

1 Article

2 **Factors enhancing serum syndecan-1 concentrations:
3 a large-scale comprehensive medical examination**4 Kazumasa Oda¹⁺, Hideshi Okada^{1*+}, Akio Suzuki², Hiroyuki Tomita³, Ryo Kobayashi²,
5 Kazuyuki Sumi², Kodai Suzuki¹, Chihiro Takada¹, Takuma Ishihara⁴, Keiko Suzuki², Soichiro
6 Kano¹, Kohei Kondo¹, Yuki Iwashita¹, Hirohisa Yano¹, Ryogen Zailkokuji¹, So Sampei¹, Tetsuya
7 Fukuta¹, Yuichiro Kitagawa¹, Haruka Okamoto¹, Takatomo Watanabe⁵, Tomonori Kawaguchi¹,
8 Takao Kojima⁶, Fumiko Deguchi⁶, Nagisa Miyazaki⁷, Noriaki Yamada¹, Tomoaki Doi¹, Takahiro
9 Yoshida¹, Hiroaki Ushikoshi¹, Shozo Yoshida¹, Genzou Takemura⁷, Shinji Ogura¹10 ¹ Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu,
11 Japan12 ² Department of Pharmacy, Gifu University Hospital, Gifu, Japan13 ³ Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan14 ⁴ Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan15 ⁵ Department of Clinical Laboratory, Gifu University Hospital, Gifu, Japan16 ⁶ Medical Health Check-up Center, Asahi University Hospital, Gifu Japan17 ⁷ Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Japan18 * Correspondence: Hideshi Okada, hideshi@gifu-u.ac.jp; Tel.: +81-58-230-6448

19 + These authors contributed equally to the manuscript.

20 **Abstract:** Endothelial disorders are related to various diseases. An initial endothelial injury is
21 characterized by endothelial glycocalyx injury. We aimed to evaluate endothelial glycocalyx injury
22 by measuring serum syndecan-1 concentrations in patients during comprehensive medical
23 examinations. A single-center, prospective, observational study was conducted at Asahi University
24 Hospital. The participants enrolled in this study were 1313 patients who underwent comprehensive
25 medical examinations at Asahi University Hospital from January 2018, to June 2018. One patient
26 undergoing hemodialysis was excluded from the study. At enrollment, blood samples were
27 obtained, and study personnel collected demographic and clinical data. No treatments or exposures
28 were conducted except for standard medical examinations and blood sample collection. Laboratory
29 data were obtained by collection of blood samples at the time of study enrolment. According to
30 nonlinear regression, the concentrations of serum syndecan-1 were significantly related to age ($p =$
31 0.016), aspartic aminotransferase concentration (AST, $p = 0.020$), blood urea nitrogen concentration
32 (BUN, $p = 0.013$), triglyceride concentration ($p < 0.001$), and hematocrit ($p = 0.006$). These
33 relationships were independent associations. Endothelial glycocalyx injury, which is reflected by
34 serum syndecan-1 concentrations, is related to age, hematocrit, AST concentration, BUN
35 concentration, and triglyceride concentration.36 **Keywords:** Endothelial disorders; glycocalyx injury; syndecan-1; nonlinear regression.
3738 **1. Introduction**39 Endothelial disorders are closely related to many diseases, including diabetes mellitus [1],
40 hypertension [2], hypercholesterolemia [3], tumorigenesis [4], ischemia/reperfusion injury [5],
41 respiratory disorder [6], renal dysfunction [7], and autoimmune vasculitis [8]. Previous studies have
42 suggested that treatments used for endothelial disorders could also prevent cardiovascular disease
43 [8 9]. Vascular endothelial disorder exists prior to atherosclerosis, and flow-mediated dilation (FMD)
44 after experimentally imposed increases in shear stress can be used as an index of endothelial function
45 [10 11]. However, FMD is not applicable as a screening approach because it requires the use of
46 echography for diagnosis. Although high-sensitivity C-reactive protein (CRP), lipoprotein-associated

47 phospholipase A2, and pentraxin 3 have been used as biomarkers of endothelial disorder, these
48 markers can only estimate the presence of unstable plaque and do not reflect early vascular
49 endothelial lesions. To date, no biomarkers have been developed to detect early vascular endothelial
50 lesions.

