Strength and Reaction Time Capabilities of New Zealand Polo Players and Their Association with Polo Playing Handicap

Regan Standing 1,* and Russ Best 1,2

1 Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand; regan.standing@wintec.ac.nz; russell.best@wintec.ac.nz
2 School of Health and Social Care, Teesside University, Middlesbrough, United Kingdom; r.best@tees.ac.uk

* Correspondence: regan.standing@wintec.ac.nz

Abstract: Polo is an equestrian team sport consisting of four players per team, with level of play determined by cumulative player handicap (-2 to +10 goals), with a higher handicap denoting a better player. There is minimal literature investigating Polo players’ physical attributes, hence the understanding of the physical characteristics that may contribute to an improved handicap are unknown. This study sought to identify the relationship between pertinent strength measures (left and right hand grip strength; absolute and relative isometric mid-thigh pull) and reaction time in Polo handicap in 19 New Zealand Polo players, and ascertain whether handicap could be predicted by these measures. Correlation coefficients were expressed using R values, accompanying descriptors and 90% confidence intervals (C.I.). Variance explained was expressed via the R^2 statistic, and statistical significance set at $p < 0.05$. Right hand grip strength, isometric mid-thigh pull values were found to significantly correlate to and explain variance within Polo player handicap (all moderate to large correlations; $p < 0.05$). Whereas left hand grip strength (R: 0.380; 90% C.I. -0.011 to 0.670) and reaction time (0.020; -0.372 to 0.406) were non-significant, moderate and trivial correlates and predictors of handicap respectively. Practically, these findings highlight the differing roles between rein and mallet hands of Polo players and emphasise the importance of a strong and stable platform when riding and striking the ball. Lack of association with reaction time may be explained in part by higher handicapped Polo players employing a more proactive approach to the game.

Keywords: grip strength; reaction time; isometric strength; Polo; equestrian

1. Introduction

Polo is one of the oldest equestrian sports in the world and requires the synchronisation of both equine and human athletes in a dynamic and high-paced environment [1]. Previous literature has begun to characterise Polo gameplay through global positioning systems (GPS) [2], quantitative performance analysis [3], and equine internal workloads via heart rate [4,5], and biochemical responses [6]. These investigations have allowed insight into the science behind Polo and discuss how applied research may be utilised within the sport. One factor each of these previous studies has acknowledged, is the subjective handicap rating system used to provide Polo players a quantitative measure of their ability (between –2 and +10) [7]. This system is based on a variety of features including horsemanship, playing skills, technique and the quality of horses being utilised [7]. Many of these factors contributing to handicap rely on the physical capabilities of the players themselves. Horse riding requires physical strength through both the upper and lower limbs, general cardiovascular endurance, balance, reaction time and flexibility [8,9], with these elements further complicated by the grips, sudden accelerations / decelerations, and reaction times required when the dynamic and unpredictable demands of Polo gameplay are introduced. The need to identify, train, and evaluate the physical attributes required for effective and safe Polo performance is crucial [10],
as players may be exposed to speeds exceeding 60km/h and distances upwards of 5km per chukka [1,11] which potentiates a variety of risks and potential for injury [1].

The aim of this study is to quantify the sport-specific physical characteristics of Polo players, and furthermore, to assess the relationship these characteristics have to player handicap. Findings will provide evidence to inform Polo athlete training programmes and also advise how physical attributes may contribute to improving player handicap. It is hypothesised that left and right grip strength, and lower limb strength, will possess high correlations to player handicap. This is due to the large forces required to manipulate a horse at high speeds and control the mallet through high velocity contacts. It is also hypothesised that reaction time will show little correlation to handicap, as a proactive tactical awareness becomes better developed as experience in the sport increases.

