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Abstract— This paper proposes the use of compressive sensing
to tackle the Massive MIMO channel estimation problem. As
our results show compressive sensing-based estimators perform
as well as the optimum MMSE estimator.

I. INTRODUCTION

Accurate channel estimation is very important for massive
MIMO systems, once they are necessary to provide significant
improvements in spectral and energy efficiency. In massive
MIMO systems, the base station (BS) estimates the channels
of all its connected users. These estimates, whcih are obtained
during the uplink transmission phase are used to generate
pre-coding and decoding matrices. These matrices are used
to receive and transmit data. Therefore, accurate estimation
of the channels is a very important task for massive MIMO
systems. In this work, we present a comparative study on
the application of compressive sensing to the massive MIMO
channel estimation problem.

II. SYSTEM MODEL

Let xk(n) denote the transmitted time-domain samples of
the kth MTC device, k = 1, . . . ,K, i.e. the Orthogonal
Frequency-Division Multiplexing (OFDM) symbol transmitted
by the kth MTC device. OFDM symbols are normalized to
unitary variance, so E[|xk(n)|2] = 1. In the uplink, the signals
from a cluster of K MTC devices is collected into the vector

x(n) = [x1(n), . . . , xK(n)]T , (1)

where (·)T denotes transposition and x ∈ CK×1 [16].
Consider now a Massive MU-MIMO setup, where x(n) is

detected by a BS equipped with M receive antennas, M � K.
Between every transmit antenna k at the MTC device and
every receive antenna m at the BS there is a complex single-
input single-output (SISO) channel impulse response hm,k(n)
of length L+ 1, described by the vector:

hm,k = [hm,k(0), . . . , hm,k(L)]
T . (2)

Under the assumption that all SISO channels have channel or-
der L, the frequency selective MIMO channel can be described
by a number of L+ 1 M ×K complex channel matrices:

H(n) =

 h1,1(n) · · · h1,K(n)
...

. . .
...

hM,1(n) · · · hM,K(n)

 , n = 0, . . . , L (3)

If the signal received by the mth antenna at the nth time
instant is denoted by ym(k), the signals received by all M
antennas can be represented in vector form as

y(n) = [y1(n), . . . , yM (n)]T , (4)

which we then rewrite in terms of (1) and (3) as

y(n) =
L∑
i=0

H(i)x(n− i) +w(n), (5)

where the noise vector w(n) has length M is assumed additive
white Gaussian noise (AWGN) with zero mean and variance
σ2
w per receive antenna. For each of the K MTC devices there

are M PNSCH signal versions in (5). Hence, the task of the
BS consists of detecting K simultaneous MTC transmissions
on the basis of estimates of the channel coefficients in (3).

III. CHANNEL ESTIMATION

The Massive MIMO channel is modeled as a superposition
of M × K single-input single-output (SISO) channels. Each
SISO channel has L+1 unknowns. For pilot-assisted channel
estimation in OFDM systems we will employ the comb-type
pilot pattern on the time-frequency 2-D grids [17].

Consider an OFDM system with N subcarriers in each
OFDM symbol, among which Np pilot subcarriers indi-
cated by p1, p2, . . . , pNp

are used for frequency-domain pilot-
assisted channel estimation. Without loss of generality, we
assume that 1 ≤ p1 < p2 < . . . < pNp

< N .
The corresponding transmit pilot symbols are denoted as
s(p1), s(p2), . . . , s(pNp). Let h(0), h(1), . . . , h(L+ 1) be the
equivalent discrete channel impulse response (CIR) with the
maximum multipath delay spread being L + 1 samples. The
received signals on the pilot subcarriers can be written as

y(p1)
y(p2)

...
y(pNp)

 =


s(p1) 0 0 0
0 s(p2) 0 0

0 0
. . . 0

0 0 0 s(pNp)



.FNp×L+1


h(0)
h(1)

...
h(L+ 1)

+


w(1)
w(2)

...
w(Np)


(6)

where w(i) ∼ CN (0, σ2
w), i = 1, 2, . . . , Np is the i.i.d additive

white Gaussian noise, and FNp×L+1 is a discrete Fourier
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transform (DFT) sub-matrix given by

FNp×L+1 =
1√
N


1 wp1 · · · wp1(L−1)

1 wp2 · · · wp2(L−1)

...
...

