 = 𝑦𝑋𝑇(𝑋𝑋𝑇)−1                                                                                                    (5) 

where 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑑} 𝑎𝑛𝑑 𝐴 = {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}, in which d points out the 

number for variables. 

3.2. Gene expression programming (GEP) 

Gene expression programming (GEP) is an advanced soft computing method which was 

introduced by Ferreira (Ferreira 2001). This technique is a part of the family of evolutionary 

algorithms (EAs) and it applies the evolutionary principles. GEP provides the advantage of 

generating explicit mathematical expression to the studied systems. From the conception 

standing point of view, GEP is regarded an improved version of Genetic Programming (GP) 

introduced by Koza (Koza 1992), as GEP handled the GP issues, such as the limited regression 

strategies (Ferreira 2001).  

As the other evolutionary algorithm, GEP processes the searching for best expression 

model by employing chromosomes that codify and reflect possible solutions. In addition, 

another key element which is the Expression Tree (ET) is introduced in GEP. ET is obtained 

by transforming the chromosomes into real candidates. GEP employs genes that involve 

terminals and a head containing functions. Each gene has a fixed length list of symbols which 

represent kinds of operators such as {+,×, −,/, 𝑙𝑜𝑔, √} and a terminal set such as 
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{𝑥, 𝑦, 𝑧} (Teodorescu and Sherwood 2008). Fig. 2 shows a chromosome having two genes and 

its mathematical formula. 

The GEP searching procedure is summarized in the following steps: 

(1) GEP setting parameters: it consists to define the needed key parameters such as the 

size of the population, the stopping criteria, and the length of genes.  

(2) Population initialization: create randomly initial chromosomes (different possible 

mathematical expression). 

(3) Evaluate the chromosomes using a fitness function. 

(4) Select the fittest individuals and save them for the next generation.  

(5) Apply tournament selection to choose the individuals that will be recombined to 

generate new offspring. One point and two points recombination are available in 

GEP. 

(6) Mutation operator: mutation plays a principal role in GEP. It changes genomes by 

modifying an element by another. 

(7) Transposition and insertion of sequences somewhere in a chromosome: it consists to 

activate and jump parts of the genome in the chromosome (Ferreira 2001). 

The steps from (3) to (7) are reiterated while the stopping criterion is not satisfied. 

 

4. Results and discussion 

4.1. Developing the correlations 

As previously mentioned, after preparing the databank and specifying the training and 

testing sets for both cases Kro and Krw, the two rigorous techniques namely GEP and GMDH 

were applied to establish correlations for these two parameters with the following inputs: the 

saturation of water (𝑆𝑤), absolute permeability (K), temperature (T), oil and water viscosities 
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(𝜇𝑜 and 𝜇𝑤). Therefore, the temperature dependency of oil - water relative permeability 

correlations are developed with respect to the aforementioned inputs as follows: 

𝐾𝑟𝑜 = 𝑓(𝑆𝑤, 𝑇, 𝜇𝑜 , 𝜇𝑤, 𝐾)                                            (6) 

𝐾𝑟𝑤 = 𝑓(𝑆𝑤, 𝑇, 𝜇𝑜 , 𝜇𝑤, 𝐾)                                           (7) 

In both approaches, mean square error (MSE) was defined as the error function to be 

minimized during the search process for the best correlations. MSE is defined as follows: 

           𝑀𝑆𝐸 =
∑ (𝐾𝑟𝑖𝑒𝑥𝑝−𝐾𝑟𝑖𝑝𝑟𝑒)

2
𝑁
1

𝑁
                                        (8) 

in which Kr means the oil or water relative permeability, N is the number of points and the 

subscript pre and exp mean the predicted and experimental values, correspondingly. 

When implementing GEP technique, its control parameters such as the population size, 

mutation probability, the included operators, etc. should be tuned to improve the accuracy of 

the generated correlations. The considered GEP setting parameters in this study are stated in 

Table 3. 

A summarized schematic of the Krw and Kro correlations obtained with GMDH are 

presented in Figs. 3 and 4, correspondingly. As it is shown in these figures, the Krw network 

encompasses one input layer, one output layer and three intermediate layers; while for the case 

of Kro, one input layer, one output layer and two intermediate layers were obtained. The resulted 

GMDH correlations are expressed as follows: 

• Krw 

𝐾𝑟𝑤  =  0.023971 + 0.790913 × 𝑁4  − 4.492498 × 10−7 × 𝐾 − 0.00104 × 𝑇 − 3.950588 × 10−6 ×