51 The endothelium exists on the inner surface of blood vessels as a thin monolayer and therefore
52 is exposed to the circulating blood. Endothelial cells in direct contact with circulating blood are called
53 vascular endothelial cells. Vascular endothelial cells line the entire circulatory system, from the heart
54 to the smallest capillaries. All healthy endothelium is coated by the sugar-protein glycocalyx [12-17],
55 which plays key roles in vascular homeostasis, including regulation of microvascular tone and
56 endothelial permeability, maintenance of an oncotic gradient across the endothelial barrier,
57 regulation of the adhesion and migration of leukocytes, and inhibition of intravascular thrombosis
58 [18-20]. The glycocalyx is composed of cell-bound proteoglycans, glycosaminoglycan side chains, and
59 sialoproteins [21-23]. Proteoglycans consist of a core protein, such as a syndecan family protein, to
60 which glycosaminoglycan is linked. Syndecan-1 is the core protein in heparan sulfate proteoglycan,
61 which is also found in the glycocalyx. Syndecan-1 is released from the endothelium upon injury to
62 the glycocalyx, causing its concentration in the circulation to increase [24]. In fact, serum syndecan-1
63 was used as an endothelial injury marker in recent clinical studies of sepsis [25 26].

64 Therefore, in this study, we investigated risk factors for endothelial disorders according to serum
65 syndecan-1 concentrations measured during comprehensive medical examinations.

66 2. Experimental Section

67 2.1. Study population

68 In total, 1313 patients who had comprehensive medical examinations at Asahi University
69 Hospital from January 1st 2018, to June 30th 2018, participated in this study.

70 2.2 Ethics approval and consent to participate

71 Ethical permission was obtained from the medical ethics committee of Gifu University
72 Graduate School of Medicine, Gifu, Japan (record no.: 29-214) and Asahi University, Mizuho, Japan
73 (record no.: 30-29), and all patients provided written informed consent.

74 2.2 Consent for publication

75 Written informed consent was obtained from the patient for publication of this report.

76 2.3 Clinical assessments

77 At enrolment, blood samples were obtained, and study personnel collected demographic and
78 clinical data. Body mass index (BMI) was calculated as weight (kg) / height (m)². Medical and
79 medication history were obtained from all patients. Patients who received hemodialysis were
80 excluded from the analysis.

81 2.4. Laboratory data

82 Laboratory data were obtained by the collection of blood samples at the time of study
83 enrollment more than 12 h after fasting. Serum syndecan-1 concentrations were measured using an
84 enzyme-linked immunosorbent assay (950.640.192; Diaclone, Besancon, Cedex, France).

85 2.5. Statistical analyses

86 Descriptive statistics were presented as frequencies and percentages for categorical variables or
87 as medians with interquartile ranges (IQRs) for continuous variables. The primary outcome was

88 serum syndecan-1 concentration. Multivariable regression models were used to assess independent
89 associations between serum syndecan-1 concentrations and blood parameters with adjustment for
90 patient characteristics. Serum syndecan-1 concentrations were natural log-transformed to provide
91 normality in the regression residuals. Beta-coefficients of the regression model were back-
92 transformed to represent the percent increase in serum syndecan-1 concentration with a 50%
93 increase in the corresponding covariate. Nonlinear associations between continuous variables and
94 serum syndecan-1 concentrations were assessed by including nonlinear cubic splines in the
95 regression model. A priori, we chose to include age, sex, BMI, systolic blood pressure, serum total
96 protein, albumin, total bilirubin, aspartic aminotransferase concentration (AST), alanine
97 transaminase, lactate dehydrogenase, blood urea nitrogen (BUN), creatinine concentration, CRP,
98 fasting blood sugar concentration, hemoglobin a1c, serum triglyceride, high-density lipoprotein-
99 cholesterol, low-density lipoprotein-cholesterol, uric acid concentration, hemoglobin concentration,
100 hematocrit (Ht), white blood cell number, and platelet number in the regression model. To avoid
101 the bias of the results by excluding missing data, we used multiple imputations in the regression
102 model.