2. Materials and Methods

Experimental approach

Player handicap was selected as the independent variable, as this is a measure of players’ Polo ability that is awarded by the local Polo governing body (e.g. the New Zealand Polo Association) and reviewed annually; therefore, it could not be manipulated by the researchers. The dependent variables of interest were selected as strength assessments related to horse riding skill or body position (hand grip; isometric mid-thigh pull (IMTP)) and mimicked the dynamic requirements of Polo (reaction time) [8,9].

Subjects

Nineteen participants (12 male; 7 female) were originally recruited for this investigation (Handicap: 0 ± 2 goals; Age: 36.2 ± 14.1y; Weight: 78.9 ± 19.4kg). Participants’ height was not recorded due to the variability in heel height of players’ Polo boots; it would have been unsafe for testing to be performed unshod. Ethical approval for this investigation was awarded by the institution’s Human Ethics Research Group. Participants provided written informed consent prior to undertaking the testing battery and retained the right to withdraw themselves and their data from the study at any time.

Procedures

Left and right-hand grip strength was assessed via a hand grip dynamometer (Smedlay’s, Tokyo), calibrated up to 100kg. Grip strength procedures need to mimic the specific demands of the sport to improve the validity of the recording [12]. As such, participants were asked to grip the dynamometer firmly and raise their hand above their head with the palm facing forward. They were to then squeeze as hard as possible and adduct the shoulder whilst pronating the forearm. The final position was with their arm by their side with the palm facing medially. This protocol was used as it best mimics the dynamics of a Polo swing. Participants self-selected their starting hand but alternated between trials.

Isometric mid-thigh pull (IMTP) was assessed using a customised testing rig, consisting of two Pasco force plates (Roseville, California) and perpendicular vertical poles drilled at 1cm increments to allow appropriate grip adjustment and positioning of the bar to the participants’ mid-thigh. Similar protocols have shown reliable measures both within (ICC = 0.97) and between (ICC = 0.89) sessions [13]. Peak IMTP net forces were recorded in Newtons (N), and Newtons per kilogram (N/kg) for relative forces.

Reaction time was assessed via Fitlight reaction lights (Ontario, Canada) set at 30sec sample duration, with a 0.1 sec delay between lights. The number of lights a participant correctly waved their hands over in a 30 sec period was recorded. Lights were mounted on two tables positioned in a right angle and arranged in a fan-like shape around the participant; lights were not placed behind the
participants as when mounted on a horse a player cannot leave the confines of the saddle, and to play
behind the saddle is considered dangerous.

Participants were permitted three attempts for each test following a demonstration by a researcher,
participants’ best efforts were used for analysis.

Statistical Analyses

Data were assessed for normality via the Shapiro Wilks test and found to be normally distributed
(\(p > 0.05\)), meaning parametric tests could be employed. Pearson correlation coefficients were used to
assess the relationship between Polo handicap and measures of strength and reaction time, with
statistical significance set \(a\) \(priori\) at \(p \leq 0.05\). Ninety percent confidence intervals (C.I.) are used to
describe the uncertainty in the data and magnitudes of relationships were described using the
following intervals: Trivial 0 – 0.2, Small 0.1 – 0.3, Moderate 0.3 – 0.5, Large 0.5 – 0.7, Very Large 0.7 – 0.9
and Nearly Perfect >0.9 [14]. Variance explained was expressed via the \(R^2\) statistic.

Linear regression was used to determine the predictive ability of Polo handicap upon strength
variables and reaction time, with relationships described using the formula \(y = a + bx\); where \(y\) is the
dependent variable score, \(a\) is the intercept on the \(y\) axis, \(b\) is the slope of the regression line and \(x\) is
the Polo handicap. For clarity, correlation coefficients, \(p\) values, and \(R^2\) values are stated to three
decimal places. All data analysis was conducted in SPSS (IBM SPSS Statistics version 24, IBM,
location); confidence intervals for correlation coefficients were calculated using a customised
spreadsheet [15].

