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Abstract

In this paper, by developing a mathematical model, the operating temperature of
perovskite solar cells (PSCs) under different operating conditions has been calculated. It is
found that by reducing the density of tail states at the interfaces, acting as recombination
centres, through some passivation mechanisms, the operating temperature can be reduced
significantly at higher applied voltages. The results show that if the density of tail states at the
interfaces is reduced by three orders of magnitude through some passivation mechanisms, then
the active layer may not undergo any phase change up to an ambient temperature 300 K and it
may not degrade up to 320 K. The calculated heat generation at the interfaces at different
applied voltages with and without passivation shows that the heat generation can be reduced
by passivating the interfaces. It is expected that this study may provide a deeper understanding
of the influence of interface passivation on the operating temperature of PSCs.
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1. Introduction

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has grown
drastically during last years, and a PCE of higher than 23% has been reported recently [1-5].
One of the factors that can influence PCE of solar cells is their temperature during the operation
or the operating temperature T. It is well-known that if the operating temperature decreases
then the diffusion length of charge carriers and PCE of PSCs increase for T>200 K [6-8]. A
high operating temperature may lead to the degradation in PSCs due to the decomposition of
active layer. Conings et al. [9-11] have investigated the thermal stability of PSCs and found that
perovskite may decompose into Pbl> even at as low temperature as 85°C. Philippe et al. [10-12]
have investigated the thermal stability of PSCs by maintaining them for 20 minutes at room
temperature, 100 <C and 200 <C and observed that MAPDI3 starts to decompose into Pbl; at
100 <C. They carried out this experiment under high vacuum of 108 mbar. Also, it is found
that the temperature becomes much too high at the points of localized defects and may lead to
physical or chemical changes in any semiconductor device [13]. Another challenge with the
perovskites is that their crystal structure becomes unstable at higher temperatures, leading to
phase changes. For example, it is reported that the phase change from their tetragonal to cubic
structure can occur at around 327 K in PSCs [14-16]. Therefore, understanding and controlling
the factors that may lead to an increase in the operating temperature of PSCs is crucial for
increasing their PCE and stability.

Non-radiative recombination is dominant in PSCs and may increase the operating
temperature when the photoexcited charge carriers get trapped by defects [17-20]. It is known
that in a PSC, the interfaces of the active layer - ETL (electron transport layer) and active layer
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- HTL (hole transport layer) are found to have defects which act as trapping centres leading to
non-radiative recombination [21,22]. It is shown that the hysteric J-V behaviour of PSCs can be
attributed to several factors such as ferroelectricity, ion migration, unbalanced charge
collection rates and trap recombination at the interfaces and grain boundaries [23-28]. However,
as the non-radiative recombination generates heat leading to an increase in the operating
temperature of solar cells it may reduce PCE and stability of PSCs. Snaith et al. [29] have found
that the cp-TiO2 ETL modified with C60-SAM could effectively passivate the formation of
trap states at the interfaces which reduces the non-radiative recombination and suppresses the
J=V hysteresis in PSCs thus fabricated. However, the influence of passivation of the interfaces
on the operating temperature which may lead to phase transition and degradation in the active
layer of PSCs has not yet been clearly understood.

In this paper, by assuming that the reduction in the density of tail states at the interfaces
may occur due to passivation, a mathematical model is developed to calculate the operating
temperature of PSCs. Our results show that by reducing the interfacial density of tail states, the
operating temperature of PSCs can be decreased significantly at higher applied voltages. Thus,
by passivating the interfaces in PSCs and hence reducing the operating temperature, the
degradation effects and phase transitions may be prevented.

