1 Article

Opacity Corrections for Resonance Silver Lines in Nano-Material Laser-Induced Plasma

4 Ashraf M. EL Sherbini¹, Tharwat M. EL Sherbini¹, and Christian G. Parigger^{2,*}

- 7 ² Department of Physics and Astronomy, University of Tennessee/University of Tennessee Space Institute,
- 8 411 B. H. Goethert Parkway, Tullahoma, TN 37388, USA; cparigge@tennessee.edu
- 9 * Correspondence: cparigge@tennessee.edu; Tel.: +1-931-841-5690

Abstract: Q-switched laser radiation at wavelengths of 355 nm, 532 nm, and 1064 nm from a Nd: 10 YAG laser was used to generate plasma in laboratory air at the target surface made of compressed 11 nano-silver particles of size 95 ± 10 nm. The emitted resonance spectra from the neutral silver at 12 13 wavelengths of 327.9 nm and 338.2 nm indicate existence of self-reversal in addition to plasma self-absorption. Both lines were identified in emission spectra at different laser irradiation 14 wavelengths with characteristic dips at the un-shifted central wavelengths. These dips are usually 15 16 associated with self-reversal. Under similar conditions, plasmas at the corresponding bulk silver target were generated. The recorded emission spectra were compared to those obtained from the 17 18 nano-material target. The comparisons confirm existence of self-reversal of resonance lines that emerge from plasmas produced at nano-material targets. This work suggests a method for recovery 19 of the spectral line shapes and discusses practical examples. In addition, subsidiary calibration 20 efforts that utilize the Balmer series $H\alpha$ -line reveal that other Ag I lines at 827.35 nm and 768.7 nm 21 are optically thin under variety of experimental conditions and are well-suited as reference lines for 22 23 measurement of the laser plasma electron density.

Keywords: laser-induced plasma; atomic spectroscopy; self-reversal; self-absorption;
nanoparticles; silver; hydrogen

26 1. Introduction

27 Self-absorption as well as self-reversal of radiation from optically thick plasma occur due to processes of re-absorption in the outer-cooler region or in shockwave-induced density variations. 28 The plasma produced by focusing of pulsed laser light on suitable targets suffers from strong 29 inhomogeneity, even when using a well-defined TEM¹⁰ laser mode¹. Plasma inhomogeneities lead to 30 strong gradients of plasma parameters (electron density and temperature) from the hot central core 31 to peripheries that is in contact with surrounding air. This cooler plasma peripheries contain large 32 population of atoms in lower atomic states, especially in the ground state. These peripheral atoms 33 are often causing plasma re-absorption². The plasma opacity manifests itself in form of 34 homogeneous absorption of the spectral line that is labelled self-absorption. Effects of 35 36 self-absorption include an apparent increase of the emitted line full-width at half-maximum (FWHM) and a decrease in spectral line height³. Line shape recovery is possible, only if one employs 37 a standard, reliable measure of the true plasma electron density, which is offered by the optically 38 thin H α - and H β - lines^{3,4}, yet frequently the H α -line is utilized. For instance, line-of-sight 39 measurements of laser-induced plasma at or near an ice surface^{4, 5} show self-reversal tips at the 40 un-shifted resonance wavelength of the hydrogen alpha line of the Balmer series. Typical 41 "fingerprints" due to re-absorption include self-reversal and self-absorption⁴⁻¹¹. In this work, 42 self-absorption and self-reversal parameters, SR and SA, respectively, distinguish between these 43 re-absorption effects. 44

Laboratory of Laser and New Materials, Faculty of Science, Cairo University, Giza, Egypt;
elsherbinia@sci.cu.edu.eg; thelsherbini@hotmail.com

eer-reviewed version available at Atoms 2019, 7, 73; doi:10.3390/atoms70300

2 of 9

There are significant challenges when considering self-reversed lines, especially for resonance 45 evaluation of the electron density typically measured from lines, for the the 46 full-width-at-half-maximum, and determination of the temperature that is a function of the spectral 47 radiance. Moreover, spectral line intensities from nano-based materials show differences from the 48 corresponding bulk signals¹². The theoretical descriptions of self-absorption and self-reversal⁵⁻¹¹ rely 49 on the computation of the emitted radiation when modeling the emitters by a specific distribution. 50