𝐾 × 𝑁4  − 0.000433 × 𝑇 × 𝑁4  + 4.465764 × 10−9 × 𝑇 × 𝐾 + 0.610576 × 𝑁4
2  + 2.816213 × 10−11 ×

𝐾2  + 1.4329 × 10−5 × 𝑇2  + 5.142623 × 10−9 × 𝑇 × 𝐾 × 𝑁4  + 0.00068 × 𝐾 × 𝑁4
2  − 2.7281999 ×

10−10 × 𝐾2 × 𝑁4  + 0.002079 × 𝑇 × 𝑁4
2 + 2.737294 × 10−13 × 𝑇 × 𝐾2  − 8.539067 × 10−6 × 𝑇2 × 𝑁4  −

1.877768 × 10−10 × 𝑇2 × 𝐾 − 0.58709 × 𝑁4
3  − 3.568052 × 10−16 × 𝐾3 − 4.849053 × 10−8 × 𝑇3        (9) 

• Kro 
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𝐾𝑟𝑜 =  0.728253 − 0.072037 × 𝑁2  + 3.82443 × 10−5 × 𝐾 − 3.4903857 × 𝑆𝑤 − 1.549463 × 10−5 ×

𝐾 × 𝑁2  + 0.100212 × 𝑆𝑤 × 𝑁2 − 1.124351 × 10−5 × 𝑆𝑤 × 𝐾 + 0.934668 × 𝑁2
2  − 9.736863 × 10−10 ×

𝐾2  + 5.4835969 × 𝑆𝑤
2  − 3.342406 × 10−5 × 𝑆𝑤 × 𝑁2  − 1.073647 × 10−5 × 𝐾 × 𝑁2

2  + 4.3652039 ×

10−10 × 𝐾2 × 𝑁2  + 2.154452 × 𝑆𝑤 × 𝑁2
2  + 6.461956 × 10−10 × 𝑆𝑤 × 𝐾2  + 0.8212563 × 𝑆𝑤

2 × 𝑁2  −

3.8461259 × 10−5 × 𝑆𝑤
2 × 𝐾 − 0.662322 × 𝑁2

3  + 4.315276 × 10−15 × 𝐾3 − 2.820277 × 𝑆𝑤
3             (10) 

The resulted GMDH nodes and genomes included in the above-obtained correlations are 

reported in Appendix A. 

The obtained correlations by GEP are expressed as follows: 

• Krw 

𝐾𝑟𝑤 = −(0.02353 × 𝑆𝑤 + 0.1717 × 𝑆𝑤
2 ) × 𝐾0.5 × exp(−𝜇𝑜) − 0.0007187 + 𝐴 + 𝐵 + 𝐶 + 𝐷     (11)                 

where A, B, C and D are defined as shown-below: 

𝐴 =
30.40×𝑆𝑤

6

exp(−𝜇𝑜)+ln(𝐾)−1
−

60.6×𝑆𝑤
6

1.759×(𝑆𝑤
2 +ln(𝐾))−0.955

                              (12) 

𝐵 = −
3.713×𝑆𝑤

4

1.126×(𝑆𝑤
2 +𝜇𝑤

2 )−8.898
−

7.349×𝑆𝑤
4

45.04×(𝜇𝑜+tanh(𝜇𝑜))−362.7
                   (13) 

C = −
2.123×10−5×𝑆𝑤

2 ×𝑇2

2×𝜇𝑜+ln(𝐾)−17.43
−

1.011×10−3×𝑆𝑤
4 ×𝜇𝑜

2

4.612×(𝜇𝑜+𝜇𝑤)+73.63
                               (14) 

𝐷 = −
29.92×𝑆𝑤×exp(−𝑆𝑤

2 )×√exp(−𝜇𝑜)

𝑇
                                    (15) 

• Kro 

− For 21.10 < 𝑇 ≤ 100 °𝐶 

𝐾𝑟𝑜 = 0.05447 (
𝑆𝑤×𝑇×𝜇𝑜

𝐾
) (0.12071 × 𝑇 − 1) + 0.04403 (√

𝐾

𝜇𝑤
) (

0.2376

√𝜇𝑤
− 1) + 𝜇𝑜 (0.00619 +

17.9

𝑇−𝐾
) +

𝐴1 × 𝑆𝑤 − 𝐴2 × (𝑆𝑤 × 𝑇 × 𝜇𝑤) − 𝐴3 × (
𝜇𝑤

𝑇
) + 𝐴4 × (

𝐾

𝑆𝑤
) − 𝐴5 + 𝐴6                                                (16) 

− For 100 < 𝑇 ≤ 200 °𝐶 

𝐾𝑟𝑜 = 0.7083 × 𝑆𝑤
2 × (0.003467 × 𝑇 × √𝜇𝑜 − 𝑆𝑤

4 ) + 10−6 × [7834 × 𝜇𝑤
3 − 5.963 × (𝑇2 + √𝜇𝑜) +

𝐴1 × (𝑆𝑤 × 𝐾) + 𝐴2 (
𝐾

𝑇
) − 𝐴3 (

𝐾

𝜇𝑤
) + 𝐴4 × 𝜇𝑜

3

2 −
𝐴5

√𝑆𝑤
] + 𝐴6 × 𝜇𝑜 + 𝐴7                                                                (17) 
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The expressions of the terms appearing in the obtained GEP correlation for Kro are 

specified in Table 4.                 

