
Article

Idempotent Factorizations of Square-free Integers

Barry Fagin 1,2

1

2

3

4

5

6

7

8

9

10

11

12

13

1 Department of Computer Science; barry.fagin@usafa.edu; Tel.: +1-719-339-4514
2 US Air Force Academy, CO 80840, USA

Abstract: We explore the class of positive integers n that admit idempotent factorizations n = p̄q̄ such 
that λ(n) ∣ (p̄ − 1)(q̄ − 1), where λ is the Carmichael lambda function. Idempotent factorizations 
with p̄ and q̄ prime have received the most attention due to their cryptographic advantages, but 
there are an infinite number of n with idempotent factorizations containing composite p̄ and/or q̄. 
Idempotent factorizations are exactly those p̄ and q̄ that generate correctly functioning keys in the 
RSA 2-prime protocol with n as the modulus. While the resulting p̄ and q̄ have no cryptographic 
utility and therefore should never be employed in that capacity, idempotent factorizations warrant 
study in their own right as they live at the intersection of multiple hard problems in computer science 
and number theory. We present some analytical results here. We also demonstrate the existence of 
maximally idempotent integers, those n for which all bipartite factorizations are idempotent. We show 
how to construct them, and present preliminary results on their distribution.

Keywords: cryptography; abstract algebra; RSA; computer science education; cryptography 
education; number theory; factorization

14

1. Introduction15

Certain square-free positive integers n can be factored into two numbers (p̄, q̄) such that λ(n) ∣16

(p̄− 1)(q̄− 1), where λ is the Carmichael lambda function. We call such (p̄, q̄) an idempotent factorization17

of n, and (n, p̄, q̄) an idempotent tuple. We say that n = p̄q̄ admits an idempotent factorization1.18

When n is prime, all factorizations are trivially idempotent (p = 1 or q = 1). For p and q prime,19

the factorization n = p̄q̄ is idempotent due to Euler’s Theorem and the exponent cycle length property20

of λ. If p and q are sufficiently large, such factorizations have useful cryptographic properties, and are21

the basis for the 2-prime RSA cryptosystem [21]. Carmichael numbers [3] also easily form idempotent22

products.23

These, however, are not the only idempotent factorizations. While they do not use the term24

themselves, Huthnance and Warndof [10] describe idempotent factorizations n = p̄q̄ where p̄ and q̄25

are either primes or Carmichael numbers, noting that such integers generate correct RSA keys. These26

values are in fact a subset of idempotent factorizations as we define them here, as there are an infinite27

number of idempotent tuples (n, p̄, q̄) with composite p̄ and/or q̄ where neither p̄ nor q̄ are Carmichael28

numbers. We emphasize that, like the subset of idempotent tuples noted in [10], these numbers should29

never be used cryptographically [19]. We merely note that idempotent factorizations are exactly those30

1 Overbars indicate that p̄, q̄ are not necessarily prime
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p̄, q̄ that “fool" RSA in the sense that such n, p̄, q̄ supplied to the 2-prime RSA protocol will generate31

keys that encrypt and decrypt messages correctly.32

An idempotent factorization of the form n = p̄q or n = pq̄ with one composite and one prime is33

a semi-composite idempotent factorization. A factorization of the form n = p̄q̄ with both components34

composite is a fully composite idempotent factorization (implying n has at least four factors). Trivial35

factorizations (p̄ or q̄ = 1) and factorizations of n where n is a semiprime (p̄ and q̄ prime) will not be36

considered further.37

2. Idempotent factorizations of a Carmichael number38

Carmichael numbers C have the property C − 1 ≡
λ(C)

0. Let C = p̄q̄ be a factorization of C. For a

factorization of a Carmichael number to be idempotent, we have

(p̄− 1)(q̄− 1) ≡
λ(C)

0

⟺ (p̄q̄− 1)− p̄− q̄+ 2 ≡
λ(C)

0

⟺ (C − 1)− p̄− q̄+ 2 ≡
λ(C)

0

⟺ −p̄− q̄+ 2 ≡
λ(C)

0

⟺ p̄+ q̄ ≡
λ(C)

2

3. Maximally idempotent integers39

If all bipartite factorizations of n are idempotent, we say that n is maximally idempotent.40

