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Abstract

This paper deals with the form, the stability character, the periodicity and the
global behavior of solutions of the following four rational difference equations

xn+1 =
±1

xn (xn−1 ± 1)− 1

xn+1 =
±1

xn (xn−1 ∓ 1) + 1
.
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1. Introduction

Difference equation or discrete dynamical system is a diverse field which im-
pact almost every branch of pure and applied mathematics. Lately, there has been
great interest in the study of solving difference equations and systems of differ-
ence equations, see [1-10]. In these studies, the authors deal with the closed-form,
stability,periodicity, boundeness and asymptotic behavior of solutions of nonlinear
difference equations and systems of difference equations. There are many recent
investigations and interest in the field which difference equations have been studied
by several authors, as in the examples given below:

In [1], Tollu et al. considered the following difference equations

(1) xn+1 =
1

1 + xn
, yn+1 =

1

−1 + yn
, n = 0, 1, ...,

such that their solutions are associated with Fibonacci numbers.
In [5], Halim and Bayram investigated the solutions, stability character, and

asymptotic behavior of the difference equation

(2) xn+1 =
α

β + γxn−k
, n ∈ N0,
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where the initial conditions x−k, x−k+1, ..., x0 are nonzero real numbers, such that
its solutions are associated to Horadam numbers, which are generalized Fibonacci
numbers.

Then, in [6] Halim considered the system of difference equations

(3) xn+1 =
1

1 + yn−2
, yn+1 =

1

1 + xn−2
, n = 0, 1, ...,

such that their solutions are associated with Fibonacci numbers, where N0 = N∪{0}
and the initial conditions x−2, x−1, x0, y−2, y−1, and y0 are real numbers.

In [7], Halim and Rabago studied the systems of difference equaions

(4) xn+1 =
1

±1± yn−k
, yn+1 =

1

±1± xn−k
, n, k ∈ N0,

where the initial conditions x−k, x−k+1, ..., x0, y−k, y−k+1, ..., y0 are nonzero real
numbers.

Then, in [8], the authors studied the rational difference equation

(5) xn+1 =
αxn−1 + β

γxnxn−1
, n ∈ N0,

where N0 = N ∪ {0}, α, β, γ ∈ R+ and the initial conditions nonzero real numbers
and also investigated the two-dimensional case of the this equation given by

(6) xn+1 =
αxn−1 + β

γynxn−1
, yn+1 =

αyn−1 + β

γxnyn−1
, n ∈ N0.

Also, the solutions of Eq. (5) and system of (6) are associated to generalized
Padovan numbers.

As far as we examine, there is no paper dealing with the following difference
equations. Hence, in this study, we study the following four difference equations

(7) xn+1 =
1

xn (xn−1 + 1)− 1
, n = 0, 1, ...,

(8) xn+1 =
−1

xn (xn−1 − 1)− 1
, n = 0, 1, ...,

(9) xn+1 =
1

xn (xn−1 − 1) + 1
, n = 0, 1, ...,

(10) xn+1 =
−1

xn (xn−1 + 1) + 1
, n = 0, 1, ....

2. Preliminaries

Let I be some interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. A difference equation of order (k + 1) is an equation of the
form

(11) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ....

A solution of Eq.(11) is a sequence {xn}∞n=−k that satisfies Eq.(11) for all
n ≥ −k.
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Definition 1. A solution of Eq.(11) that is constant for all n ≥ −k is called
an equilibrium solution of Eq.(11). If

xn = x, for all n ≥ −k
is an equilibrium solution of Eq.(11), then x is called an equilibrium point, or
simply an equilibrium of Eq.(11)..

Definition 2 (Stability). Let x an equilibrium point of Eq(11).
(a): An equilibrium point x of Eq.(11) is called locally stable if, for every
ε > 0; there exists δ > 0 such that if {xn}∞n=−k is a solution of Eq.(11)
with

|x−k − x|+ |x1−k − x|+ ...+ |x0 − x| < δ,

then
|xn − x| < ε, for all n ≥ −k.