2. Methods

For an illuminated solar cell, the factors which may influence the operating temperature are
solar radiation, heat generation due to the non-radiative recombination, wind velocity, ambient
temperature and the heat transfer in solar cell’s material. An illuminated solar cell can transfer
heat by radiation to sky, surroundings and ground and by convection to the ambient air. The
thermal power generation (P) due to the non-radiative recombination in the active layer of an
illuminated PSC can be considered as a heat source. Fig. 1 presents schematically different heat
transfer mechanisms described above which may occur in an illuminated solar cell.
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Fig. 1. Schematic of heat transfer mechanisms in an illuminated solar cell: yellow arrows show incident
solar power, orange arrow represents heat generation due to non-radiative recombination, blue arrows
represent heat loss to the ambient air due to convection and black arrows represent heat loss due to
radiation.

Although several simulations have been carried out by solving the drift diffusion
equations, the effect of non-radiative recombination contributing to the heat generation and
hence enhancing operating temperature in PSCs and organic solar cells has not yet been
considered to the best of authors’ knowledge [23,30,31]. Therefore, in this paper, the operating
temperature is considered as non-radiative recombination dependent and it is varied in the
iteration of solving drift-diffusion equations. The simulation is started using an initial
temperature which gets changed after the first iteration and used as initial temperature in the
second iteration and so on until the convergence is achieved. For our simulation, the active
layer of PSC is divided into meshes as shown in Fig. 2. As the non-radiative recombination
rate can be different at different points in the active layer, here it is considered as position
dependent within the active layer starting from the HTL interface to the ETL interface, but it
is assumed to be position independent in the lateral directions. Therefore, the heat generated
power through the non-radiative recombination is considered to be position x dependent as
P(x). However, as the Biot number is usually very small in thin films of perovskites, the heat
gets distributed instantly in the active layer and the solar cell temperature can be assumed to
be uniform within the whole active layer leading to the same temperature in all meshes
considered in Figure 2. To show this, we have applied the lumped capacitance method for a
PSC with the active layer CH3sNHz3Pbls as discussed later in Results and Discussion section.

For simulating the influence of the non-radiative recombination at the two interfaces of
active layer and HTL (A: HTL) and active layer and ETL (A: ETL), it is assumed that the most
non-radiative recombination may occur in an area within 5 nm in the perovskite active layer
from each interface as shown in Fig.2.
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Two areas considered in the simulation as the span of non-radiative recombination from the
interfaces of A: HTL and A: ETL
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Fig.2. Division of the active layer of a PSC into meshes considered in the simulation. A distance of 5
nm from A: HTL and A: ETL interfaces into the active layer has been considered as the main areas of
non-radiative recombination.

It is also assumed that the heat transfer through conduction in the adjacent solar cells is
negligible in a module. This assumption can be justified from the conduction heat transfer
equations in the x-, y- and z- directions (z- towards the sun see Fig. 3) given, respectively, by

[32]:
Qx = kAyz Z_Z (l)
oT )
Qy ksz @
- 3)
Qz kAxy g
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Fig. 3. The conduction heat transfer directions in a solar cell.

where Q,, @, and Q, are the thermal energies transferred through conduction mechanism in

the x, y and z directions, A,,,, A,, and A,,, are the areas of the lateral surfaces of the cell in

oT

the yz-, xz- and xy- planes and ‘Z—Z, Py and Z—: are the temperature gradients along the x,y and

z directions, respectively, and k is the thermal conductivity of the solar cell material. According
to Egs. (1) and (2), in thin film solar cells such as PSCs, as 4,,, and A, are of the nanoscale
and hence very small, leading to negligible conduction heat transfer (Q,, Q,, = 0) towards the
x- and y- directions. In addition, the conduction heat transfer along the z-axis is also negligible

because the thickness of PSCs is of the nm scale leading to the gradient of temperature (%)

negligibly small and hence according to Eq. (3) the conduction heat transfer along the z-
direction becomes negligible (Q, — 0).