4.2. Performances evaluation  

Graphical error analyses and statistical criteria and were employed to assess the accuracy 

of the developed correlations and chose the best representative ones in forecasting the 

temperature - based Kro and Krw. 

The root mean square error (RMSE) and coefficient of determination (R2) and are the 

statistical indexes that were used in this study. These two statistical criteria are defined in 

Appendix B. 

To fine-tune the above-mentioned criteria, broaden the assessment of the established 

correlations and give visual comparisons, graphical evaluation diagrams such as cross plots, 

and histograms of error distribution were considered.  In the cross plots, the predicted values 

by the correlations are plotted versus the counterpart experimental values. Existence of large 

amount of points nearby the line Y=X indicated the high accuracy of the model and the excellent 

degree of correspondence between predictions and real data. In the histograms of error, the 

distribution of errors is plotted in a bar form and if a normal distribution is noticed nearby zero 

value, the model is deemed very satisfactory.  

Figs. 5 and 6 display cross plots comparing between experimental data and predictions of 

GEP and GMDH correlations for Kro and Krw, respectively. As it can be obviously seen from 

these figures, GMDH predictions show large sparse for both Kro and Krw, whereas the 

predictions of GEP are accumulated nearly enough around the unit slope line. According to this 

visual survey, it can be said that the GEP correlations are more awe-inspiring as sublime 

accommodations between their predictions and experimental results are noticed. To excavate 

the integrity of the established correlations and distinguish the most representative one, Table 
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5 and bar plots of Fig. 7 report statistical and graphical error analyses through the considered 

assessment criteria, namely RMSE and R2, for the established correlations. With accordance to 

the demonstrated results in Table 5 and Fig. 7, it can be concluded that GEP correlations 

estimate better Krw and Kro compared to GMDH correlations. The temperature-based oil - water 

relative permeability correlations established using GEP exhibit overall RMSE values of 0.0284 

and 0.0636 for Krw and Krw, respectively, and correlation coefficients that exceed 0.97 for the 

both cases. Therefore, the developed GEP correlations were considered for further investigation 

in the rest of paper. 

To depict effectiveness and reliability of the GEP correlations regarded to the generated 

results, the comparison between predicted relative permeability from the implemented 

correlations and their counterpart real values versus corresponding indexes of data samples 

were demonstrated in Fig. 8 for Kro and in Fig. 9 for Krw. As these figures illustrate, the gained 

results from the GEP correlations are as close as possible to actual values of Krw and Kro 

during the training and testing phases. 

For a better understanding of the GEP correlations integrity in estimating the temperature 

- based Kro and Krw, Figs. 10 and 11 demonstrate histograms of errors between the actual and 

estimated values for Kro and Krw, respectively. These figures include error histograms for 

training and testing phases in the two cases, Kro and Krw. Based on the reported results in these 

histograms, we can observe that the most frequent error values are nearby zero. In addition, it 

can be said that the error distributions follow the normal curve in all the subplots. The error 

distributions reported in Figs. 10 and 11 confirm the high ability of the established correlations 

in predicting the temperature - based Kro and Krw. 

4.3. Comparison of developed GEP correlations with literature models 

In the present study, the accuracy of the developed GEP correlations was compared to 

various available correlations in the literature, which include the effect of temperature on Kro 
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and Krw. These latter include Bennion et al. (Bennion et al. 2006), Zhang et al. (Zhang et al. 

2017), and Mosavat et al. (Mosavat et al. 2016). It should be mentioned that while applying the 

preexisting correlations to the employed data in this study, only the points that fall within the 

application ranges were included according to each correlation. To this end, the estimated 

values using the previously mentioned correlations versus the experimental data are plotted in 

Fig. 12 for Kro and in Fig. 13 for Krw. Figs. 12 and 13 demonstrate that large scatters in the 

Kro and Krw data around the unit slop line were generated by Bennion et al. (Bennion et al. 

2006) and Mosavat et al. (Mosavat et al. 2016) correlations, while acceptable accumulation 

around the X=Y line was noticed in the case of estimating Krw with the Zhang et al. (Zhang et 

al. 2017) correlation. This obviously indicates that Bennion et al. (Bennion et al. 2006) and 

Mosavat et al. (Mosavat et al. 2016), correlations fail in forecasting the correct values of both 

Kro and Krw, whereas Zhang et al. (Zhang et al. 2017) fails particularly in predicting Kro. 