(b): An equilibrium point x of Eq.(11) is called locally asymptotically stable
if, it is locally stable, and if in addition there exists γ > 0 such that if
{xn}∞n=−k is a solution of Eq.(11) with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

then we have
lim
n→∞

xn = x.

(c): An equilibrium point x of Eq.(11) is called a global attractor if, for every
solution {xn}∞n=−k of Eq.(11), we have

lim
n→∞

xn = x.

(d): An equilibrium point x of Eq.(11) is called globally asymptotically stable
if it is locally stable, and a global attractor.

(e): An equilibrium point x of Eq.(11) is called unstable if it is not locally
stable.Suppose that the function f is continuously differentiable in some
open neighborhood of an equilibrium point x. Let

qi =
∂f

∂ui
(x, x, ..., x), for i = 0, 1, ..., k

denote the partial derivative of f(u0, u1, ..., uk) with respect to ui evaluated
at the equilibrium point x of Eq.(11).

Definition 3. The equation

(12) yn+1 = q0yn + q1yn−1 + ...+ qkyn−k, n = 0, 1, ...

is called the linearized equation of Eq.(11) about the equilibrium point x, and the
equation

(13) λk+1 − q0λk − ...− qk−1λ− qk = 0
is called the characteristic equation of Eq.(12) about x.

Theorem 4 (The Linearized Stability Theorem). Assume that the function f
is a continuously differentiable function defined on some open neighborhood of an
equilibrium point x. Then the following statements are true:

(a): When all the roots of characteristic equation (13) have absolute value
less than one, then the equilibrium point x of Eq.(11) is locally asymptot-
ically stable.
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(b): If at least one root of characteristic equation (13) has absolute value
greater than one, then the equilibrium point x of Eq.(11) is unstable.

The equilibrium point x of Eq.(11) is called hyperbolic if no root of charac-
teristic equation (13) has absolute value equal to one. If there exists a root of
characteristic equation (13) with absolute value equal to one, then the equilibrium
x is called nonhyperbolic.

An equilibrium point x of Eq.(11) is called a repeller if all roots of characteristic
equation (13) have absolute value greater than one.

An equilibrium point x of Eq.(11) is called a saddle if one of the roots of
characteristic equation (13) is greater and another is less than one in absolute
value.

3. Main Results

In this section, we present our main results for the above mentioned difference
equations. Our aim is to investigate the general solutions in explicit form of the
above mentioned difference equations.and the asymptotic behavior of solutions of
these difference equations.

3.1. The Difference Equation (7).

Theorem 5. Let {xn}∞n=−1 be a solution of Eq.(7). Then, for n = 0, 1, 2, ...,
the forms of solutions {xn}∞n=−1 are given by

x2n−1 =
(1− n)x−1x0 + n
nx−1x0 + x0 − n

(14)

x2n =
nx−1x0 + x0 − n
−nx−1x0 + (n+ 1)

(15)

where the initial conditions x−1, x0 ∈ R− F , with F is the forbidden set of Eq.(7)
given by

F =

∞⋃
n=1

{
(x−1, x0) : x−1 = −

n+ 1

n
, x0 = −1

}
.

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption
holds for n− 1. That is,

x2n−3 =
(2− n)x−1x0 + n− 1

(n− 1)x−1x0 + x0 − (n− 1)
and

x2n−2 =
(n− 1)x−1x0 + x0 − (n− 1)

(1− n)x−1x0 + n
.

From this and from Eq.(7), it follows that

x2n−1 =
1

x2n−2 (x2n−3 + 1)− 1

=
1

(n−1)x−1x0+x0−(n−1)
(1−n)x−1x0+n

(
(2−n)x−1x0+n−1

(n−1)x−1x0+x0−(n−1) + 1
)
− 1

=
(1− n)x−1x0 + n
nx−1x0 + x0 − n

.
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Hence, similarly, we obtain

x2n =
1

x2n−1 (x2n−2 + 1)− 1

=
1

(1−n)x−1x0+n
nx−1x0+x0−n

(
(n−1)x−1x0+x0−(n−1)

(1−n)x−1x0+n + 1
)
− 1

=
nx−1x0 + x0 − n
−nx−1x0 + n+ 1

.