In accordance with the above discussions, the operating temperature T of an illuminated
PSC will depend on the radiation and convection heat transfers and non-radiative
recombination of the photoexcited charge carriers. Thus, we need to solve the following energy
balance equation to determine T [32]:

Irady, + P(x) 4
= hc,c—ambey (T - Tamb) + hr,c—skyAxy (T - Tsky)
+ hr,c—groundAxy (T - Tground) + hr,c—surAxy (T - Tsur)

where Ir is the incident solar radiation, « is absorption and P is the thermal power generated
through the non-radiative recombination given by:

P(x) = Rtail(x)ERAxyd (5)

where R,4; (m3s?) is the rate of tail state recombination calculated by solving the Poisson and
drift-diffusion equations [33-35], Ex (eV) is the heat energy generated per recombination and d
(nm) is the active layer thickness. k¢ c_qmp (Wm™2K ~1) is convection heat transfer from solar
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cell to ambient, h, c_sky, Ay c—grouna @Nd Ay _gy IN EQ. (4) are the radiation heat transfer
coefficients from solar cell to sky, ground and surrounding, respectively, T,,,, IS ambient
temperature, Ty, is sky temperature which can be determined by T, = 0.0552 Toymp - [36].
Tyrouna @nd Ty, are ground and surrounding temperatures which are considered equal to T,

The radiation heat transfer coefficients from cell to sky, ground and surrounding can be
determined, respectively, by [32,37]:

hr,c—sky = g.05,(T + Tsky)(TZ + Tskyz) (6)
hr,c—ground = &€cOsp (T + Tground)(Tz + Tgroundz) (7)
hr,c—sur = &:Osp (T + Tsur)(TZ + Tsurz) (8)

where ¢, is the emissivity coefficient of solar cell and oy, = 5.67 x 1078 (Wm™2K™%) is
Stefan—Boltzmann constant. The convection heat transfer coefficient from cell to the ambient
air can be determined by [38]:

Rec—amp = 5.62 +39v (Wm™2K™1) 9)

where v is the wind velocity in the ambient.

The non-radiative recombination in an illuminated PSC is found to be the dominant
[17-20] and can be considered as a heat source [39]. In the non-radiative recombination, it is
assumed that one of the charge carriers (electron or hole) is trapped in the tail states and other
(electron or hole) is free in the conduction band (CB) or valence band (VB). Thus, sum of the
thermal energy released due to the non-radiative recombination of free electrons in the CB with
the trapped holes in the VB tail states, and free holes in VB with the trapped electrons in the
CB tail states may be assumed to be equal to the band gap energy, i.e., Er = E, in Eq. (5).
Using this in Eg. (4), the temperature T can be determined by solving the following
transcendental equation in T:

T = (Irany + RtailEgAxyd + hc,c—ambeyTamb + hr,c—skyAxyTsky + (10)
hr,c—groundAxyTground + hr,c—surAxyTsur)/(hc,c—ambey + hr,c—skyAxy +
hr,c—groundAxy + hr,c—surAxy)

where, he c_amps My c—sky» Pr c—grouna and Ay ._q,, are used as a function of T given in Egs.
(6) — (8) and the rate of tail state recombination R,,;; is calculated by solving Poisson and drift-
diffusion equations. We solve Eq. (10) by iteration. First, we start with an initial temperature
T to solve the drift- diffusion equations and calculate the heat transfer coefficients in Egs. (6)
— (8). Then, by substituting back these calculated R;q;; , h¢ c—ambs Prc-skys Pr.c—grouna @nd
hy c—sur In EQ. (10), we determine the new solar cell temperature. The iteration is continued
until the self-consistency is achieved. The above procedure of simulation of temperature is
presented in the data flow chart as shown in Fig. 4.
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Fig. 4. The data flow chart for solving the proposed simulation.