103 All analyses used a two-sided 5% significance level. Data management and analyses were
104 performed using R version 3.5.1.

105

106 **3. Results**

107 This section may be divided by subheadings. It should provide a concise and precise description
 108 of the experimental results, their interpretation as well as the experimental conclusions that can be
 109 drawn.

110 *3.1. Characteristics of the patients*

111 Between January and June 2018, we enrolled 1313 patients. One patient undergoing
 112 hemodialysis was excluded from the study; thus, we included 1312 patients, with a median age of 51
 113 years (Table 1), in this study. The patients were being treated for hypertension (n = 234, 17.8%),
 114 hyperlipidemia (n = 173, 13.2%), diabetes mellitus (n = 80, 6.1%), and hyperuricemia (n = 70, 5.3%).
 115 Malignant neoplasms were observed in 65 patients (5.0%; Table 1). Additionally, 85 patients were
 116 receiving no treatments and no abnormal laboratory data.

117 **Table 1: Characteristics of the patients**

	Median or Number	(25-75 Percentile)
Number of Cases	1312	
Age	51	(43-59)
Sex (M/F)	819/493	
BMI (kg/m²)	22.6	(20.6-24.8)
SBP (mmHg)	122	(111-132)
TP (g/dL)	7.3	(7.1-7.6)
Alb (g/dL)	4.3	(4.2-4.5)
T-Bil (mg/dL)	0.7	(0.5-0.9)
AST (U/L)	17	(14-22)
ALT (U/L)	16	(12-23)
LDH (U/L)	242	(219-268)
BUN (mg/dL)	13.4	(11.4-15.8)
Cre (mg/dL)	0.77	(0.64-0.88)
CRP (mg/dL)	0.04	(0.02-0.09)
FBS (mg/dL)	97	(92-104)
HbA1c (%)	5.4	(5.3-5.6)
TG (mg/dL)	68	(47-99)
HDL -cho (mg/dL)	63	(51-78)
LDL-cho (mg/dL)	115	(97-134)
UA (mg/dL)	5.0	(4.0-6.0)
Hb (g/dL)	14.6	(13.4-15.5)
Ht (%)	42.1	(39.0-44.6)
WBC (× 10³/μl)	5000	(4200-5900)
Plt (× 10⁴/μl)	22.4	(19.3-25.7)
History of Present Illness		
Hypertension	234	(17.8%)
Diabetes Mellitus	80	(6.1%)
Hyperlipidemia	173	(13.2%)
Hyper Uric Acid	70	(5.3%)
Malignant Neoplasm	65	(5.0%)

118 BMI: Body mass index, SBP: Systolic Blood Pressure, TP: Total protein, Alb: Albumin, T-Bil: Total bilirubin,
 119 AST: Aspartic Aminotransferase, ALT: Alanine Transaminase, LDH: Lactate Dehydrogenase, BUN: Blood Urea
 120 Nitrogen, Cre: Creatinine, CRP: C-reactive protein, FBS: Fasting Blood Sugar, HbA1c: Hemoglobin A1c, TG:
 121 Triglyceride, HDL-Cho: Heavy Density Lipoprotein-cholesterol, LDL-Cho: Low Density Lipoprotein-
 122 cholesterol, UA: Uric Acid, Hb: Hemoglobin, Ht: Hematocrit, WBC: White Blood Cell, Plt: Platelet

123

124 *3.2. Associations of serum syndecan-1 with various parameters*

125 The results of multivariable regression analysis are shown in Table 2. Age, AST concentration,
 126 BUN concentration, triglyceride concentration, and Ht were significantly associated with serum
 127 syndecan-1 concentrations after adjustment for sex, medication and BMI. A 1 IQR increase in age was
 128 independently associated with a 0.9-fold increase in serum syndecan-1 ($\beta = 0.903$; 95% confidence
 129 interval [CI]: 0.831–0.982; $p = 0.016$; Fig 1A). Similar results were found for AST ($\beta = 1.093$; 95% CI:
 130 0.996–1.200; $p = 0.020$; Fig 1B), BUN ($\beta = 1.083$; 95% CI: 1.018–1.152; $p = 0.013$; Fig 1C), triglyceride (β
 131 = 1.131; 95% CI: 1.030–1.242; $p < 0.001$; Fig 1D) and Ht ($\beta = 1.726$; 95% CI: 1.233–2.417; $p = 0.006$; Fig
 132 1E) after adjustment for covariates. No significant associations were observed for other factors.