However, strong enhanced plasma emission was noticed when focusing laser radiation onto targets made of pure nanomaterials¹²⁻¹⁴. This enhanced emission was related to the sudden increase of the population density of the ground state atoms (in the same ratio of amount of enhanced emission $I_{\lambda 0}^{nano}/I_{\lambda 0}^{bulk} \approx N_{\lambda 0}^{nano}/N_{\lambda 0}^{bulk 12-14}$, i.e., more of cold atoms (N_0^{nano}) exist at the outer peripheries of plasma produced from nanomaterials¹⁴, but without further increase in the plasma excitation temperature², . This enhanced emission enables the spectral line intensity $I_{\lambda 0}^{Nano}$ of the resonance lines to exceed the corresponding, upper-limit black body radiation intensity $I_{\lambda 0}^{Nano} \ge B(\lambda_0, T_{ex})$,

58
$$\mathbf{B}(\lambda_0, \mathbf{T}_{ex}) = \frac{2hc^2}{\lambda_0^5} \left(\frac{1}{\exp\{hc/\lambda_0 k_B T_{ex}\} - 1} \right), \tag{1}$$

This is because of the relatively local temperature, T_{ex}, in this plasma region. Therefore, and as elaborated by Fujimoto², i.e., the measured radiation intensity of the resonance lines are only those that emerge from the outer plasma regions at which the plasma optical depth is unity, hence self-reversal starts to act at the central un-shifted wavelengths of resonance lines that terminate at the ground state. Figure 1 illustrates a homogenized central core, cold periphery, and the emanating "distorted" line shape.

 λ_o **Figure 1.** An illustration to the effect of plasma opacity on spectral line shape via self-reversal (red) in comparison to the undistorted shape (blue), together with black body spectral intensity limit (black line) at certain excitation temperature at the plasma outer regions.

- There are three effects that modify the line shape: First, the excessive enlargement of line FWHM, second, reduction of spectral radiance imposed by the black body radiation limit and third, the
- ⁶⁸ reversed line-shape of the emission line.
- This work introduces a method for retrieving the original undistorted shape of self-absorbed lines that are affected simultaneously by self-reversal and self-absorption. The method is based on the
- availability of certain optically thin spectral lines that originate from upper states of atomic
- transitions, viz., Ag I lines at 827.35 nm and at 768.7 nm. The method is examined at different laser
- ⁷³ irradiation wavelengths and at different laser irradiance levels.

74 2. Materials and Methods

In the experiments, a Nd:YAG laser device(Quantel model Brilliant B) operates at the fundamental 75 wavelength of 1064 nm and the two harmonics at 352 and 355 nm, with output laser energy per 76 pules of 370 ± 5 , 100 ± 4 , and 30 ± 3 mJ, respectively. The corresponding spot sizes at the target 77 surface amount to 0.5 ± 0.05 , 0.44 ± 0.05 , and 0.27 ± 0.03 mm. An optical fiber of 400 mm diameter 78 collects the radiation from the plasma. An echelle type spectrograph (SE200) with an average 79 80 instrumental bandwidth of 0.2 nm, and an attached intensified charge-coupled device (Andor iStar DH734-18F) acquire the data. The spectral pixel resolution and pixel area amount to 0.02 nm and 196 81 μ m², respectively. A xyz-holder allows one to position the optical fiber at distance of 5 mm from the 82 laser-induced plasma. 83

The time delay and gate width amount to 2 µs for all experiments reported in this work. ICCD 84 85 KestrelSpec® software subtracts the background stray light contributions. The measured electronic noise level amounts to 20 ± 7 counts across wavelength range of 250 - 850 nm. The measurements of 86 incident laser energy at each laser shot utilize a quartz beam splitter to direct the reflected part (4%) 87 to a calibrated power-meter (Ophier model 1z02165). A 25 ps fast response photodiode in 88 conjunction with digital storage CRO (type Tektronix model TDS 1012) measures the laser pulse 89 90 width of $5 \pm 1 \text{ ns.}$ A set of calibrated neutral density filters adjusts the energy/pulse. The DH2000-CAL lamp (Ocean Optics SN037990037) allowed us to correct for the sensitivity of detection 91 system composed of spectrograph, intensified camera and optical fiber. A 500 kg/cm² press prepared 92 the silver nanomaterial powder (from MKNANO®) to produce a less brittle tablet without further 93 purification or heat treatments. The nanoparticle size equals 95 ± 10 nm, as confirmed from 94 95 measurements with a transverse electron microscope.