3. Results and Discussions

The simulation of the operating temperature of an illuminated PSC of the structure Glass/
ITO/ PEDOT: PSS/ CH3sNH3Pbls/ PCBM/ Al is presented here. However, first we would like
to present the validation of our simulation by calculating the J-V characteristics of the above
PSC considered in this paper and compare these with the experimental results measured by
Kim et al. [40]. The input data required for the simulation of the J-V characteristics and
operating temperature are listed in Table 1. The J-V characteristics obtained from the
simulation are shown as a solid curve in Fig. 5 along with the experimental results as the dotted
curve. As it can be seen from Fig. 5, our simulation results agree very well with the
experimental ones.
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Va (V)

Fig. 5. The J — V characteristics of a PSC of structure Glass/ PEDOT: PSS/ CH3sNHsPbls/ PC60BM/

Al obtained from our simulation (solid curve) and from experiment [40] (dotted curve) to check the

validity of our simulation.
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Table 1 Input parameters used for simulation in this paper.

Parameter Value
& 0.9
Ir (Wm_z) 1000
U (m/s) 0.1
Tamb (K) 300
a 0.6
E, (V) 15 {2}
d (nm) 200
Ng, N, (m~3) 10%6 [8]
N,; (density of tail state 1015 8]
at interface) ((m~3(eV)™1)
N, (density of tail state in 10t (8]
the active layer) (m=3(eV)™1) [8]
Uy (M2V—1s™h) 0.5x 107*
ty (m?V-1s™h) 0.5x10* [8l
B2 (cm3s™h) 25x1071° g
By (cm3s™1) 5x 10710
Ey. = Ey, (meV) 45 (8]

In our simulation, following the observed density of tail states before and after the
passivation at the interfaces by thermal admittance spectroscopy [24], it is assumed that the
density of tail states at the interfaces (N,) may reduce from 10'® to 10> m=3(eV) ! by
passivating the interfaces. The operating temperature is calculated for N; = 108 and 10%°
m~3(eV) ™1 at two different ambient temperatures of 300 K and 320 K and plotted as a function
of the applied voltage V, in Fig.6. According to Fig. 6, for low applied voltages, V, < V4%
where 1,,,,, IS the voltage at the maximum power point, it is found that the (i) operating
temperature remains constant and (ii) influence of the density of tail states in the interface on
the temperature of solar cell is not very significant. It may be noted that in Fig. 6 the maximum
voltage is V. = 0.77 V at the ambient temperature Tg,,,, = 300 K and V4, = 0.75 V at
T,mp = 320 K. However, at V, > V,,,,, the operating temperature increases by nearly 21 K at
the 1/, at both the ambient temperatures of 300 K and 320 K in the PSC without the passivation
of the interfaces with the higher density of tail states N,; = 108 m~3(eV)~L. This is in contrast
with the passivated PSC with the lower density of tail states N,; = 105> m~3(eV)~! where the
operating temperature remains nearly constant with the increase in the voltage. At the ambient
temperature T,,,,= 300 K and applied voltage V/, ~ 0.81 V, the temperature in the active layer
of PSC without interface passivation increases to 327 K (red arrow), which is the temperature
of phase transition in perovskite from tetragonal to cubic.

It may be noted that the decomposition of perovskite may begin at 358 K [9-11].
According to Fig. 6, although the operating temperature of PSC without the interface
passivation at the ambient temperature 300 K (red dotted curve) increases with applied voltage,
it may never reach the decomposition temperature of 358 K because the maximum temperature
atthe V, =V, reaches only about 343 K. However, at T,,,,;,, = 320 K, the PSC without interface
passivation may reach 358 K at V, = 0.85 V (black dashed curve) and may decompose, which
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will not occur in the passivated PSC. It should be mentioned that the V. of solar cells decreases
slightly by the increase in the ambient temperature.

-------- T, mp=300 K, N, =10"® m(ev)™ 1
360 Decomposition point <——
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L _ 18 3, 1 i
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0.‘1 0f2 0.‘3 014 0.‘5 016 0.‘7 018 0.9

Va (V)
Fig. 6. The operating temperature in the active layer plotted as a function of the applied voltage at two
ambient temperatures of 300 K and 320 K.