133 According to nonlinear regression analysis, serum syndecan-1 concentrations were significantly
 134 related to age, AST concentration, BUN concentration, triglyceride concentration, and Ht. These
 135 relationships were independent associations. Significant nonlinear associations were not observed
 136 for each variable.

137

138 **Table 2: Results of multivariable regression analysis**

	25 percentile	75 percentile	Fold-change [IQR]	95%LCI	95%UCI	p-value
Age	43	59	0.903	0.831	0.982	0.016
Sex – Female : Male	-	-	0.883	0.759	1.026	0.105
Medication – Yes : No	-	-	1.030	0.944	1.124	0.505
BMI (kg/m²)	20.6	24.8	0.995	0.939	1.054	0.863
SBP (mmHg)	111	132	0.972	0.908	1.039	0.471
TP (g/dL)	7.1	7.6	0.979	0.918	1.044	0.755
Alb (g/dL)	4.2	4.5	0.980	0.913	1.051	0.784
T-Bil (mg/dL)	0.5	0.9	0.940	0.865	1.021	0.168
AST (U/L)	14	22	1.093	0.996	1.200	0.020
ALT (U/L)	12	23	1.046	0.945	1.158	0.484
LDH (U/L)	219	268	0.979	0.916	1.045	0.680
BUN (mg/dL)	11.4	15.8	1.083	1.018	1.152	0.013
Cre (mg/dL)	0.64	0.88	1.048	0.952	1.154	0.591
CRP (mg/dL)	0.02	0.09	1.023	0.935	1.119	0.725
FBS (mg/dL)	92	104	0.993	0.929	1.061	0.603
HbA1c (%)	5.3	5.6	0.954	0.907	1.004	0.077
TG (mg/dL)	47	99	1.131	1.030	1.242	<0.001
HDL –cho (mg/dL)	51	78	1.078	0.989	1.174	0.118
LDL-cho (mg/dL)	97	134	0.970	0.913	1.031	0.515
UA (mg/dL)	4.0	6.0	0.998	0.917	1.087	0.341
Hb (g/dL)	13.4	15.5	0.663	0.470	0.934	0.050
Ht (%)	39.0	44.6	1.726	1.233	2.417	0.006
WBC ($\times 10^3/\mu\text{L}$)	4200	5900	0.976	0.909	1.047	0.666
Plt ($\times 10^4/\mu\text{L}$)	19.3	25.7	1.02	0.960	1.084	0.674

139 BMI: Body mass index, SBP: Systolic Blood Pressure, TP: Total protein, Alb: Albumin, T-Bil: Total bilirubin,
 140 AST: Aspartic Aminotransferase, ALT: Alanine Transaminase, LDH: Lactate Dehydrogenase, BUN: Blood
 141 Urea Nitrogen, Cre: Creatinine, CRP: C-reactive protein, FBS: Fasting Blood Sugar, HbA1c: Hemoglobin A1c,

142 TG: Triglyceride, HDL-Cho: Heavy Density Lipoprotein-cholesterol, LDL-Cho: Low Density Lipoprotein-
143 cholesterol, UA: Uric Acid, Hb: Hemoglobin, Ht: Hematocrit, WBC: White Blood Cell, Plt: Platelet. Fold-
144 change are derived from the exponential of the β -coefficient of the model and represent the fold-change in
145 sensitive serum syndecan-1 accompanying a one interquartile increase in each factor.
146

Figure 1

147
148 **Figure 1: Associations between serum syndecan-1 and different parameters.**
149 Associations of serum syndecan-1 with (A) Age, (B) AST, (C) BUN, (D) triglyceride, and (E) Ht. AST:
150 aspartic aminotransferase, BUN: blood urea nitrogen, Ht: hematocrit
151

152 *3.3. Subgroup analysis*

153 Table 3 shows data for the 78 healthy individuals enrolled in this study (that is, individuals
 154 receiving no treatment and with no relevant medical history or laboratory data). The median serum
 155 syndecan-1 concentration was 19.3 ng/mL (IQR: 13.7–27.3 ng/mL) in healthy participants.