Let n = p1 p2 p3, with all pi prime. Let a = p1 − 1, b = p2 − 1, c = p3 − 1, λ(n) = lcm(a, b, c) = λ.
Suppose that p̄ = p1 p2, q = p3 is an idempotent factorization. We have

[(a+ 1)(b+ 1)− 1]c ≡
λ

0

⟺ (ab+ a+ b+ 1− 1)c ≡
λ

0

⟺ abc+ ac+ bc ≡
λ

0

⟺ ac+ bc ≡
λ

0

Similary, for the other two factorizations, we have ab + bc ≡
λ

0 and ab + ac ≡
λ

0. So n is maximally41

idempotent ⟺ ac + bc ≡
λ

0 & ab + bc ≡
λ

0 & ab + ac ≡
λ

0. For these three conditions to all be true,42

ab ≡ ac ≡ bc ≡
λ

x. For a < b < c ≤ λ = lcm(a, b, c), the only possibility is x = 0.43

This gives the following theorem:44

Theorem 1. Let n = p1 p2 p3 with each pi prime. Let a = p1 − 1, b = p2 − 1, c = p3 − 1, λ(n) = lcm(a, b, c) =45

λ. n is maximally idempotent ⟺ (ab ≡ ac ≡ bc ≡
λ

0).46

For the system of three nonlinear modular equations above consider the terms ab, ac, bc. If all47

of them are ≡
λ

0, all three equations are satisfied. If exactly two of them are ≡
λ

0, only one equation is48

satisfied. If exactly one is ≡
λ

0, no equations are satisfied. If none are ≡
λ

0, there are three possibilities:49

No equations are satisfied, one is satisfied if ab ≡
λ
−ac, or three are satisfied if ab ≡

λ
−ac, ab ≡

λ
−bc. So no50

integer n = p1 p2 p3 can have exactly two idempotent factorizations.51
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Since the equations for maximal idempotency are all sums of products of two or more ai with no52

duplicates, and that these sums are all ≡
λ

0, we have the following result:53

Theorem 2. Let n = p1 p2...pm with all pi prime, ai = pi − 1, λ(n) = lcm(a1, a2...am) = λ. ∀i ≠ j∏ aiaj ≡
λ

54

0 → n is maximally idempotent.55

The maximally idempotent integer 137555=5*11*41*61 shows the converse of this theorem is false.56

λ(137555) = 120, and 60∗ 40 ≡
λ

0, but 4∗ 10 ≢
120

0, 10∗ 40 ≢
120

0, etc.57

As shown previously, a Carmichael number C is maximally idempotent ⟺ ∀p̄q̄ = C, p̄+ q̄ ≡
λ(C)

58

2.59

4. Strong impostors and idempotent factorizations60

We have shown [7] that square-free composite numbers s̄ with the property λ(s̄)∣2(s̄− 1) produce61

semi-composite idempotent tuples (n, s̄, r) when paired with any prime r coprime to s̄. We called62

these s̄ strong impostors because they behave as prime numbers to the 2-prime RSA protocol. Strong63

impostors include the Carmichael numbers, which have been long known to have this property, but are64

not limited to them. It can easily be shown that the product of any two odd coprime strong impostors65

s1, s2 is idempotent.66

5. Examples67

The first 16 square-free n with m ≥ 3 that admit idempotent factorizations are shown in Table 1.68

n p or p̄ q̄
30 5 6
42 7 6
66 11 6
78 13 6
102 17 6
105 7 15
114 19 6
130 13 10
138 23 6
165 11 15
170 17 10
174 29 6
182 13 14
186 31 6
195 13 15
210 10 21

Table 1. Values of n that admit idempotent factorizations

69

6 and 15 are strong impostors, but 10, 14, and 21 are not. 210=2*3*5*7 is the smallest square-free n that70

can be factored into two composite factors. It can be so factored in three ways, of which (10,21) is fully71

composite and idempotent.72

Values of n also exist which admit multiple idempotent factorizations. n=273 has idempotent73

factorizations of (3,91), (7,39) and (13,21), all of which are semi-composite. n =1365 has both74

semi-composite and fully composite idempotent factorizations: (7,195), (13,105) and (15,91). The75

latter is the product of two odd strong impostors.76

The first 16 maximally idempotent n with 3 and 4 prime factors are shown in Table 2, along with77

the two 5-factor cases < 230. Carmichael numbers are underlined.78
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3 factors λ 4 factors λ 5 factors λ