. . .
...

1 wpNp · · · wpNp (L−1)

 (7)

where w = e−j2π/N . We denote

S , diag{s(p1), s(p2), . . . , s(pNp)}
y , [y(p1), y(p2), . . . , y(pNp

)]T

h , [h(0), h(1), . . . , h(L+ 1)]T

w , [w(1), w(2), . . . , w(Np)]
T .

Furthermore, we let

D , SFNp×L+1. (8)

Then, (6) can be rewritten as

y = Dh+w. (9)

Next we briefly describe the channel estimation techniques
adopted here for comparison. They are employed to estimate
one of the SISO channels.

A. Least Squares

The linear Least Square (LS) channel estimator is given by

ĥLS
m,k = [D†D]−1D†ym. (10)

where (.)† denotes transpose-conjugate (Hermitian) operation.
LS employs no knowledge of the statistics of the channels.

It presents very low complexity, but has a high mean-square
error [17].

B. Minimum Mean Squared Error

ĥMMSE
m,k =

[
D†D+

σ2
n

σ2
h

I

]−1
D†ym. (11)

where σ2
n is the noise variance and σ2

h is the variance of the
SISO channel, hm,k. MMSE estimators employ second-order
statistics of the channels in order to minimize the mean-square
error. These estimators present better performance than the LS
ones, especially at low SNR values [17].

C. Compressed Sensing

The technique for sparse signal recover known as com-
pressive sensing has been under heavy investigation since its
inception a few years ago [18, 19]. Sparse channel estimation
can be more efficient than the conventional channel estimation
approaches, i.e., LS, MMSE, etc., due to the sparse nature of
multipath wireless channels [20, 21].

IV. SIGNAL DETECTION

Detection techniques are needed to separate the data streams
transmitted by each MTC device in our Massive MU-MIMO
setup. Maximum likelihood detection is theoretically optimum
but its complexity grows exponentially with the modulation or-
der and the number of transmit antennas K (hard to implement
in case of thousands of MTC devices). One way to circumvent
this limitation is to use sub-optimal alternatives with reduced
computational complexity [22]. Maximum Ratio Combining
(MRC) chooses the linear detection matrix using AMRC = H,
which requires O(MK) multiplications. Constrained to AH =
I, Zero Forcing (ZF) chooses AZF = H(H†H)−1 and poses
an associated complexity of O(MK +MK2 +K3) [23].

In contrast to ZF, which minimizes interference but fails to
treat noise, and to MRC, which minimizes noise but fails to
treat interference, MMSE achieves an optimal balance between
interference suppression and noise enhancement at the same
cost of ZF [23, 24]. As the name suggests, the MMSE detector
chooses the A that minimizes e = E[‖A†y − x‖2] without
any additional constraints

AMMSE = H

(
H†H+

σ2
n

σ2
x

I

)−1
, (12)

where σ2
x and σ2

n denote the variances of transmitted signal
vector and noise vector, respectively.

V. SIMULATION WORK

In this section, we assess the performances of LS, MMSE
and OMP channel estimators in terms of their Mean Square
Error (MSE) and Bit Error Rate (BER) over a range of Signal-
to-Noise Ratios (SNRs).

As can be seen in Figure 1 (a) OMP has a better MSE
performance than MMSE and LS channel estimator for the
whole range of SNR values. On Figure 1 (b), we see the results
of the BER comparison. As we notice, for low SNR values the
MMSE estimator performs better than the OMP, however, as
the SNR increases, the OMP estimator surpasses the MMSE
estimator and for SNR values greater than 30 dB they both
achieve a floor value and from that point on both of them
present the same performance. The floor achieve by all the
three estimators is caused by the type of combining adopted
in this work and it can be mitigated by increasing the number
of antennas deployed at the BS.

VI. CONCLUSIONS

This paper has proposed the use of compressive sensing
to tackle the Massive MIMO channel estimation problem. As
can be seen by analyzing the results the OMP based estimator
performs as well as the MMSE estimator.
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