156 **Table 3: Characteristics of the healthy enrollments**

157 BMI: Body mass index, SBP: Systolic Blood Pressure, TP: Total protein, Alb: Albumin, T-Bil: Total bilirubin, AST:
 158 Aspartic Aminotransferase, ALT: Alanine Transaminase, LDH: Lactate Dehydrogenase, BUN: Blood Urea

	Median or Number	(25-75 Percentile)
Number of Cases	78	
Age	46	(42-52)
Sex (M/F)	41/37	
BMI (kg/m²)	21.9	(20.2-22.8)
SBP (mmHg)	110	(102-119)
TP (g/dL)	7.2	(7.0-7.4)
Alb (g/dL)	4.3	(4.1-4.5)
T-Bil (mg/dL)	0.7	(0.5-0.8)
AST (U/L)	16	(13-19)
ALT (U/L)	14	(10-18)
LDH (U/L)	235	(210-255)
BUN (mg/dL)	12.9	(11.0-14.4)
Cre (mg/dL)	0.72	(0.62-0.86)
CRP (mg/dL)	0.03	(0.01-0.05)
FBS (mg/dL)	94	(88-98)
HbA1c (%)	5.3	(5.2-5.5)
TG (mg/dL)	63	(49-84)
HDL-cho (mg/dL)	67	(57-81)
LDL-cho (mg/dL)	105	(90-117)
UA (mg/dL)	4.7	(4.0-5.6)
Hb (g/dL)	14.2	(13.5-15.0)
Ht (%)	41.1	(39.2-43.7)
WBC (×10³/μL)	5150	(4525-5875)
Plt (×10⁴/μL)	22.2	(19.0-24.2)

159 Nitrogen, Cre: Creatinine, CRP: C-reactive protein, FBS: Fasting Blood Sugar, HbA1c: Hemoglobin A1c, TG:
 160 Triglyceride, HDL-Cho: Heavy Density Lipoprotein-cholesterol, LDL-Cho: Low Density Lipoprotein-
 161 cholesterol, UA: Uric Acid, Hb: Hemoglobin, Ht: Hematocrit, WBC: White Blood Cell, Plt: Platelet

162 **4. Discussion**

163 Endothelial disorders are closely related to many diseases via atherosclerosis. The endothelial
 164 glycocalyx covers the inner surface of the vascular endothelium and regulates leukocyte adhesion
 165 [20]; thus, leukocytes cannot adhere to endothelial cells covered with glycocalyx, and endothelial
 166 glycocalyx injury may occur prior to atherosclerotic changes. Syndecan-1 is a component of the
 167 glycocalyx, and its degradation indicates endothelial injury [24 27 28]. In this study, to detect the
 168 initial endothelial cell injury, we investigated syndecan-1 concentrations in patients who received
 169 comprehensive medical examinations. Several previous reports have revealed the relationships of
 170 syndecan-1 with severe diseases, such as acute kidney injury, chronic kidney disease, cardiac arrest,
 171 cardiovascular disease, and sepsis [29-33]. Although serum syndecan-1 concentrations were reported
 172 in several previous studies, the patient populations in these studies were small [29-36]. Additionally,
 173 serum syndecan-1 concentrations had not been reported in healthy populations. In this study, 78
 174 healthy individuals with no medication history or abnormal laboratory data were enrolled, and
 175 serum syndecan-1 concentrations were determined. However, further studies are required for a more
 176 detailed assessment.