273 = 3*7*13 12 63973 = 7*13*19*37 36 72719023 = 13*19*37*73*109 216
455 = 5*7 *13 12 137555 = 5*11*41*61 120 213224231 = 11*31*41*101*151 300
1729 = 7*13*19 36 145607 = 7*11*31*61 60
2109 = 3*19*37 36 245791 = 7*13*37*73 72
2255 = 5*11*41 40 356595 = 5*19*37*73 72
2387 = 7*11*31 30 270413 = 11*13*31*61 60
3367 = 7*13*37 36 536389 = 7*19*37*109 108
3515 = 5*19*37 72 667147 = 13*19*37*73 72
4433 = 11*13*31 60 996151 = 13*19*37*109 108
4697 = 7*11*61 60 1007903 = 13*31*41*61 120
4921 = 7*19*37 36 1847747 = 11*17*41*241 240
5673 = 3*31*61 60 1965379 = 13*19*73*109 216
6643 = 7*13*73 72 2060863 = 7*37*73*109 216
6935 = 5*19*73 72 2395897 = 7*31*61*181 180
7667 = 11*17*41 80 2778611 = 11*41*61*101 600
8103 = 3*37*73 72 3140951 = 11*31*61*151 300

Table 2. Maximally idempotent integers with 3,4 and 5 factors

proportion of maximally idempotent integers
# factors Carmichael #’s < 1018 integers < 230 ratio
3 5.5862*10−4 1.4145*10−5 39.5
4 2.3543*10−5 2.9336*10−7 80.3
5 7.1344*10−7 1.8626*10−9 383.0

Table 3. Maximally idempotent integers among the Carmichael numbers

79

Maximally idempotent integers are rare. Below 230 there are 15189 with three prime factors, 315 with 4,80

and 2 with 5.81

There are no maximally idempotent integers with 6 or more factors below 232. The smallest82

6-factor maximally idempotent integer M(6) is 11 * 31 * 41 * 61 * 101 * 151. The smallest maximally83

idempotent integer with 7 factors known to the author is (λ(M(6))+1)*M(6) = 601*M(6).84

5.1. Cumulative statistics for idempotent factorizations of the Carmichael numbers85

An analysis of maximally idempotent Carmichael numbers < 1018 is shown in Table 3.86

87

As expected, maximally idempotent integers are found at higher proportions in the Carmichael88

numbers, although they remain rare. There is only one 5-factor maximally idempotent Carmichael89

number in the results above: C598349 = 661* 991* 3301* 4951* 9901. It is the smallest such Carmichael90

number.91

6. Constructing maximally idempotent integers92

Knowing sufficient conditions for the existence of idempotent factorizations and maximal93

idempotency suggests constructive approaches. We may construct a set of maximally idempotent94

integers sharing a given λ in the following way.95

1) Pick some prime p, let λ = p− 1. 2) Find all the divisors of λ ai such that pi = ai + 1 is prime. 3)96

Construct the divisor graph of λ by creating a node for each ai, with an edge from each ai to every node97

aj such that λ/ai ∣ aj. Any two such nodes will have the property aiaj ≡
λ

0. Thus by Theorem 2 every98

k-clique with k ≥ 3 in the resulting graph corresponds to a maximally idempotent integer with k prime99

factors. Each node ai corresponds to a prime factor pi = ai + 1, with a maximally idempotent n equal100
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to the product of all corresponding pi in the subgraph. It follows that all divisors of such constructed101

integers with more than two factors are also maximally idempotent.102

For example, consider p = 37, λ = 36. The resulting divisors ai with pi = ai + 1 prime are103

1, 2, 4, 12, 18, 36. This produces the divisor graph of Figure 1.104

Figure 1. Divisor graph for λ = 36

This graph contains six 3-cliques and one 4-clique. These correspond to seven maximally105

idempotent integers with λ = 36. Five of the six 3-cliques correspond to integers in Table 2. The106

4-clique is the smallest maximally idempotent integer with four factors, also shown in Table 2.107