In order to investigate the heat generation due to the non-radiative recombination at an
applied voltage V,, and at a position (x) in the active layer measured from the anode, we have
shown the contour plots of the power generated by the non-radiative recombination P in Eq.
(5) as a function of the applied voltage V,and position x with N, of 10'® and 10%°
m~3(eV)~Lin Figs. 7 (a) and (b), respectively. As it can be seen in Fig.7 (a) for N, =
108 m~3(eV) ™1, P increases when x approaches the interfaces at all the applied voltages, and
becomes red in colour at the interfaces, which means that it becomes high at the interfaces.
This is expected because more non-radiative recombinations occur at the interfaces and hence
more heat generation at the interfaces. However, according to Fig. 7 (b) for Ny =
10> m~3(eV) ™1, the power generation at the interfaces is much less (blue in colour), showing
much less heat generation at the interfaces due to the passivation. It may be noted that the

power P plotted in Figs. 7 (a) and (b) is nearly independent of the ambient temperature T,p-

10
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Fig. 7. The contour plot of heat generation rate due to the non-radiative recombination as a function of
position x in the active layer and applied voltage V, .

In order to calculate the total P through the active layer, we have integrated P over the

active layer and the results are shown in Fig. 8 at different applied voltages for N,; = 10'®
m~3(eV) 1 and 10'°> m~3(eV)~1. According to Fig. 8, P is almost constant and close to 0 for
N.;= 10> m3(eV) 1 at the interfaces, while it grows to roughly 5 W by increasing the voltage
of the cell with N,; = 10'® m~3(eV)~. Therefore, it may be concluded that at an ambient
temperature higher than 300 K, PSCs may degrade faster without the passivation of the
interfaces if subjected to higher applied voltage.

6 ‘ ‘ . ;
-- N=10" mPev)”

5 —N=10" mey) !

_________________

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Va (V)

Fig. 8. The total heat generation rate (P in W) due to the non-radiative recombination through the

active layer as a function of the applied voltage V.

As mentioned in mathematical model section, by using lumped capacitance method, we
can assume the temperature of the solid is spatially uniform at any instant and the temperature
gradient within the solid is negligible [32]. To validate this method, the Biot number, which is

11
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a dimensionless number for validation of lumped capacitance method, should be less than 1
(Biot<<1). The Biot number can be determined by [32]:

Lchc,c—amb (ll)

Biot =
io X

Where L, is characteristic length and can be determined by L. = Vol/A,, and Vol is volume
of solar cell. Also, we have calculated h,._qmp by using Eq. (9), and it is 5.62 to 44.62
(W/m?K) for wind velocities between 0 to 10 m/s. Heiderhoff et al. [41] have found that the
thermal conductivity (k) of CHsNHsPbX3 single crystals with X= 1, Br, and Cl is 0.34 +0.12,
0.44 30.08, and 0.50 +0.05 W/(mK), respectively, at room temperature. By considering
CH3sNHsPblz with a thickness of 200 nm and with wind velocity=10 m/s, the Biot = 2.6 X
107> which is much less than 1. Therefore, lumped capacitance method is validated very well
for a PSC. This implies that the temperature of the PSCs is spatially uniform at any instant, and
the temperature gradient within the solar cell is negligible.

4. Conclusions

In this paper, the temperature in the active layer of a PSC before and after the interface
passivation is simulated. It is found that by passivating the interfaces, which means by
reducing the density of tail state recombination centres, the operating temperature of a PSC
can be significantly lowered at higher applied voltages. Thus, the degradation of the active
layer in PSCs can be reduced. It is shown that the operating temperature of a PSC can be
lowered by 21 K by reducing the density of tail states at the interfaces by three orders of
magnitude at the open circuit voltage condition. Such a reduction in the tail state densities
at the interfaces may prevent phase change at the ambient temperature of 300 K, which
may occur otherwise without the passivation. Also, it is shown that the decomposition of
the active layer of a perovskite solar cell may be prevented at an ambient temperature of
320 K with the passivation.
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