177 The current study revealed that increased serum syndecan-1 concentrations were related to
 178 serum triglyceride concentrations. Increased serum triglyceride concentrations may influence

179 vascular endothelial injury and subsequently affect atherosclerosis. Notably, triglycerides increase
180 plasma viscosity [37], affecting fluid shear stress. Because the glycocalyx serves as a mechanosensor
181 for fluid shear stress [38-40], fluid shear stress on endothelial cells affects the endothelial glycocalyx
182 [41-43], and excess shear stress injures the endothelial glycocalyx. Thus, increasing serum
183 triglyceride concentrations may damage the endothelial glycocalyx directly. Because the current
184 investigation was performed after fasting, serum triglyceride concentrations were not influenced by
185 the consumption of a meal in our study. Similarly, previous reports revealed that elevated Ht
186 increased wall shear stress and affected the degradation of glycocalyx [44 45]. Therefore, our results
187 also showed that Ht was related to syndecan-1 concentrations.

188 AST and BUN were also closely related to serum syndecan-1 concentrations in the current study.
189 Because syndecan-1 was found to enhance acute kidney injury in a previous report [32], our present
190 findings suggested that the relationship between BUN and syndecan-1 may affect kidney injury.
191 Moreover, increasing BUN is related to dehydration similarly to Ht. AST levels are primarily
192 modulated by liver function. Further studies are needed to elucidate the relationships among AST
193 levels, syndecan-1 concentrations, and liver function.

194 In this study, we found that age was related to syndecan-1 concentrations. Specifically, with
195 increasing age, syndecan-1 concentrations decreased. This result may be related to the decreased
196 endothelial glycocalyx synthesis of endothelial cells with aging.

197 Our results also showed that increased syndecan-1 concentrations were not related to decreased
198 HbA1c levels. Previous studies have reported that endothelial glycocalyx perturbation is observed in
199 patients with type 1 and type 2 diabetes mellitus [46-48]. However, in our research, most patients did
200 not have diabetes mellitus, and the experimental settings were different from those of previous
201 studies. Moreover, we evaluated syndecan-1 concentrations as a marker of endothelial glycocalyx
202 injury, whereas previous studies measured glycocalyx volume. Overall, our findings and the results
203 of previous studies suggested that increased syndecan-1 concentrations may reflect the microvessel
204 condition [25 26].

205 This study had some limitations. First, syndecan-1 is expressed not only in the endothelial
206 glycocalyx but also in other organs. However, we did not evaluate the syndecan-1 expression in
207 different organs in this study. Additionally, the endothelial glycocalyx can be injured in response to
208 inflammatory cytokines and other insults; this mechanism was not evaluated in the current study.
209 Further studies are needed to explore these mechanisms.

210 Although several markers of the endothelial disorder have been reported, no biomarkers for
211 extreme initial endothelial injury have been identified to date. Therefore, evaluation of endothelial
212 glycocalyx injury may reveal the initial endothelial injury, and syndecan-1 concentrations may be a
213 biomarker reflecting such damage.

214 5. Conclusions

215 In conclusion, endothelial glycocalyx injury, which is reflected by serum syndecan-1
216 concentrations, is related to age, hematocrit, aspartic aminotransferase concentration, blood urea
217 nitrogen concentration, and triglyceride concentration. These results suggest that these factors cause
218 the early endothelial injury indicated by endothelial glycocalyx injury. If treatment intervention
219 against these factors is performed as soon as possible, medical expenses can be reduced to quite an
220 extent.

221 **Author Contributions:** K.O. and H.O. wrote the manuscript. T. Kojima., F.D., N.M. and G.T. collected the
222 samples of blood. A.S., H.T., R.K., K. Sumi, Kodai Suzuki, C.T., Keiko Suzuki, S.K., K.K., Y.I., H.Y., R.Z., S.S.,
223 T.F., Y. Kawaguchi., T.W., T.K., N.Y., T.D., T.Y., H.U., S.Y. measured syndecan-1 using ELISA. T.I. performed
224 statically analysis. S.O. supervised the animal studies. H.O. and G.T. revised and edited the manuscript. All
225 authors read and approved the final manuscript.

226 **Funding:** This study was supported in part by grants-in-aid for scientific research [numbers 19H03756,
227 19K09410, 19K18347, 18K08914, 18K08884, 18K16511, 18K16533 and 17K11569] from the Ministry of Education,
228 Science and Culture of Japan.