3. Results

Group means identified handgrip strength was greater in the right hand (50.9kg ± 16.6) when
compared to the left (46.3kg ± 15). As depicted in Table 1, both left and right handgrip strengths
displayed Moderate to Large correlations to player handicap, with significance achieved by the right
hand only (\(p = 0.019\)). Significant relationships to player handicap were also demonstrated by IMTP
(\(p = 0.004\)) and IMTP-R (\(p = 0.035\)), which displayed correlations to player handicap of 0.609 and 0.484,
respectively. Reaction time was shown to have a non-significant relationship (\(p = 0.889\)) to player
handicap, with a group mean of 23.3 ± 2.7.

All variables that displayed significant relationships to handicap (right handgrip strength, IMTP and
IMTP-R) also demonstrated significant \(R^2\) values, suggesting that these metrics may be predictive of
Polo handicap. Regression equations for each variable can be found in Table 1; individual data plots
for each variable that displayed moderate to large relationships with player handicap, with
accompanying regression lines are depicted in Figure 1, panels A-D.
Table 1: Correlation coefficients between Polo handicap and strength and reaction time (RT). Accompanying 90% Confidence intervals (C.I.), p values and magnitude descriptors are also shown. Variance explained (R^2) and the linear regression equations are also presented for each variable, as per Polo handicap. HG: Handgrip; IMTP: Isometric mid-thigh pull; IMTP-R: Isometric mid-thigh pull relative to bodyweight; RT: Reaction time: Significant values (p<0.05) are denoted by an asterisk *.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
<th>90% C.I.</th>
<th>p value</th>
<th>Descriptor</th>
<th>R^2 value</th>
<th>Regression equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG Left</td>
<td>0.380</td>
<td>-0.011 to 0.670</td>
<td>0.102</td>
<td>Moderate</td>
<td>0.144</td>
<td>y=2.387x + 44.362</td>
</tr>
<tr>
<td>HG Right</td>
<td>0.523</td>
<td>0.168 to 0.758</td>
<td>0.019*</td>
<td>Large</td>
<td>0.274*</td>
<td>y=3.613x + 48.305</td>
</tr>
<tr>
<td>IMTP</td>
<td>0.609</td>
<td>0.275 to 0.812</td>
<td>0.004*</td>
<td>Large</td>
<td>0.371*</td>
<td>y=148.030x + 1766.396</td>
</tr>
<tr>
<td>IMTP-R</td>
<td>0.484</td>
<td>0.103 to 0.741</td>
<td>0.035*</td>
<td>Moderate</td>
<td>0.235*</td>
<td>y=1.065x + 23.258</td>
</tr>
<tr>
<td>RT</td>
<td>0.020</td>
<td>-0.372 to 0.406</td>
<td>0.889</td>
<td>Trivial</td>
<td>0.001</td>
<td>y=-0.037x + 23.463</td>
</tr>
</tbody>
</table>
4. Discussion

The purpose of this study was to characterise strength and reaction time attributes of Polo players and assess the relationship between these factors and player handicap. This study shows that right-hand grip strength, IMTP, and IMTP-R have significant relationships to player handicap. However, reaction time neither correlates to nor is predictive of player handicap, therefore supporting the hypothesis of this paper. Left-hand grip strength presented a non-significant moderate relationship with player handicap, which was contrary to the initial hypothesis.

The ability to grip and manipulate objects is an important aspect of many sporting endeavours, with athletes often requiring a combination of general grip strength and the ability to produce intricate movements to perform most effectively [16]. A range of handgrip strength values are present across sporting codes [12], with dressage horse riders displaying some of the lowest hand grip values (<30kg) [17] and rowers displaying some of the highest (>70kg) [18]. In the current study, handgrip strength was higher than previous equine-based investigations [11,17,19], although the methods of collecting handgrip strength differed based on the event specific requirements of the various equestrian pursuits examined. Differences in methodology have also been shown to influence the validity of maximal measures in some instances and therefore may account for some of the variation identified [12]. It is suggested that handgrip demands differ between equestrian events, and with the added intensity, speed and manoeuvrability required in Polo, a stronger grip may in fact be more advantageous. With the added need to manipulate the mallet with the right-hand, strength becomes important to repeatedly control impacts on the ball and produce consistent shots. Weaker correlations and decreased grip strength were observed in the left hand. This may be explained by the riding style required for Polo (K. Brooks & J.P. Clarkin, personal communication, March 24, 2019), where finesse and intricate controlled movements are used to manoeuvre the horse via the left-hand on the reins, and not necessarily through strong and forceful movements as initially hypothesised. The left to right
asymmetry may also be described by the right-hand dominance which is witnessed in 80-90% of
demographic studies [12,20,21]. Whilst using one hand to swing the mallet, and the other to
manipulate the horse, the need to remain stable in the saddle is also of critical importance.