 Table 6 and Fig. 14 summarize the performances of the correlations considered in this 

work along with those of GEP correlations. The comparison results show that the developed 

GEP correlations lead to the best performances in predicting both Kro and Krw. According to 

Table 6 and Fig. 14, it is concluded that the developed GEP correlations outperforms largely 

the preexisting temperature-based oil/water correlations. 

 

4.4. Validity of the developed GEP correlations in term of water saturation (𝑺𝒘) 

 To testify the efficiency of the established GEP correlations in predicting the curves of 

temperature - based Kro and Krw as function of Sw, Fig. 15 illustrates the generated Kro and 

Krw curves via GEP correlations, and compare with corresponding experimental values from 

two different samples included in this study. As the subplots (a) and (b) of Fig. 15 depict, a very 

satisfactory integrity is shown by the GEP correlations to estimate the temperature-based Kro 

and Krw curves as their emulated results have almost identical behaviors as actual records do. 
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The prediction capability of the proposed GEP correlations has once again been certified in Fig. 

15. 

Finaly, it should be mentioned that the proposed correlation for modeling the temperature 

dependency of Kro and Krw should be utilized when the data falls within the applicability 

realm, otherwise its exactness is not ensured as precise results for certain conditions can be 

generated, and imprecise results for some others. However, as previously stated, these 

correlations were gained by including widespread databank, and hence, it can be applied for 

several cases which have input parameters filling in the applicability realm. 

 

 

5. Conclusions 

In this study, new explicit, simple-to-use and accurate correlations were proposed to 

model the dependency of relative permeability in oil – water systems on temperature. Group 

method of data handling (GMDH) and gene expression programming (GEP) were implemented 

as promising tools to implement the correlations using a large comprehensive databank. Several 

assessment criteria were considered to figure out integrity and performance of the new 

correlations. The main conclusions of the study are summarized as follows: 

1. GEP-based correlations were found as the most reliable correlations to predict the 

temperature dependency of Kr in oil - water relative systems. 

2. The newly implemented GEP correlations for predicting the temperature-based Kro 

and Krw exhibited very satisfactory performances with overall RMSE values of 

0.0284 and 0.0636 for Krw and Kro, respectively. 

3. The developed GEP correlations were compared with other well-known preexisting 

correlations; namely those of Zhang et al. (Zhang et al. 2017), Bennion et al. (Bennion 
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et al. 2006) and Mosavat et al. (Mosavat et al. 2016). The integrity of the proposed 

correlations was testified and found to be substantially superior to all of these models. 

4. By performing a trend analysis of the developed GEP correlations in term of water 

saturation, the gained curves for both Kro and Krw followed the expected forms and 

logical variations in term of water saturation. 

5. The established correlations in this study can be applied under a wide variety of 

conditions and also can be improved in presence of new additional data. 

 

Nomenclature 

Acronyms 

ANNs artificial neural networks 

CSS cyclic steam stimulation 

GEP gene expression programming 

GMDH group method of data handling  

IFT interfacial tension 

LSSVM least square support vector machine 

MSE mean square error 

RBFNN radial basis function neural network 

RMSE Root mean squared error  

R2 coefficient of determination 

SAGD steam-assisted gravity drainage 

TEOR  thermal enhanced oil recovery 

 

Variables 

K absolute permeability  

𝐾𝑟𝑜oil relative permeability  

𝐾𝑟𝑤 water relative permeability 

Sw water saturation 

T temperature 

𝜇𝑤water viscosity 

𝜇𝑜 oil viscosity 

 

Subscripts 

Min minimum 

Max maximum 
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Appendix A. Obtained GMDH nodes and genomes for Kro and Krw 

The resulted GMDH nodes and genomes are expressed as follows: 

• Krw 

𝑁4 =  −0.102767 − 1.983942 × 𝑁3  + 0.005098 × 𝑇 − 0.141932 × 𝑆𝑤 + 0.01020 × 𝑇 × 𝑁3  +

6.158718 × 𝑆𝑤 × 𝑁3  − 0.006264 × 𝑆𝑤 × 𝑇 + 3.078813 × 𝑁3
2  − 4.478272 × 10−5 × 𝑇2  + 0.931513 ×

𝑆𝑤
2  − 0.010119 × 𝑆𝑤 × 𝑇 × 𝑁3 + 0.0011847 × 𝑇 × 𝑁3

2  − 1.530084 × 10−5 × 𝑇2 × 𝑁3  + 0.031735 × 𝑆𝑤 ×

𝑁3
2  + 2.267592 × 10−5 × 𝑆𝑤 × 𝑇2  − 4.639188 × 𝑆𝑤

2 × 𝑁3  + 0.003083 × 𝑆𝑤
2 × 𝑇 − 1.635732 × 𝑁3

3 +

1.164436 × 10−5 × 𝑇3  − 0.7844912 × 𝑆𝑤
3   

 