To construct a maximally idempotent integer with a large number of factors, choose p such108

that λ = p− 1 is highly composite. The divisor graph will then have a large number of nodes, high109

connectivity and a greater likelihood of k-cliques for larger k.110

For example, we may choose p = 44101, λ = 44100 = (2∗ 3∗ 5∗ 7)2. The procedure above yields111

the 31-node graph shown in Figure 2.112

113

This graph has a total of 1293 k-cliques with k ≥ 3. The largest clique has 10 nodes, corresponding114

to the 10-factor maximally idempotent integer n = 211∗ 421∗ 631∗ 1051∗ 1471∗ 6301∗ 7351∗ 8821∗115

22051∗ 44101.116
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Figure 2. Divisor graph for λ = 44100
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We may define a function µ(p) as the number of maximally idempotent integers M with λ(p) =117

p− 1 that can be constructed in this way. The domain of this function is the primes. The range is the set118

of numbers y that are the total number of k-cliques in the divisor graph for some p with λ(p) = p− 1,119

k ≥ 3. The first 16 nonzero values of µ(p) are shown in Table 4.120

p µ(p)
13 2
31 1
37 7
41 1
61 11
67 1
73 14
89 1
97 2
109 9
113 2
127 2
156 11
181 19
193 8
199 3

Table 4. Nonzero values of µ(p)

121

By this definition and computer analysis of the graph in Figure 2, the value of µ(44101) is 1293.122

7. Cumulative statistics on idempotent factorizations123

Cumulative statistics for idempotent factorizations for n < 230 are shown below. Rs f indicates the124

ratio of numbers with idempotent factorizations to the total number of candidates n, those square-free125

numbers with > 2 factors. RN indicates the ratio to all n in the indicated interval. The first entry in126

Rcpu is the computation time on the author’s computer for the indicated interval. Remaining entries127

are the ratio of computation time of the current interval to the previous interval. An entry of the form128

i:j in row with #factors = F indicates there are j integers < 230 with F prime factors and i idempotent129

factorizations.130

All answers are rounded to the indicated number of decimals. We ignore order when counting131

factorizations.132

max n 212 215 218 221 224 227 230

Rs f .61 .37 .28 .21 .17 .13 .11
RN .09 .09 .08 .07 .06 .05 .04
Rcpu - 2.7s 11.3 10.6 13.3 9.8 10.4

Table 5. Proportion of integers with idempotent factorizations

8. Idempotent tuples and RSA133

Unlike factorizations of n with p and q prime, idempotent factorizations of n with composite p̄134

and/or q̄ offer no cryptographic utility. Like the Carmichael numbers, they should never be used in135

practice [19]. Nonetheless, all idempotent factorizations of n produce correct results if used in the136

2-prime RSA protocol. Given n = p̄q̄, choosing any integers (e, d) with ed ≡
(p̄−1)(q̄−1)

1 yields public and137

private keys that work correctly. This arises from the definition of idempotency.138
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# factors 0 1 2 3 4 5 6 7
3 184510285 34215577 0 15189 0 0 0 0
4 132479584 11347214 4448 15678 28 235 0 315
5 50515758 1733232 6530 13743 93 599 1 441
6 10004651 242377 6143 6906 167 586 12 302
7 931270 35473 2994 1597 124 286 22 102
8 29211 2956 477 158 39 43 5 6
9 99 28 7 2 1 0 1 1

Table 6. Factor distribution of idempotent factorizations < 230

(< 8 factorizations)

# factors
5 8:2 9:6 11:18 15:2
6 8:3 9:10 11:31 15:20
7 8:3 9:5 10:1 11:24 15:3 31:1
8 8:1 9:2 11:4

Table 7. Factor distribution of idempotent factorizations < 230

(≥ 8 factorizations)

Theorem 3. A factorization of square-free n into (p̄, q̄) with n = p̄q̄ and (p̄, q̄) > 1 produces correctly139

functioning keys for 2-prime RSA iff the factorization is idempotent.140

We note a well-known property of the Carmichael function: λ(n) is the smallest positive integer141

such that ∀a ∈ Zn, aλ(n)+1
≡
n

a. It follows by induction that ∀a ∈ Zn, akλ(n)+1
≡
n

a ∀k ≥ 0.142

Proof. (→): Let n = p̄q̄ produce correctly functioning keys for 2-prime RSA. Encryptions and
decryption keys (e, d) are chosen such so that ed − 1 ≡

