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Abstract: We explore the class of positive integers n that admit idempotent factorizations n = pg such
1 that A(n) | (5 — 1)(7 — 1), where A is the Carmichael lambda function. Idempotent factorizations
= with p and § prime have received the most attention due to their cryptographic advantages, but
s there are an infinite number of n with idempotent factorizations containing composite p and/or 4.
« Idempotent factorizations are exactly those p and 7 that generate correctly functioning keys in the
s RSA 2-prime protocol with n as the modulus. While the resulting p and § have no cryptographic
s utility and therefore should never be employed in that capacity, idempotent factorizations warrant
7 study in their own right as they live at the intersection of multiple hard problems in computer science
s and number theory. We present some analytical results here. We also demonstrate the existence of
o maximally idempotent integers, those n for which all bipartite factorizations are idempotent. We show
1o how to construct them, and present preliminary results on their distribution.
11
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s 1. Introduction

"

16 Certain square-free positive integers n can be factored into two numbers (7, §) such that A(n) |
1z (p—1)(7—1), where A is the Carmichael lambda function. We call such (7, §) an idempotent factorization
1« of n,and (n, p, ) an idempotent tuple. We say that n = p7 admits an idempotent factorization'.

10 When # is prime, all factorizations are trivially idempotent (p = 1 or g = 1). For p and g prime,
20 the factorization n = pg is idempotent due to Euler’s Theorem and the exponent cycle length property
z of A. If p and g are sufficiently large, such factorizations have useful cryptographic properties, and are
22 the basis for the 2-prime RSA cryptosystem [21]. Carmichael numbers [3] also easily form idempotent
2 products.

24 These, however, are not the only idempotent factorizations. While they do not use the term
s  themselves, Huthnance and Warndof [10] describe idempotent factorizations n = pg where p and §
26 are either primes or Carmichael numbers, noting that such integers generate correct RSA keys. These
2z values are in fact a subset of idempotent factorizations as we define them here, as there are an infinite
2 number of idempotent tuples (1, 7, §) with composite § and/or § where neither f nor j are Carmichael
20 numbers. We emphasize that, like the subset of idempotent tuples noted in [10], these numbers should
s never be used cryptographically [19]. We merely note that idempotent factorizations are exactly those

! Overbars indicate that P, 7 are not necessarily prime
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a1 P, g that “fool" RSA in the sense that such n, p, § supplied to the 2-prime RSA protocol will generate
sz keys that encrypt and decrypt messages correctly.

33 An idempotent factorization of the form n = pg or n = pj with one composite and one prime is
s« a semi-composite idempotent factorization. A factorization of the form n = pj with both components
s composite is a fully composite idempotent factorization (implying n has at least four factors). Trivial
ss factorizations (p or § = 1) and factorizations of n where n is a semiprime (p and § prime) will not be
sz considered further.

;s 2. Idempotent factorizations of a Carmichael number

Carmichael numbers C have the property C — 1 A(EC ) 0. Let C = pg be a factorization of C. For a

factorization of a Carmichael number to be idempotent, we have

(p=1G-1) = 0

= (pg-1)-p—-G+2 = 0

A(C)
= p+q = 2
pra ©)
3 3. Maximally idempotent integers
a0 If all bipartite factorizations of # are idempotent, we say that n is maximally idempotent.

Let n = p1paps, with all p; prime. Leta = p1 —1,b = po—1,c = p3 —1,A(n) = lem(a, b,c) = A
Suppose that p = p1p2, g = p3 is an idempotent factorization. We have

[(a+1)(b+1)-1]c=0

>l

= (ab+a+b+1—1)c§0
= abc+ac+bc§0

— ac+bc§0

41 Similary, for the other two factorizations, we have ab + bc = 0 and ab + ac = 0. So n is maximally
2 idempotent < ac+ bc = 0&ab + bc = 0&ab +ac = 0. For these three conditions to all be true,
s ab=ac=be =x. Fora <b <c=< A =lem(a,b,c), the only possibility is x = 0.