Theorem 6. The following statements are true.
(i): The equilibrium points of Eq.(7) are x1 = 1 and x2 = −1.
(ii): The positive equilibrium point of Eq.(7), x1 = 1, is nonhyperbolic point.
(iii): The negative equilibrium point of Eq.(7), x2 = −1, is nonhyperbolic
point.

Proof.
(i): Equilibrium points of Eq.(7) satisfy the equation

x =
1

x (x+ 1)− 1 .

After simplification, we have the following cubic equation

(16) x3 + x2 − x− 1 = 0.
The roots of the cubic equation (16) are −1, −1, 1. Therefore, Eq.(7) has
two equilibra, one positive and one negative, such that

x1 = 1, x2 = −1.
(ii): Now, let I = (0,∞) and consider the function

f : I2 → I

defined by

(17) f (x, y) =
1

x (y + 1)− 1 .

Then, it follows that

∂f (x, y)

∂x
=

− (y + 1)
(x (y + 1)− 1)2

,

∂f (x, y)

∂y
=

−x
(x (y + 1)− 1)2

.

Therefore, the linearized equation of Eq.(7) about the equilibrium point
x1 = 1 is

zn+1 = pzn + qzn−1,
where

p =
∂f (x1, x1)

∂x
= −2,

q =
∂f (x1, x1)

∂y
= −1,

and the corresponding characteristic equation is

λ2 + 2λ+ 1 = 0.
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Therefore, from Theorem (4), it is clearly seen that

λ1,2 = −1
and

|λ1| = |λ2| = 1.
So, x1 is nonhyperbolic point.

(iii): Similarly, from (17), The linearized equation of Eq.(7) about the equi-
librium point x2 = −1 is

zn+1 = pzn + qzn−1,

where

p =
∂f (x2, x2)

∂x
= 0,

q =
∂f (x2, x2)

∂y
= 1,

and its characteristic equation is

λ2 − 1 = 0.
Thus, it follows that

λ1,2 = ±1
and

|λ1| = |λ2| = 1.
So, x2 is nonhyperbolic point.

Theorem 7. Let {xn}∞n=−1 be a solution of Eq.(7). Then, the negative equi-
librium point of Eq.(7), x2, is a global attractor.

Proof. From Theorem (5), we have

lim
n→∞

x2n−1 = lim
n→∞

(1− n)x−1x0 + n
nx−1x0 + x0 − n

= lim
n→∞

(1− n)
(
x−1x0 +

n
1−n

)
n
(
x−1x0 +

x0
n − 1

)
= lim

n→∞

(1− n)
(
x−1x0 − 1 + 1

1−n

)
n
(
x−1x0 +

x0
n − 1

)
= −1,

and

lim
n→∞

x2n = lim
n→∞

nx−1x0 + x0 − n
−nx−1x0 + (n+ 1)

= lim
n→∞

n
(
x−1x0 +

x0
n+1 − 1

)
−n
(
x−1x0 − 1− 1

n

)
= −1.

Hereby, it implies
lim
n→∞

xn = −1.
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3.2. The Difference Equation (8).

Theorem 8. Let {xn}∞n=−1 be a solution of Eq.(8). Then, for n = 0, 1, 2, ...,
the forms of solutions {xn}∞n=−1 are given by

x2n−1 =
− ((1− n)x−1x0 + n)
nx−1x0 − x0 − n

(18)

x2n =
− (nx−1x0 − x0 − n)
−nx−1x0 + n+ 1

(19)

where the initial conditions x−1, x0 ∈ R− F , with F is the forbidden set of Eq.(8)
given by

F =

∞⋃
n=1

{
(x−1, x0) : x−1 =

n+ 1

n
, x0 = 1

}
.

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption
holds for n− 1. That is,

x2n−3 =
− ((2− n)x−1x0 + n− 1)
(n− 1)x−1x0 − x0 − (n− 1)

and

x2n−2 =
− ((n− 1)x−1x0 − x0 − (n− 1))

− (n− 1)x−1x0 + n
.