Stability in the saddle is determined by the interaction of various factors, namely the horse, type
of saddle, rider and the type of movements being performed [22]. Stability is maintained by the rider’s
ability to follow the movements of the horse and by using both legs to provide the base for this
movement [22,23]. IMTP-R and IMTP displayed moderate to large relationships with player handicap
and significant R^2 values of 0.235 and 0.371, respectively, highlighting the predictive qualities of these
measures. There is a clear need for a strong base of support and the ability to produce high levels of
force on the stirrups, through both legs whilst Polo players are riding at speed, playing shots out of
their saddle and absorbing contacts from different angles (ride-off). Previous literature has performed
static muscle testing of the lower limb [24], with no significant differences between riders and control
groups identified. There is a paucity of literature surrounding lower limb strength in horse riders,
therefore the novel findings of this relationship warrant further investigation within a Polo context
to better understand how this can be assessed dynamically, to mirror the oscillatory pattern of riding.

The ability to predict gameplay and be proactive in sport is a skill that comes with experience
and knowledge of the game [25,26]. Polo is no exception to this rule, as reaction time was shown to
have a trivial non-significant relationship to handicap. The need to be proactive and predict plays is
a skill that does not necessarily require fast reaction times, rather an ability to read the game and
respond more efficiently. Through time in the saddle, players gain valuable insight into how the game
is played which allows them to make better-informed decisions about when and where they need to
be on the pitch, and how to manipulate their horses to accomplish this effectively. These skills are
contributors to ‘horsemanship’ and ‘playing skills’, two of the categories considered when player
handicap is attributed [7]. It is important to note, that the physical characteristics measured within
this study are not directly measured to influence or attain player handicap ratings. These variables
do however contribute to the players ability to perform the subjectively measured aspects related to
Polo play.

Practical applications

Without consistent and objective handicap profiling procedures, it is difficult to make conclusive
statements about how players may be able to utilise these findings to improve their handicap.
However, results of this study suggest practitioners working with Polo players, or other equestrian
pursuits, should focus on the development of grip strength, as well as the riders’ ability to stabilise
and transfer force through their lower limb as this provides a stronger platform on the stirrup when
playing on-ball. Time spent developing players’ ability to read the game and make proactive moves
may be a more effective use of time than training reactive components. Future research should further
investigate the bilateral differences between left and right hands of Polo players, and the motor
nuance required to perform most effectively. Lower limb strength and endurance capacities should
also be investigated within Polo and could be used in conjunction with player heart rates to clarify
central or peripheral limitations [27]. Further information pertaining to the internal physical demands
and external workloads of Polo would further aid in training programmes for Polo players.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
contributions must be provided. The following statements should be used. Conceptualization, R.S. and R.B.;
methodology, R.S; R.B; validation R.S; R.B.; formal analysis, R.S; R.B.; investigation, R.S; R.B; resources, R.S; R.B
; data curation, R.S; R.B.; writing—original draft preparation, R.S; writing—review and editing, R.S; R.B.; project
administration, R.S;

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Bombay Hills and Cambridge Polo Clubs for the
organisation of the tournament and their accommodating our testing as part of this.

Conflicts of Interest: The authors declare no conflict of interest.

References