” This gives the following theorem:

«s Theorem 1. Let n = pypop3 with each p; prime. Leta = p1 —1,b = pp—1,c = p3 —1,A(n) = Ilem(a,b,c) =
s A nis maximally idempotent < (ab = ac = bc = 0).

a7 For the system of three nonlinear modular equations above consider the terms ab, ac, be. If all
s of them are = 0, all three equations are satisfied. If exactly two of them are = 0, only one equation is

s satisfied. If exactly one is = 0, no equations are satisfied. If none are = 0, there are three possibilities:
so No equations are satisfied, one is satisfied if ab f —ac, or three are satisfied if ab f —ac,ab i —bc. So no

51 integer n = p1pap3 can have exactly two idempotent factorizations.
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52 Since the equations for maximal idempotency are all sums of products of two or more a; with no
ss  duplicates, and that these sums are all E 0, we have the following result:

s« Theorem 2. Let n = pypy...py with all p; prime, a; = p; — 1, A(n) = Iem(ay, ay...ay,) = A. Yi # j]_[aiaj

>l

ss 0 — nis maximally idempotent.
56 The maximally idempotent integer 137555=5*11*41*61 shows the converse of this theorem is false.
sz A(137555) = 120, and 60 * 40 = 0,but4*10 # 0,10 %40 # 0, etc.
120 120
58 As shown previously, a Carmichael number C is maximally idempotent <= Vpj=C,p+4 A (EC )
so 2.
s 4. Strong impostors and idempotent factorizations
o1 We have shown [7] that square-free composite numbers § with the property A(5)|2(5 — 1) produce

ez semi-composite idempotent tuples (1,5, r) when paired with any prime r coprime to 5. We called
es these 5 strong impostors because they behave as prime numbers to the 2-prime RSA protocol. Strong
e« impostors include the Carmichael numbers, which have been long known to have this property, but are
es not limited to them. It can easily be shown that the product of any two odd coprime strong impostors
es 51,52 is idempotent.

» 5. Examples

o

es The first 16 square-free n with m > 3 that admit idempotent factorizations are shown in Table 1.
n porp | 4
30 |5 6
42 |7 6
66 | 11 6
78 | 13 6
102 | 17 6
105 | 7 15
114 | 19 6
130 | 13 10
138 | 23 6
165 | 11 15
170 | 17 10
174 | 29 6
182 | 13 14
186 | 31 6
195 | 13 15
210 | 10 21

Table 1. Values of n that admit idempotent factorizations

69

70 6 and 15 are strong impostors, but 10, 14, and 21 are not. 210=2*3*5*7 is the smallest square-free n that
7 can be factored into two composite factors. It can be so factored in three ways, of which (10,21) is fully
72 composite and idempotent.

73 Values of 1 also exist which admit multiple idempotent factorizations. #=273 has idempotent
za factorizations of (3,91), (7,39) and (13,21), all of which are semi-composite. n =1365 has both
7 semi-composite and fully composite idempotent factorizations: (7,195), (13,105) and (15,91). The
76 latter is the product of two odd strong impostors.

77 The first 16 maximally idempotent n with 3 and 4 prime factors are shown in Table 2, along with
7 the two 5-factor cases < 2°°. Carmichael numbers are underlined.
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3 factors A 4 factors A 5 factors A
273 = 3*7*13 12 | 63973 = 7%13*19*37 36 72719023 = 13*19*37*73*109 216
455 =5*7*13 12 | 137555 = 5*11*41*61 120 | 213224231 = 11*31*41*101*151 300
1729 = 7*13*19 36 | 145607 = 711*31*61 60

2109 = 3*19*37 36 | 245791 = 7*13*37*73 72

2255 = 5*11*41 40 | 356595 = 5*19*37*73 72

2387 = 7*11%*31 30 | 270413 = 11*13*31*61 60

3367 =7*13*37 36 | 536389 =7*19*37*109 108
3515 =5*19*37 72 | 667147 =13*19*37*73 72

4433 =11*13*31 60 | 996151 = 13*19*37*109 108
4697 = 7*11*61 60 | 1007903 = 13*31*41*61 120
4921 =7*19*37 36 | 1847747 =11*17*41*241 240
5673 = 3*31%61 60 | 1965379 = 13*19*73*109 216
6643 =7*13*73 72 | 2060863 = 7*37*73*109 216
6935 =5*19*73 72 | 2395897 = 7*31*61*181 180
7667 =11*17*41 80 | 2778611 = 11*41*61*101 600
8103 =3*37*73 72 | 3140951 = 11*31*61*151 300

Table 2. Maximally idempotent integers with 3,4 and 5 factors

proportion of maximally idempotent integers

#factors Carmichael #s < 10 integers < 2% ratio

3 5.5862*10* 1.4145*107°  39.5
4 2.3543*107° 293361077 80.3
5 7.1344*10~7 1.8626*107°  383.0

Table 3. Maximally idempotent integers among the Carmichael numbers

79

s Maximally idempotent integers are rare. Below 2% there are 15189 with three prime factors, 315 with 4,
a1 and 2 with 5.