96 4. Results and discussion

An example of the self-reversed resonance lines from the neutral silver atoms is presented in
Figure 2 after laser irradiation of different wavelengths, namely, 355 nm, 532 nm and 1064 nm.

Figure 2. The effect of self-reversal on the resonance Ag I transition from nano-silver plasmas with respect to bulk target (black). Different laser irradiation wavelengths are indicated by different colors: blue for 355 nm, green for 532 nm and red for the 1064 nm.

eer-reviewed version available at *Atoms* **2019**, 7, 73; <u>doi:10.3390/atoms70300</u>

4 of 9

In Figure 2, the upper self-reversed spectral lines emerge from plasma generated at the surface of the nano-silver target. The lower black spectra are the corresponding lines for the same transition and under the same experimental conditions but from the bulk-silver target. One can notice significantly more self-absorption of the plasma from nano-silver than for plasma from bulk-silver.

For the resonance transitions of the Ag I lines at 327.9 and 338.2 nm, Figures 3 to 5 illustrate recorded and fitted nano-material silver lines with central dips at line center. The Stark shift is smaller than the instrument width.

Figure 3. AgI (a) 327.9 nm and (b) 338.2 nm lines, 355-nm excitation, fluences of 13.5, 9.6, 5 and 2.1 J/cm².

The two sets of spectra show the results captured from nano-material silver targets with 355 nm radiation. The self-reversal of plasma radiation from nano-silver material is typically absent in investigations of laser-induced plasma with bulk-silver targets for otherwise similar experimental conditions. Figure 3 shows well-developed spectral dips. Accordingly, Fig. 4 displays recorded

Figure 4. Ag I (a) 327.9 nm and (b) 338.2 nm lines, 532-nm excitation, fluences of 13.5, 11.5, 8, and 6 J/cm².

- spectra obtained with 532 nm excitation.
- Figure 4 indicates diminished self-absorption when compared to Fig. 3. For 1064 nm laser excitation,
- 112 Fig. 5 displays even smaller self-absorption phenomena for the two silver lines.

5 of 9

Figure 5. AgI (a) 327.9 nm and (b) 338.2 nm lines, 1064-nm excitation, fluences of 13.5, 11.5, 8, and 6 J/cm².

In view of Figs. 3 to 5, one can see that it would be challenging to extract the full-width at half-maximum for determination of electron density. It would be required to extract the FWHM of the line after opacity corrections due to self-reversal and self-absorption effects.

The introduced correction procedures are based on precise knowledge of "true" electron density of the nan-material plasma. The reliable H_{α} line was supposed to provide a measure for electron density³, but unfortunately, the H_{α} line is absent when employing green and blue laser beams for plasma generation with nano-silver. Consequently, one needs to identify other suitable optically thin lines.

In the process of locating suitable lines in place of H α , an extensive examination of emission spectral lines from the neutral silver discovers that only two Ag I lines at 827.35 nm or at 768.7 nm are suitable candidates for reliable measurement of the 'true' electron density. The inferred electron densities compare nicely with the corresponding values obtained from analysis of the hydrogen alpha line of the Balmer series. Figure 6 illustrates the results, and Table 1 shows the comparisons.

Figure 6. Recorded spectra for (a) H_{α} at 656.28 nm, (b) Ag I at 827.35 nm, and (c) Ag I at 768.7 nm. Laser fluence 9.6 J/cm², 1064-nm excitation.

126

Table 1. Electron densities, n_e, in units of 10¹⁷cm⁻³ for different fluence, 1064-nm excitation.

laser fluence (J/cm ²)	ne: Hα 656.28 nm	ne: Ag I 827.35 nm	ne: Ag I 768.7 nm
9.94	1.64	1.66	1.76
7.46	0.76	0.77	0.76
5.9	0.63	0.66	0.70
4.47	0.57	0.55	0.58

6 of 9

127 There is excellent agreement of the measured electron density from the H_{α} and the two optically 128 thin silver lines. The two silver lines Ag I at 827.35 nm and at 768.7 nm are suitable for electron 129 density determination in nano- and bulk- material for the following reasons: First, the Ag lines 130 emerge from the upper states $4d^{10}6s$ - $4d^{10}5p$ with almost empty lower and highly excited state $4d^{10}6s$ 131 that minimizes the possibility of plasma re-absorption by highly populated low atomic states. 132 Second, both lines are observed in emission spectra of neutral silver under nearly all conditions.