From this and from Eq.(8), it follows that

x2n−1 =
−1

x2n−2 (x2n−3 − 1)− 1

=
−1

−((n−1)x−1x0−x0−(n−1))
−(n−1)x−1x0+n

(
−((2−n)x−1x0+n−1)
(n−1)x−1x0−x0−(n−1) − 1

)
− 1

=
− ((1− n)x−1x0 + n)
nx−1x0 − x0 − n

.

Hence, similarly, we obtain

x2n =
−1

x2n−1 (x2n−2 − 1)− 1

=
−1

−((1−n)x−1x0+n)
nx−1x0−x0−n

(
−((n−1)x−1x0−x0−(n−1))

−(n−1)x−1x0+n − 1
)
− 1

=
− (nx−1x0 − x0 − n)
−nx−1x0 + n+ 1

.

Theorem 9. The following statements are true.
(i): The equilibrium points of Eq.(8) are x1 = 1 and x2 = −1.
(ii): The positive equilibrium point of Eq.(8), x1 = 1, is nonhyperbolic point.
(iii): The negative equilibrium point of Eq.(8), x2 = −1, is nonhyperbolic
point.

Proof.
(i): Equilibrium points of Eq.(8) satisfy the equation

x =
−1

x (x− 1)− 1 .
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After simplification, we have the following cubic equation

(20) x3 − x2 − x+ 1 = 0.
The roots of the cubic equation (20) are −1, 1, 1. Therefore, Eq.(8) has
two equilibra, one positive and one negative, such that

x1 = 1, x2 = −1.
(ii): Now, let I = (0,∞) and consider the function

f : I2 → I

defined by

(21) f (x, y) =
−1

x (y − 1)− 1 .

Then, it follows that

∂f (x, y)

∂x
=

(y − 1)
(x (y − 1)− 1)2

,

∂f (x, y)

∂y
=

x

(x (y − 1)− 1)2
.

Therefore, the linearized equation of Eq.(8) about the equilibrium point
x1 = 1 is

zn+1 = pzn + qzn−1,

where

p =
∂f (x1, x1)

∂x
= 0,

q =
∂f (x1, x1)

∂y
= 1,

and the corresponding characteristic equation is

λ2 − 1 = 0.
Therefore, from Theorem (4), it is clearly seen that

λ1,2 = ±1
and

|λ1| = |λ2| = 1.
So, x1 is nonhyperbolic point.

(iii): Similarly, from (21), The linearized equation of Eq.(8) about the equi-
librium point x2 = −1 is

zn+1 = pzn + qzn−1,

where

p =
∂f (x2, x2)

∂x
= −2,

q =
∂f (x2, x2)

∂y
= −1,

and its characteristic equation is

λ2 + 2λ+ 1 = 0.
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Thus, it follows that

λ1,2 = −1

and

|λ1| = |λ2| = 1.

So, x2 is nonhyperbolic point.

Theorem 10. Let {xn}∞n=−1 be a solution of Eq.(8). Then, the positive equi-
librium point of Eq.(8), x1, is a global attractor.

Proof. From Theorem (8), we obtain

lim
n→∞

x2n−1 = lim
n→∞

− ((1− n)x−1x0 + n)
nx−1x0 − x0 − n

= lim
n→∞

(n− 1)
(
x−1x0 +

n
1−n

)
n
(
x−1x0 − x0

n − 1
)

= lim
n→∞

(n− 1)
(
x−1x0 − 1 + 1

1−n

)
n
(
x−1x0 − x0

n − 1
)

= 1,

and

lim
n→∞

x2n = lim
n→∞

− (nx−1x0 − x0 − n)
−nx−1x0 + n+ 1

= lim
n→∞

−n
(
x−1x0 − x0

n − 1
)

−n
(
x−1x0 − 1− 1

n

)
= 1.

Herewith, it implies

lim
n→∞

xn = 1.

So, the proof is complete.