𝑁3  =  0.176662 − 1.940022 × 𝑁2 + 1.3582468 × 𝑁1  − 0.9801913 × 𝜇𝑤  + 183.489858 × 𝑁1 × 𝑁2  +

0.500095 × 𝑁2 × 𝜇𝑤  + 4.220132 × 𝜇𝑤 × 𝑁1 − 42.4369441 × 𝑁2
2  − 141.8141161 × 𝑁1

2  + 1.637756 ×

𝜇𝑤
2  − 235.2853497 × 𝜇𝑤 × 𝑁1 × 𝑁2 − 635.636686 × 𝑁1 × 𝑁2

2  + 545.98779 × 𝑁1
2 × 𝑁2  + 79.564658 ×

𝜇𝑤 × 𝑁2
2  + 153.550115 × 𝜇𝑤 × 𝑁1

2  + 2.097266 × 𝜇𝑤
2 × 𝑁2  − 4.2657881 × 𝜇𝑤

2 × 𝑁1  + 225.747117 ×

𝑁2
3 − 134.334663 × 𝑁1

3 − 0.891422 × 𝜇𝑤
3   

 

𝑁2 =  −0.096002 − 5.9257567 × 10−6 × 𝐾 − 0.000564 × 𝜇𝑜  + 1.130989 × 𝑆𝑤  + 3.481102 × 10−9 ×

𝜇𝑜 × 𝐾 − 3.823397 × 10−6 × 𝑆𝑤 × 𝐾 − 3.6069041 × 10−6 × 𝑆𝑤 × 𝜇𝑜  + 2.674233 × 10−10 × 𝐾2  +

1.561068 × 10−6 × 𝜇𝑜
2  − 2.949632 × 𝑆𝑤

2  + 1.131077 × 10−9 × 𝜇𝑜 × 𝐾 × 𝑆𝑤  − 4.770877 × 10−14 × 𝜇𝑜 ×

𝐾2 + 2.038109 × 10−11 × 𝜇𝑜
2 × 𝐾 + 1.599609 × 10−10 × 𝑆𝑤 × 𝐾2  − 3.171396 × 10−7 × 𝑆𝑤 × 𝜇𝑜

2  −

1.538897 × 10−5 × 𝑆𝑤
2 × 𝐾 + 0.000121 × 𝑆𝑤

2 × 𝜇𝑜  − 2.397819 × 10−15 × 𝐾3  − 9.193278 × 10−10 ×

𝜇𝑜
3  + 2.792131 × 𝑆𝑤

3   

 

𝑁1  =  −0.086648 − 6.263036 × 10−6 × 𝐾 + 0.943031 × 𝑆𝑤  − 2.686239 × 10−6 × 𝑆𝑤 × 𝐾 + 2.763862 ×

10−10 × 𝐾2 − 2.593159 × 𝑆𝑤
2  + 1.533535 × 10−10 × 𝑆𝑤 × 𝐾2  − 1.5880239 × 10−5 × 𝑆𝑤

2 × 𝐾 −

2.461926 × 10−15 × 𝐾3 + 2.596955 × 𝑆𝑤
3   

• Kro 
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𝑁2  =  −10.615467 + 3.079713 × 𝑁1  + 37.847865 × 𝜇𝑤  + 0.123872 × 𝑇 − 10.501635 × 𝜇𝑤 × 𝑁1  −

0.038680 × 𝑇 × 𝑁1  − 0.266058 × 𝑇 × 𝜇𝑤  + 4.219898 × 𝑁1
2 − 41.718917 × 𝜇𝑤

2  − 0.000483 × 𝑇2  +

0.067595 × 𝑇 × 𝜇𝑤 × 𝑁1  − 1.5338197 × 𝜇𝑤 × 𝑁1
2  + 7.0341954 × 𝜇𝑤

2 × 𝑁1  − 0.0146348 × 𝑇 × 𝑁1
2  +

0.0940588 × 𝑇 × 𝜇𝑤
2  + 0.000135 × 𝑇2 × 𝑁1 + 0.000562 × 𝑇2 × 𝜇𝑤  − 1.465284 × 𝑁1

3  + 15.521063 ×

𝜇𝑤
3  + 5.4498556 × 10−7 × 𝑇3  

 

𝑁1 =  1.000296 − 9.2675342 × 10−6 × 𝐾 − 0.000537 × 𝜇𝑂  + 0.091314 × 𝑆𝑤 − 7.968958 × 10−8 × 𝜇𝑂 ×

𝐾 − 1.500484 × 10−5 × 𝑆𝑤 × 𝐾 − 0.001163 × 𝑆𝑤  + 1.466523 × 10−10 × 𝐾2  − 9.665598 × 10−7 × 𝜇𝑂
2 −