The experimental evaluation included change of the incident laser fluence in the range from 5 to 133 10 J/cm² and measurement of the emission spectra during IR laser irradiation. The lines are 134 135 Voigt-fitted to recorded spectral radiances as indicated by the solid black lines in Figure 6. The Stark broadening parameters for both lines are archived in Stark tables¹⁵: At the reference electron density 136 of N_{e^{ref} = 10^{17} cm⁻³, the Stark broadening parameter, ω_{sAgI} , amounts to ω_{sAgI} = 0.18 ± 0.06 nm.. The} 137 Lorentzian components of the emitted lines, λ_s^{AgI} , were extracted. The electron densities listed in 138 Table 1 were evaluated with the help of the expression, $n_e^{AgI} \approx N_e^{ref} (\lambda_s^{AgI} / \omega_s^{AgI})$, and then compared 139 with the corresponding values obtained from H α . 140

For analysis of the self-absorbed spectra in Figure 2, notice line reversal at the center wavelength, λ_0 , and weaker effects in the wings that lead to distortions. The transmittance ^{3, 6}, T(τ_{λ_0}), is related to the escape factor ^{3, 6} and it depends on the optical thickness of the plasma, τ_{λ_0} .

144 The transmittance, $T(\tau_{\lambda_0})$, is modeled with a Lorentzian spectral line shape, $\varphi(\lambda)$,

- 0

145
$$T(\tau_{\lambda_0}) = \int \varphi(\lambda) e^{-\tau_{\lambda_0} \varphi(\lambda)/\varphi_0} d\lambda, \qquad \qquad \varphi(\lambda) = \frac{1}{\pi} \frac{0.5 \Delta \lambda_S}{(\lambda - \lambda_0)^2 + (0.5 \Delta \lambda_S)^{2'}}$$
(2)

where $\Delta \lambda_s$ denotes the full-width at half-maximum (FWHM) of the normalized spectral line shape of magnitude φ_0 at line center. The plasma optical thickness at line center, τ_{λ_0} ,

148
$$\tau_{\lambda_0} = \int_{-\ell}^{0} \kappa(\lambda_0) d\ell, \qquad (3)$$

is defined in terms of integrated absorption coefficient, κ (λ), of a spectral line measured along the line-of-sight, ℓ , at the transition wavelength, λ_0 . Figure 7 illustrates results for τ_{λ_0} ranging from

151 0.25 to 2 at equal steps of 0.25, and for fixed Lorentzian FWHM of $\Delta \lambda_s = 0.5$ nm. The line shape 152 indicates a flat top for unity optical thickness, i.e., $\tau_{\lambda_0} = 1$. For values higher than unity,

Figure 7. Line shapes $\varphi(\lambda)e^{-\tau_{\lambda_0}\varphi(\lambda)/\phi_0}$ vs. wavelength, λ , for fixed $\Delta\lambda_s = 0.5$ nm. Values of τ_{λ_0} range from 0.25 to 2.0 in steps of 0.25.

self-absorption affects the line shape primarily at the center².

The fitting of the argument in Eq. (2) to the experimentally measured line shape can be formulated with two line-shape parameters, namely, the self-absorbed Lorentzian FWHM, $\Delta\lambda_{SI}$, and the optical depth, τ_{λ_0} , at line center.