(p̄−1)(q̄−1)
0. By hypothesis, we have aed

≡
n

a ∀a ∈ Zn. Since ed− 1 is a multiple of (p− 1)(q− 1), we have

aed
≡
n

aed−1a ≡
n

ak(p−1)(q−1)a ≡
n

a

for all k > 0. Writing (p− 1)(q− 1) as mλ(n)+ r, 0 ≤ r < λ, we have ∀a ∈ Zn:

ak(p−1)(q−1)a ≡
n

ak(mλ(n)+r)a ≡
n

a

We must show r = 0.143

By the exponent cycle length property of λ, we have

ak(mλ(n)+r)a ≡
n

akmλ(n)akra ≡
n

akmλ(n)+1akr
≡
n

aakr
≡
n

akr+1
≡
n

a

∀a ∈ Zn, ∀k ≥ 0. Choosing k = 1, we have ar+1
≡
n

a ∀a ∈ Zn. λ(n) is the smallest positive integer for144

which this is possible, so r = 0.145

(←): By hypothesis let n be a square-free positive integer, n = p̄q̄, (p̄− 1)(q̄− 1) = mλ(n) for some
positive integer l. Let (e, d) be positive integers such that ed− 1 ≡

(p̄−1)(q̄−1)
0. We have

aed
≡
n

aed−1a ≡
n

ak(p−1)(q−1)a ≡
n

akmλ(n)a ≡
n

akmλ(n)+1
≡
n

a

by the exponent cycle length property of λ.146
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For example, consider the idempotent tuple n = 1365, p̄ = 15, q̄ = 91. Note that both p̄ and q̄ are147

composite. Possible (e, d) pairs include (13,97), (19,199), (71,71), (17,593), (11,1031), (83,167) and so148

forth. The reader may confirm that for any such (e, d),∀a ∈ Z1365, aed
≡

1365
a.149

9. Conclusions and future work150

We conjecture that for any square-free p̄, a composite non-Carmichael q̄ can be found such that151

n = p̄q̄ is an idempotent factorization. We have verified this conjecture for all square-free p̄ < 214. For152

certain p̄ − 1 prime, the resulting q̄ can be quite large, requiring the use of heuristic algorithms for153

these cases. This is work in progress.154

Rather than view idempotency as an all-or-nothing property of a bipartite factorization, it may be155

viewed as a ratio between 0 and 1. In that case, the previous definition of idempotent factorizations156

could be regarded as indicating full idempotency, because all (e, d) pairs have the desired idempotency157

property. A value of 0 corresponds to minimal idempotency, in which no non-trivial (e, d) pairs are158

functional RSA keys. Values in between indicate the idempotency ratio for a given n = p̄q̄ factorization,159

based on the fraction of (e, d) pairs for which aed
≡
n

a ∀a ∈ Zn.160

The (e, d) pairs that lend idempotency to a factorization of n = p̄q̄ are exactly those for which161

ed ≡
L

1, where L = lcm((p̄− 1)(q̄− 1), λ(p̄q̄)). The desired (e, d) are then exactly those solutions to the162

2-variable system of nonlinear modular equations ed ≡
m1

1, ed ≡
m2

1...ed ≡
mj

1, where m1, m2...mj are the163

prime power factors of L. Determining whether or not such systems have solutions and calculating their164

exact number are known NP-complete problems. Thus simple, efficient calculations of idempotency165

ratios are likely to prove elusive. This is work in progress.166

We conjecture that due to redundancy in the equations for idempotency, no non-maximally167

idempotent integer n can have exactly one of its factorizations be non-idempotent. No counterexamples168

below 230 have been found. This suggests the question of the maximum number of idempotent169

factorizations an integer n with m prime factors can have without being maximally idempotent. Other170

questions include the asymptotic density of various kinds of idempotent factorizations, calculations of171

various idempotency ratios, the development of efficient algorithms to find idempotent factorizations,172

and more rigorous bounds on maximally idempotent integers.173

Finding idempotent factorizations connects factoring, graph theory, number theory, complexity174

theory, and cryptography. They depend on the relationship of products of primes pi and their175

immediate predecessors ai = pi − 1, so necessary and sufficient conditions for their existence beyond176

their defining equations are likely to prove elusive.177

Various files related to idempotent factorizations are available at the Online Encyclopedia of178

179 Integer Sequences, cited in the references below.
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