3.759212 × 𝑆𝑤
2  − 3.849348 × 10−8 × 𝑆𝑤 × 𝜇𝑂 × 𝐾 + 1.066838 × 10−12 × 𝜇𝑂 × 𝐾2  + 1.416735 × 10−10 ×

𝜇𝑂
2 × 𝐾 − 4.666963 × 10−11 × 𝑆𝑤 × 𝐾2  + 8.735882 × 10−9 × 𝑆𝑤 × 𝜇𝑂

2  + 2.5344757 × 10−5 × 𝑆𝑤
2 × 𝐾 +

0.001674 × 𝑆𝑤
2 × 𝜇𝑂  − 5.754639 × 10−16 × 𝐾3  + 9.856402 × 10−10 × 𝜇𝑂

3  + 2.665978 × 𝑆𝑤
3   

 

Appendix B. Statistical criteria 

 

These two assessment criteria are defined as follows: 

 𝑅2 = 1 −
∑ (𝐾𝑟𝑖𝑝𝑟𝑒𝑑−𝐾𝑟𝑖𝑒𝑥𝑝)

2
𝑁
𝑖=1

∑ (𝐾𝑟𝑖𝑝𝑟𝑒𝑑−𝐾𝑟̅̅ ̅̅ )
2

𝑁
𝑖=1

                                                    

𝑅𝑀𝑆𝐸 =  √1

𝑁
∑ (𝐾𝑟𝑖𝑒𝑥𝑝

− 𝐾𝑟𝑖𝑝𝑟𝑒𝑑
)

2
𝑁
𝑖=1                            

In these equations, N corresponds to the number of data, 𝐾𝑟𝑖  and 𝐾𝑟̅̅̅̅  are the phase (oil / water) 

relative permeability and their corresponding averages, correspondingly; and the subscripts 

pred and exp mean the predicted and experimental values, correspondingly. 
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Table 1. Summary of the important correlations for temperature-based oil/water relative 

permeability prediction. Bennion et al. (Bennion et al. 2006), Mosavat et al. (Mosavat et al. 

2016), Torabi et al. (Torabi, Mosavat, and Zarivnyy 2016) and Zhang et al. (Zhang et al. 

2017) are 

 

Model Correlations Note 

(Bennion et 

al. 2006) 

60 °𝐶 < 𝑇 < 100 °𝐶 
𝐾𝑟𝑤 = 0.021 (1 −

0.6 − 𝑆𝑤

0.45
)

5

 
- On the basis of : 

• McMurray sand 

• Unsteady state / steady 

state 

• Heavy oil 

• Darcy law / history 

match 

- Restrictions: 

• 0.11 < 𝑆𝑤𝑖 < 0.43 

• 0.12 < 𝑆𝑜𝑟 < 0.72 

• 8000 < 𝜇𝑜 < 106 𝑐𝑃 

𝐾𝑟𝑜 = (
0.6 − 𝑆𝑤

0.45
)

2.2

 

150 °𝐶 < 𝑇 < 275 °𝐶 

𝐾𝑟𝑤

= 0.055 (1 −
0.85 − 𝑆𝑤

0.7
)

2.5

 

𝐾𝑟𝑜 = (
0.85 − 𝑆𝑤

0.7
)

3

 

(Torabi, 

Mosavat, and 

Zarivnyy 

2016) 

𝐾𝑟𝑤 = 0.0466 (0.0588
𝑃𝑒𝑥𝑝

𝑃𝑠𝑡𝑑

)
−1.28676

× 𝑒
0.34443(2−

𝑞𝑒𝑥𝑝

𝑞𝑠𝑡𝑑
)

× (0.0025
𝜇𝑜

𝜇𝑠𝑡𝑑

)
−0.34267

(
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖

)
2

 

- On the basis of : 

• Berea sandstone 

• Unsteady state 

approach 

• Heavy oil and light oil 

• JBN method 

- Restrictions: 

• 0.092 < 𝑆𝑤𝑖 < 0.138 

• 0.463 < 𝑆𝑜𝑟 < 0.539 

• 27 < 𝑇 < 45 °𝐶 

• 24.3 < 𝜇𝑜 < 400.2 𝑐𝑃 

𝐾𝑟𝑜 = (0.0588
𝑃𝑒𝑥𝑝

𝑃𝑠𝑡𝑑

)
−0.0291

× 𝑒
−0.01254(2−

𝑞𝑒𝑥𝑝

𝑞𝑠𝑡𝑑
)

× (1 −
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖

)
2

× (1 − (
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖

)
0.1(0.025

𝜇𝑜
𝜇𝑠𝑡𝑑

)
−0.818

) 

(Mosavat et 

al. 2016) 

𝐾𝑟𝑤 = (
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖

)
𝑎

 
𝑎

= 1.32 + 0.00123 (
𝜇𝑜

𝜇𝑤

)