The self-reversal parameter, SR, is introduced for a quantitative description of the measured line shapes. The parameter SR indicates the ratio of transmitted and of weakly (κ (λ) ℓ << 1) affected intensities at line center,

160
$$SR = \frac{1 - e^{-\tau_{\lambda_0}}}{\tau_{\lambda_0}} \le 1$$
, (4)

or in terms of the transmittance, $SR = T(\tau_{\lambda_0})$. Self-reversal diminishes the peak spectral radiance as well. In comparison with self-absorption, self-reversal causes further apparent enlargement of the FWHM, $\Delta\lambda_{s2}$, with $\Delta\lambda_{s2} > \Delta\lambda_{s1}$. In analogy with the derivation of self-absorption³, one can write $\Delta\lambda_{s2} = \Delta\lambda_{s1} SR^{\alpha}$. The value for the exponent is taken to be $\alpha = -0.54$, in analogy to previously reported self-absorption studies³. The self-reversal factor, SR, is functionally identical to that for the self-absorption factor³, SA, $\Delta\lambda = \Delta\lambda_{s0} SA^{\alpha}$. Here, $\Delta\lambda$ and $\Delta\lambda_{s0}$ indicate the FWHM of spectral lines with and without self-absorption, respectively.

Figure 8 summarizes two typical examples of the discussed spectral line shape analysis for the measured Ag I lines at 327.9 nm and 338.2 nm. Figs. 8 (a) and (d) display self-reversed data, Figs. 8 (b) and (e) portray corrected lines that are still self-absorbed, and Figs. 8 (c) and (f) illustrate the retrieved line-shapes when using data from the optically thin line at 827 nm.

Figure 8. Line shapes (**a**) self-reversed $\Delta\lambda_{52} = 0.37$ nm, SR = 0.3, T(λ) =33 %; (**b**) Self-absorbed $\Delta\lambda_{51} = 0.2$ nm, n_{e1} = 4.2 × 10¹⁸ cm⁻³, SA = 0.01; (**c**) Reconstructed 327.9-nm optically thin line: $\Delta\lambda_{50} = 0.017$ nm, n_{e1} = 3.5 × 10¹⁷ cm⁻³, SA = 1. (**d**) $\Delta\lambda_{52} = 0.32$ nm, SR = 0.38, T(λ) =40 %, (**e**) $\Delta\lambda_{51} = 0.19$ nm, SA = 0.01, and (**f**) 338.2-nm line: $\Delta\lambda_{50} = 0.017$ nm, n_{e1} = 3.5 × 10¹⁷ cm⁻³, SA = 1. Light pulses for (**a**) and (**d**) of fluence 13.5 J/cm² at 355 nm generated laser plasma. Reconstruction for (**c**) and (**f**) is accomplished with data from the 827-nm line.

8 of 9

(5)

The measured widths and plasma transmission percentages (typically 33% and 40% for the reported experiments) are included in the figure captions. The theoretical, asymptotic form for the transmittance of a Lorentzian line profile^{2,6} equals

175
$$T_{\text{theory}}(\tau_{\text{SR}}) \sim 1/\sqrt{\pi \tau_{\text{SR}}} .$$

176 The theoretical transmittances are compatible with SR factors of 0.32 and 0.38. The measured line shapes are well-described by the fitted Lorentzians. However, for sake of simplicity, this 177 discussion omits Gaussian components due to instrumental broadening of $\Delta\lambda_{\text{instrument}} \sim 0.12$ nm. 178 179 Figs. 8 (a) and (d) show a significant reduction in intensity along with an apparent increase in broadening ($\Delta\lambda_{s2}$). The self-reversal coefficients are relatively small (SR = 0.32 and SR = 0.38), but 180 181 due to line center effects ^{2,5-10} dips occur. Noteworthy in this work, self-reversal (quantified by the 182 coefficient SR) is almost independent of the laser fluence, but self-absorption (SA) changes 183 monotonically with laser fluence.

In this example, the self-reversal peak separation provides values for $\Delta\lambda_{s2}$, using the FWHM of 184 185 lines with the dip would cause even larger discrepancies for the electron density, ne. From Equation (5), computed $\Delta \lambda_{s_1}$ would show electron densities that are ~ ten times higher than 186 187 obtained from the optically thin line that was retrieved by comparison with 827-nm results. When 188 using lower fluence levels for these two lines, larger variances occur in inferred ne values. From Eq. (6), a factor of ten higher electron density means that the self-absorption factor is of the order of SA 189 190 ~ 0.01. For self-absorption, the magnitude of the peak spectral irradiances can be evaluated³ using 191 $I_0(\lambda_0) \sim I_1(\lambda_0)/SA$, leading to two orders of magnitude higher irradiances. Such discrepancy indicates 192 significant self-absorption and line reversal for the selected example.