3.3. The Difference Equation (9).

Lemma 11. Let {xn}∞n=−1 be a solution of Eq.(9). Then, {xn}
∞
n=−1 is periodic

with period four.

Proof. From Eq.(9),

xn+4 =
1

xn+3 (xn+2 − 1) + 1

=
1(

1
xn+2(xn+1−1)+1

)(
1

xn+1(xn−1)+1 − 1
)
+ 1
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=
1 1(

1
xn+1(xn−1)+1

)(
1

xn(xn−1−1)+1
−1
)
+1

 1(
1

xn(xn−1−1)+1

)
(xn−1)+1

− 1

+ 1
=

1 1 1
1

xn(xn−1−1)+1
(xn−1)+1

( xn(1−xn−1)
xnxn−1−xn+1

)
+1

( 1−xn
xnxn−1

)
+ 1

=
1

xn−1

(
1−xn
xnxn−1

)
+ 1

= xn.

Hence, the result holds.

Theorem 12. Let {xn}∞n=−1 be a solution of Eq.(9). Then, for n = 1, 2, ...,

x4n−3 =
1

x−1x0 − x0 + 1

x4n−2 =
x−1x0 − x0 + 1

x−1x0
(22)

x4n−1 = x−1

x4n = x0

where the initial conditions x−1, x0 ∈ R− F , with F is the forbidden set of Eq.(9)
given by

F =

{
(x−1, x0) : x−1x0 = 0, x−1 =

x0 − 1
x0

}
.

Proof. From (9), for n = 0, the result holds. Suppose that n > 0 and that our
assumption holds for n− 1. That is,

x4n−7 =
1

x−1x0 − x0 + 1
,

x4n−6 =
x−1x0 − x0 + 1

x−1x0
,

x4n−5 = x−1,

x4n−4 = x0.

Now, from Eq.(9), it follows that

x4n−3 =
1

x4n−4 (x4n−5 − 1) + 1
=

1

x−1x0 − x0 + 1
.

From this and from Eq.(9), it follows that

x4n−2 =
1

x4n−3 (x4n−4 − 1) + 1
=

1
1

x−1x0−x0+1 (x0 − 1) + 1
=
x−1x0 − x0 + 1

x−1x0
.

Again from Eq.(9), we get

x4n−1 =
1

x4n−2 (x4n−3 − 1) + 1
=

1
x−1x0−x0+1

x−1x0

(
1

x−1x0−x0+1 − 1
)
+ 1

=
x−1x0
x0

= x−1.
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Similarly, from Eq.(9), we have

x4n−4 =
1

x4n−1 (x4n−2 − 1) + 1
=

1

x−1

(
x−1x0−x0+1

x−1x0
− 1
)
+ 1

=
1

x−1 − 1 + 1
x0
− x−1 + 1

= x0.

Thus, the proof is complete.

Theorem 13. Eq.(9) has unique positive equilibrium point x = 1 and 1 is
nonhyperbolic point.

Proof. Equilibrium point of Eq.(9) satisfy the equation

x =
1

x (x− 1) + 1 .

After simplification, we have the following cubic equation

(23) x3 − x2 + x− 1 = 0.

The roots of the cubic equation (23) are −i, i, 1. Therefore, the unique positive
equilibrium point of Eq.(9) is x = 1.

Now, we prove that the equilibrium point of Eq.(9) is nonhyperbolic.
Let I = (0,∞) and consider the function

f : I2 → I

defined by

f (x, y) =
1

x (y − 1) + 1 .

The linearized equation of Eq.(9) about the equilibrium point x = 1 is

zn+1 = pzn + qzn−1,

where

p =
∂f (x, x)

∂x
= 0,

q =
∂f (x, x)

∂y
= −1,

and the corresponding characteristic equation is

λ2 + 1 = 0.

Therefore, from Theorem (4), it is clearly seen that

λ1,2 = ±i

and

|λ1| = |λ2| = 1.

So, this completes the proof.
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3.4. The Difference Equation (10).

Lemma 14. Let {xn}∞n=−1 be a solution of Eq.(10). Then, {xn}
∞
n=−1 is periodic

with periods four.