− 7.47 × 10−7 (
𝜇𝑜

𝜇𝑤

)
2

 

𝑏

= 102 + 0.000298 (
𝜇𝑜

𝜇𝑤

)

− 1.38 × 10−7 (
𝜇𝑜

𝜇𝑤

)
2

 

𝑐

= 2.22 + 0.00318 (
𝜇𝑜

𝜇𝑤

)

− 1.22 × 10−6 (
𝜇𝑜

𝜇𝑤

)
2

 

- On the basis of : 

• Ottawa silica sand 

• Unsteady state 

approach 

• Heavy oil  

• History match 

- Restrictions: 

• 0.05 < 𝑆𝑤𝑖 < 0.105 

• 0.2 < 𝑆𝑜𝑟 < 0.413 

• 23 < 𝑇 < 100 °𝐶 

• 19.5 < 𝜇𝑜 < 1860 𝑐𝑃 

𝐾𝑟𝑜 = (1 − (
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖
)

𝑏

) (1 −
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖
)

𝑐

 

 (Zhang et al. 

2017) 

𝐾𝑟𝑤

= 𝐾𝑟𝑤
0−50𝐶 (𝑒1 + 𝑒2𝑇 +

𝑒3

𝑇

+
𝑒4

𝑇2
) (

𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟

)
𝑎3𝑇+𝑎4

 

𝑒1 = 20.14 

𝑒2 = −0.053 

𝑒3 = −1638.84 

𝑒4 = 40763.24 

𝑎1 = 0.0244 

𝑎2 = 3.8848 

𝑎3 = −0.0001 

𝑎4 =0.5099 

𝑏1 = 0.0025 

𝑏2 = 0.1941 

𝑐1 = −0.1121 

𝑐2 = 0.6711 

 

- On the basis of : 

• Tight sand stone 

• Unsteady state 

approach 

• Light oil  

• Combination of JBN 

and Corey correlation 

- Restrictions: 

• 0.234 < 𝑆𝑤𝑖 < 0.482 

• 0.153 < 𝑆𝑜𝑟 < 0.324 

• 25 < 𝑇 < 100 °𝐶 

• 4 < 𝜇𝑜 < 48 𝑐𝑃 

𝐾𝑟𝑜

= (
1 − 𝑆𝑤 − 𝑐1 ln(𝑇) − 𝑐2

1 − 𝑏1𝑇 − 𝑏2 − 𝑐1 ln(𝑇) − 𝑐2

)

𝑎1𝑇+𝑎2
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Table 2. Statistical description of the input/output data. 

 

  

   Max Min Mean SD 

Oil Relative 

Permeability 

Input 

Absolute permeability (mD) 95000 147 21778.9 34047.5 

Temperature (°C) 200 21.10 97.75 47.31 

Sw 1 0.052 0.4623 0.2010 

Water viscosity (cP) 1.10 0.136 0.42 0.29 

Oil viscosity (cP) 1190 0.419 88.93 224.38 

Output  Kro 1 0 0.3634 0.3118 

Water Relative 

Permeability 

Input 

Absolute permeability (mD) 95000 147 23443.39 35241 

Temperature (°C) 200 21.10 99.56 45.66 

Sw 1 0.052 0.533 0.219 

Water viscosity (cP) 1.10 0.136 0.40 0.27 

Oil viscosity (cP) 1190 0.7 88.39 223.19 

Output Krw 1 0 0.1096 0.2029 
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Table 3. GEP setting parameters used in the study 

 

Parameters Value/setting 

The number of head size 8 - 15 

Chromosome 150 

Gene 8 - 12 

Population 300 - 500 

Mutation rate 0.25 

Inversion rate 0.1 

Operators used 
+, −, ×, /, EXP, X2, INV, TANH, 

LOG , SQRT 
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Table 4. Expressions of the terms appearing in Kro GEP correlations 

 

 

 21.10 < 𝑇 ≤ 100 °𝐶 100 < 𝑇 ≤ 200 °𝐶 

A1 0.5492 × 𝜇𝑤 + 3.596 × 𝑆𝑤 −
10−5 × 𝑇2

1.3 × 𝜇𝑜 − 10.67562
 5.8 − 6.343 × 𝑆𝑤 × √𝜇𝑜 

A2 0.06567 + 0.1093 × 𝑡𝑎𝑛ℎ(𝜇𝑤) − 0.001972 × 𝑆𝑤 × 𝑇 × 𝜇𝑤 + (
𝑆𝑤

𝐾
) × (0.467 × 𝑇 + 3.869) 7422 × 𝑆𝑤 − 4659 × 𝑡𝑎𝑛ℎ(𝑆𝑤) − 5.8 × 𝑇 

A3 0.4542 + 𝜇𝑤(0.001875 × 𝐾 + 0.007486) +
0.0003327 × 𝐾

𝜇𝑤
 11.01 +

1.809

𝜇𝑤

(𝑇 − 1) 