229 **Acknowledgments:** We thank Yuki Wakida, Yasuko Nogaki, and Shoko Kumazaki for technical assistance.

230 **Conflicts of Interest:** The authors declare that they have no competing interests.

231 **References**

- 232 1. *Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord.* 2010;11(1):61-74.
- 233 2. *Vaisman BL, Andrews KL, Khong SM, Wood KC, Moore XL, Fu Y, et al. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS One.* 2012;7(7):e39487.
- 234 3. *Sharma S, Singh M, Sharma PL. Mechanism of attenuation of diabetes mellitus and hypercholesterolemia induced vascular endothelial dysfunction by protein tyrosine phosphatase inhibition. Vascul Pharmacol.* 2011;54(3-6):80-87.
- 235 4. *Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia.* 2006;8(2):79-88.
- 236 5. *Lefer AM. Endothelial dysfunction as a trigger for ischemia-reperfusion injury. J Thromb Thrombolysis.* 1997;4(1):63-65.
- 237 6. *Maniatis NA, Orfanos SE. The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care.* 2008;14(1):22-30.
- 238 7. *Annuk M, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl.* 2003(84):S50-S53.
- 239 8. *Murdaca G, Colombo BM, Cagnati P, Gulli R, Spano F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis.* 2012;224(2):309-317.
- 240 9. *Bijl M. Endothelial activation, endothelial dysfunction and premature atherosclerosis in systemic autoimmune diseases. Neth J Med.* 2003;61(9):273-277.
- 241 10. *Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol.* 2011;300(1):H2-12.
- 242 11. *Tremblay JC, Pyke KE. Flow-mediated dilation stimulated by sustained increases in shear stress: a useful tool for assessing endothelial function in humans? Am J Physiol Heart Circ Physiol.* 2018;314(3):H508-H20.
- 243 12. *Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol.* 2010;105(6):687-701.
- 244 13. *Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc.* 1966;25(6):1773-1783.
- 245 14. *Rehm M, Zahler S, Lotsch M, Welsch U, Conzen P, Jacob M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology.* 2004;100(5):1211-1223.
- 246 15. *Okada H, Takemura G, Suzuki K, Oda K, Takada C, Hotta Y, et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit Care.* 2017;21(1):261.
- 247 16. *Ando Y, Okada H, Takemura G, Suzuki K, Takada C, Tomita H, et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep.* 2018;8(1):17523.
- 248 17. *Inagawa R, Okada H, Takemura G, Suzuki K, Takada C, Yano H et al. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest.* 2018;154(2):317-325.
- 249 18. *Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med.* 2010;363(7):689-691.
- 250 19. *Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth.* 2012;108(3):384-394.

276 20. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in
277 vascular permeability. *Crit Care*. 2015;19:26.

278 21. Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us
279 deciphering systemic inflammation and sepsis? *Biomarkers*. 2011;16 Suppl 1:S11-21.

280 22. Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased
281 microvascular permeability. *J Pathol*. 2012;226(4):562-574.

282 23. Li L, Ly M, Linhardt RJ. Proteoglycan sequence. *Mol Biosyst*. 2012;8(6):1613-1625.

283 24. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx
284 in patients undergoing major vascular surgery with global and regional ischemia. *Circulation*.
285 2007;116(17):1896-1906.

286 25. Puskarich MA, Cornelius DC, Tharp J, Nandi U, Jones AE. Plasma syndecan-1 levels identify a cohort of
287 patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. *J
288 Crit Care*. 2016;36:125-129.

289 26. Ostrowski SR, Haase N, Muller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers
290 of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. *Crit Care*.
291 2015;19(1):191.

292 27. Arthur A, McCall PJ, Jolly L, Kinsella J, Kirk A, Shelley BG. Endothelial glycocalyx layer shedding
293 following lung resection. *Biomark Med*. 2016;10(10):1033-1038.

294 28. Murphy LS, Wickersham N, McNeil JB, Shaver CM, May AK, Bastarache JA, et al. Endothelial glycocalyx
295 degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and
296 associates with risk of ARDS and other organ dysfunction. *Ann Intensive Care*. 2017;7(1):102.