Proof. From Eq.(10),

xn+4 =
−1

xn+3 (xn+2 + 1) + 1

=
−1(

−1
xn+2(xn+1+1)+1

)(
−1

xn+1(xn+1)+1
+ 1
)
+ 1

=
−1 −1(

−1
xn+1(xn+1)+1

)(
−1

xn(xn−1+1)+1
+1

)
+1

 −1(
−1

xn(xn−1+1)+1

)
(xn+1)+1

+ 1

+ 1
=

−1 −1 −1
−1

xn(xn−1+1)+1
(xn+1)+1

( xn(xn−1+1)
xnxn−1+xn+1

)
+1

(− xn+1
xnxn−1

)
+ 1

=
−1

xn−1

(
− xn+1
xnxn−1

)
+ 1

= xn.

Hence, the result holds.

Theorem 15. Let {xn}∞n=−1 be a solution of Eq.(10). Then, for n = 1, 2, ...,

x4n−3 =
−1

x−1x0 + x0 + 1

x4n−2 =
− (x−1x0 + x0 + 1)

x−1x0
(24)

x4n−1 = x−1

x4n = x0

where the initial conditions x−1, x0 ∈ R−F , with F is the forbidden set of Eq.(10)
given by

F =

{
(x−1, x0) : x−1x0 = 0, x−1 =

− (x0 + 1)
x0

}
.

Proof. From (10), for n = 0, the result holds. Suppose that n > 0 and that
our assumption holds for n− 1. That is,

x4n−7 =
−1

x−1x0 + x0 + 1
,

x4n−6 =
− (x−1x0 + x0 + 1)

x−1x0
,

x4n−5 = x−1,

x4n−4 = x0.
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Now, from Eq.(10), it follows that

x4n−3 =
−1

x4n−4 (x4n−5 + 1) + 1
=

−1
x−1x0 + x0 + 1

.

From this and from Eq.(10), it follows that

x4n−2 =
−1

x4n−3 (x4n−4 + 1) + 1
=

−1
−1

x−1x0+x0+1
(x0 + 1) + 1

=
− (x−1x0 + x0 + 1)

x−1x0
.

Again from Eq.(10), we get

x4n−1 =
−1

x4n−2 (x4n−3 + 1) + 1
=

−1
−(x−1x0+x0+1)

x−1x0

(
−1

x−1x0+x0+1
+ 1
)
+ 1

=
−x−1x0
−x0

= x−1.

Similarly, from Eq.(10), we have

x4n =
−1

x4n−1 (x4n−2 + 1) + 1
=

−1
x−1

(
−(x−1x0+x0+1)

x−1x0
+ 1
)
+ 1

=
−1

−x−1 − 1− 1
x0
+ x−1 + 1

= x0.

Thus, the proof is complete.

Theorem 16. Eq.(10) has unique positive equilibrium point x = 1 and the
equilibrium point 1 is locally assymptotically stable.

Proof. Equilibrium point of Eq.(10) satisfy the equation

x =
−1

x (x+ 1) + 1
.

After simplification, we have the following cubic equation

(25) x3 + x2 + x+ 1 = 0.

The roots of the cubic equation (25) are −i, i, 1. Therefore, the unique positive
equilibrium point of Eq.(10) is x = 1.

Now, we demonstrate that the equilibrium point of Eq.(10) is nonhyperbolic.
Let I = (0,∞) and consider the function

f : I2 → I

defined by

f (x, y) =
−1

x (y + 1) + 1
.

The linearized equation of Eq.(10) about the equilibrium point x = 1 is

zn+1 = pzn + qzn−1,

where

p =
∂f (x, x)

∂x
=
2

9
,

q =
∂f (x, x)

∂y
=
1

9
,

and the corresponding characteristic equation is

λ2 − 2
9
λ− 1

9
= 0.
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Therefore, from Theorem (4), it is clearly seen that

λ1,2 =
1

9
± 1
9

√
10

and
|λ1,2| < 1.

Thus, the proof is complete.
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