A4 

1.355 × 10−5

𝑇 × 𝜇𝑤
2

−
6.954 × 10−6

√𝜇𝑜

 68.06 + 6.343 × 𝑆𝑤
2  

A5 0.6238 × 𝑒𝑥𝑝(2 × 𝑆𝑤) + 0.3137 𝑙𝑛(𝑇 + 𝜇𝑜) + (4.421 − 0.02517 × 𝑙𝑛(𝐾)) × 𝑙𝑛(𝐾) 7.523 × (𝑇 + 𝐾) +
11.01 × 𝜇𝑜

√𝑆𝑤

 

A6 0.006523 × (√𝐾 − 𝜇𝑤) +
0.0001183 × (𝐾 − 𝑇)

𝜇𝑜
+ 27.8 

−0.007834 +
2.722

𝐾

+
0.3102 × 𝑆𝑤 × 𝜇𝑤

3.603 × 𝜇𝑜 − 30.37
 

A7  

0.03168 + 0.009715 × 𝜇𝑜

𝑡𝑎𝑛ℎ(𝜇𝑤)

− 4.208

× 𝑡𝑎𝑛ℎ(𝑡𝑎𝑛ℎ(𝑆𝑤))

+ 0.6253 × 𝑙𝑛(𝑆𝑤 + 𝜇𝑤) + 2.722 × √𝜇𝑤

− 1.437 × 𝜇𝑜

1
4 + 2.702 
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Table 5. Statistical indexes of the established correlations 

 

 

 

 

 

 

 

 

 

 

 

  

  Training  Testing  All 

Krw 

 RMSE R2 RMSE R2 RMSE R2 

GMDH 0.0468     0.9711     0.0408     0.9846     0.0456     0.9738 

GEP 0.0278     0.9899     0.0305     0.9918     0.0284     0.9903 

Kro 
GMDH 0.1206     0.9221     0.1296     0.9104     0.1224     0.9197 

GEP 0.0610     0.9809     0.0740     0.9737     0.0636     0.9794 
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Table 6. Statistical parameters of various models for temperature-based oil-water relative 

permeability. 

 

  RMSE R2 

Kro 

Mosavat et al. 0.2982 0.8257 

Zhang et al. 0.1879 0.8326 

Bennion et al. 0.2665 0.6240 

GEP 0.0636     0.9794 

Krw 

Mosavat et al. 0.3105 0.7687 

Zhang et al. 0.0451 0.8923 

Bennion et al. 0.2425 0.2347 

GEP 0.0284     0.9903 
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Fig. 1. General sketch of the problem  
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     Mathematical expression:   𝒍𝒐𝒈(𝒙 − 𝒚) + 𝒙 × 𝒛 

 

Fig. 2. An example of two-gene chromosome and its mathematical expression 
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Fig. 3. A schematic structure of the proposed GMDH for predicting Krw 
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Fig. 4. A schematic structure of the proposed GMDH for predicting Kro 
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Fig. 5. Cross plots of the established GMDH and GEP correlations (Kro) 
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Fig. 6. Cross plots of the established GMDH and GEP correlations (Krw) 
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Fig. 7. Comparison between the established correlations: (a) RMSE and (b) R2  
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Fig. 8. The comparison between the predicted Kro values by the GEP model and the Kro real values: 

(a) training data and (b) testing data. 
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Fig. 9. The comparison between the predicted Krw values by the GEP model and the Krw real values: 

(a) training data and (b) testing data. 
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Fig. 10. Histogram plot for the datasets applied in establishing GEP correlation for Kro: (a) train and 

(b) test. 
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Fig. 11. Histogram plot for the datasets applied in establishing GEP correlation for Krw: (a) train and 

(b) test. 
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Fig. 12. Comparison of experimental and predicted temperature-based oil relative permeability by 

Bennion et al., Mosavat et al. and Zhang et al. 
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Fig. 13. Comparison of experimental and predicted temperature-based water relative permeability by 

Bennion et al., Mosavat et al. and Zhang et al. 
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Fig. 14. The obtained (a) root mean squared error and (b) coefficient of correlation while estimating 

temperature-based oil/water relative permeability by GEP and available pre-existing correlations. 

 

 

 

 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Mosavat et al.

Zhang et al.

Bennion et al.

GEP

RMSE

Krw Kro

(a)

0 0.2 0.4 0.6 0.8 1

Mosavat et al.

Zhang et al.

Bennion et al.

GEP

R2

Krw Kro(b)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2019                   doi:10.20944/preprints201907.0004.v1

https://doi.org/10.20944/preprints201907.0004.v1


44 
 

 

 

Fig. 15. Comparison between experimental values and outputs generated via GEP correlations 

versus water saturation for two cases included in this study. 
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