297 29. Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. *ScientificWorldJournal*.
298 2010;10:917-923.

299 30. Kim YH, Nijst P, Kiefer K, Tang WH. Endothelial glycocalyx as biomarker for cardiovascular diseases:
300 mechanistic and clinical implications. *Curr Heart Fail Rep*. 2017;14(2):117-126.

301 31. Liborio AB, Braz MB, Seguro AC, Seguro AC, Martins AMC, Braz MBM, et al. Endothelial glycocalyx
302 damage is associated with leptospirosis acute kidney injury. *Am J Trop Med Hyg*. 2015;92(3):611-616.

303 32. Neves FM, Meneses GC, Sousa NE, et al. Syndecan-1 in acute decompensated heart failure--association
304 with renal function and mortality. *Circ J*. 2015;79(7):1511-1519.

305 33. Padberg JS, Wiesinger A, di Marco GS, et al. Damage of the endothelial glycocalyx in chronic kidney
306 disease. *Atherosclerosis*. 2014;234(2):335-343.

307 34. Grundmann S, Fink K, Rabadzhieva L, Bourgeois N, Schwab T, Moser M, et al. Perturbation of the
308 endothelial glycocalyx in post cardiac arrest syndrome. *Resuscitation*. 2012;83(6):715-720.

309 35. Muller RB, Ostrowski SR, Haase N, Wetterslev J, Perner A, Johansson PI. Markers of endothelial damage
310 and coagulation impairment in patients with severe sepsis resuscitated with hydroxyethyl starch 130/0.42
311 vs Ringer acetate. *J Crit Care*. 2016;32:16-20.

312 36. Ostrowski SR, Gaini S, Pedersen C, Johansson PI. Sympathoadrenal activation and endothelial damage in
313 patients with varying degrees of acute infectious disease: an observational study. *J Crit Care*. 2015;30(1):90-
314 96.

315 37. Sloop GD, Weidman JJ, St Cyr JA. Perspective: interesterified triglycerides, the recent increase in deaths
316 from heart disease, and elevated blood viscosity. *Ther Adv Cardiovasc Dis*. 2018;12(1):23-28.

317 38. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a
318 mechanosensor on endothelial cells. *Circ Res*. 2003;93(10):e136-142.

319 39. Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JAE, et al. Role of hyaluronic acid
320 glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. *Am J Physiol Heart Circ
321 Physiol*. 2003;285(2):H722-726.

322 40. Thi MM, Tarbell JM, Weinbaum S, Spray DC. The role of the glycocalyx in reorganization of the actin
323 cytoskeleton under fluid shear stress: a "bumper-car" model. *Proc Natl Acad Sci U S A.* 2004;101(47):16483-
324 16488.

325 41. Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y. Effects of shear stress on
326 glycosaminoglycan synthesis in vascular endothelial cells. *Ann N Y Acad Sci.* 1995;748:543-554.

327 42. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H. Fluid shear stress stimulates incorporation of
328 hyaluronan into endothelial cell glycocalyx. *Am J Physiol Heart Circ Physiol.* 2006;290(1):H458-2.

329 43. Zeng Y, Tarbell JM. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress.
330 *PLoS One.* 2014;9(1):e86249.

331 44. Huo Y, Kassab GS. Effect of compliance and hematocrit on wall shear stress in a model of the entire
332 coronary arterial tree. *J Appl Physiol.* 2009;107(2):500-505.

333 45. Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of
334 endothelial cell glycocalyx by oxidized LDL. *Am J Physiol Heart Circ Physiol.* 2001;280(3):H1051-H1057.

335 46. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JAE, Ince C, et al. Endothelial glycocalyx damage
336 coincides with microalbuminuria in type 1 diabetes. *Diabetes.* 2006;55(4):1127-1132.

337 47. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MHP, Levi M, et al. Loss of
338 endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and
339 coagulation activation in vivo. *Diabetes.* 2006;55(2):480-486.

340 48. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide
341 on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. *Diabetologia.*
342 2010;53(12):2646-2655.