193 **5.** Conclusions

194 Self-absorption may lead to a decrease in the peak line intensity up to two orders of magnitude, 195 including appearance of self-revered lines. Even after taking into consideration the line shape effects, occurrence of self-absorption for a measured line contraindicates plasma electron density and 196 temperature measurements from that line. The experimentally measured transmission factors for the 197 198 327.9-nm and 338.2-nm lines change with incident laser fluence. The theoretical analysis predicts 199 transmittance values consistent with the measured ones within the experimental margins of error. 200 The optically thin, 827-nm silver line allows one to determine the electron density showing decreases as expected from 3.5×10^{17} to 1.1×10^{16} cm⁻³ with decreasing laser fluence. However, as self-absorption 201 of the silver 338.2 nm line decreases with decreasing fluence, the variations of inferred electron 202 densities are larger than anticipated, or the 338.2 nm line shows a larger standard deviation than the 203 827 nm line. The Ag I line at 338.2 nm disappears for a laser fluence of 2.1 J/cm². Finally, plasma 204 opacity manifests itself as a combination of self-absorption and self-reversal effects, and line 205 recovery would require results from an optically thin line, or in other words, self-absorbed or 206 self-reversed lines are ill-suited as electron density diagnostic of laser plasma. 207

Author Contributions: Ashraf M. EL Sherbini conceived and performed the experiments. Ashraf M. EL Sherbini the result together with Christian G. Parigger, and all authors contributed to the writing of the article.

210 **Conflicts of Interest:** The authors declare no conflict of interest.

211 References

eer-reviewed version available at Atoms 2019, 7, 73; doi:10.3390/atoms70300

9 of 9

¹K. Eidmann, R. Sigel, Second-Harmonic Generation in an Inhomogeneous Laser-Produced Plasma, Phys. Rev. Lett., 34, 1975, 799--802

²Fujimoto, T. *Plasma Spectroscopy;* Clarendon Press: Oxford, GB, 2004

³EL Sherbini, A.M.; EL Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. *Spectrochim. Acta Part B: At. Spectrosc.* **2005**, *60*, 1573 – 1579

⁴Parigger, C.G; Surmick, D.M.; G. Gautam, G.; EL Sherbini, A.M. Hydrogen alpha laser ablation plasma diagnostic. *Opt. Lett.* **2015**, *40*, 3436 – 3439.

⁵Parigger, C.G.; Surmick, D.M.; Gautam, G. Self-absorption characteristics of measured laser-induced line shapes. *J. Phys.: Conf. Ser.* **2017**, *810*, 012012.

⁶Irons, F.E. The escape factor in plasma spectroscopy—I. The escape factor defined and evaluated. *J. Quant. Spectrosc. Radiat. Transfer* **1979**, *22*, 1 – 20.

⁷Holstein, T. Imprisonment of Resonance Radiation in Gases. *Phys. Rev.* 1947, 72, 1212 – 1232.

⁸Holstein, T. Imprisonment of Resonance Radiation in Gases. II. *Phys. Rev.* **1951**, *83*, 1159 – 1168.

⁹Cowan, R.D.; Dieke, G.H. Self-Absorption of Spectrum Lines. *Rev. Mod. Phys.* **1948**, *20*, 418 – 455. ¹⁰Kielkopf, J.F.; Allard, N.F. Shift and width of the Balmer series Hα line at high electron density in a laser-produced plasma. *J. Phys B: At. Mol. Opt. Phys.* **2014**, *47*, 155701.

¹¹Moon, H.-Y.; Herrera, K.K; Omenetto, N.; Smith, B.W.; Winefordner, J.D. On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy, *Spectrochim. Acta Part B: At. Spectrosc.* **2009**, *64*, 702 – 713.

¹²EL Sherbini, A.M.; Parigger, C.G. Wavelength dependency and threshold measurements for nanoparticle-enhanced laser-induced breakdown spectroscopy. *Spectrochim. Acta Part B: At. Spectrosc.* 2016, *116*, 8 – 15.

¹³Ashraf M. EL Sherbini a, Christian G. Parigger b, Nano-material size dependent laser-plasma thresholds, Spectrochimica Acta Part B 124 (2016) 79–81

¹⁴A. M. El sherbini *et al* Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths 2019 *Plasma Sci. Technol.* 21 015502