82 There are no maximally idempotent integers with 6 or more factors below 2°2. The smallest
es  6-factor maximally idempotent integer M(6) is 11 * 31 * 41 * 61 * 101 * 151. The smallest maximally
s« idempotent integer with 7 factors known to the author is (A(M(6))+1)*M(6) = 601*M(6).

es  5.1. Cumulative statistics for idempotent factorizations of the Carmichael numbers

e An analysis of maximally idempotent Carmichael numbers < 10'® is shown in Table 3.
87

s As expected, maximally idempotent integers are found at higher proportions in the Carmichael
e numbers, although they remain rare. There is only one 5-factor maximally idempotent Carmichael
s number in the results above: C598349 = 661* 991* 3301* 4951* 9901. It is the smallest such Carmichael
o1 number.

o2 6. Constructing maximally idempotent integers

03 Knowing sufficient conditions for the existence of idempotent factorizations and maximal
o« idempotency suggests constructive approaches. We may construct a set of maximally idempotent
os integers sharing a given A in the following way.

96 1) Pick some prime p, let A = p — 1. 2) Find all the divisors of A 4; such that p; = a; + 1 is prime. 3)
oz Construct the divisor graph of A by creating a node for each a;, with an edge from each 4; to every node
es ajsuch that A/a; | a;. Any two such nodes will have the property 4,4, = 0. Thus by Theorem 2 every

90 k-clique with k = 3 in the resulting graph corresponds to a maximally idempotent integer with k prime
100 factors. Each node a; corresponds to a prime factor p; = a; + 1, with a maximally idempotent n equal
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1

o

+ to the product of all corresponding p; in the subgraph. It follows that all divisors of such constructed
102 integers with more than two factors are also maximally idempotent.

103 For example, consider p = 37,A = 36. The resulting divisors a; with p; = a; + 1 prime are
« 1,2,4,12,18,36. This produces the divisor graph of Figure 1.

1

o

Figure 1. Divisor graph for A = 36

105 This graph contains six 3-cliques and one 4-clique. These correspond to seven maximally
106 idempotent integers with A = 36. Five of the six 3-cliques correspond to integers in Table 2. The
w7 4-clique is the smallest maximally idempotent integer with four factors, also shown in Table 2.

108 To construct a maximally idempotent integer with a large number of factors, choose p such
100 that A = p —1is highly composite. The divisor graph will then have a large number of nodes, high
ue connectivity and a greater likelihood of k-cliques for larger k.

11 For example, we may choose p = 44101, A = 44100 = (2 %3 x5 % 7)%. The procedure above yields
12 the 31-node graph shown in Figure 2.

113

114 This graph has a total of 1293 k-cliques with k > 3. The largest clique has 10 nodes, corresponding
us  to the 10-factor maximally idempotent integer n = 211 x 421 * 631 * 1051 * 1471 * 6301 * 7351 * 8821 *
e 22051 % 44101.
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Figure 2. Divisor graph for A = 44100
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117 We may define a function y(p) as the number of maximally idempotent integers M with A(p) =
us p — 1 that can be constructed in this way. The domain of this function is the primes. The range is the set
1o of numbers y that are the total number of k-cliques in the divisor graph for some p with A(p) = p—1,
120k = 3. The first 16 nonzero values of j(p) are shown in Table 4.

—~
=
=

p
13

31
37
41
61
67
73
89
97
109
113
127
156
181
193
199

Table 4. Nonzero values of j(p)

—_ = N
= N =

—_
S

O —

WO L L NN WOUNRE

122 By this definition and computer analysis of the graph in Figure 2, the value of 3(44101) is 1293.

123 7. Cumulative statistics on idempotent factorizations

124 Cumulative statistics for idempotent factorizations for n < 2% are shown below. R, £ indicates the
125 ratio of numbers with idempotent factorizations to the total number of candidates 7, those square-free
126 numbers with > 2 factors. Ry indicates the ratio to all # in the indicated interval. The first entry in
127 Repy is the computation time on the author’s computer for the indicated interval. Remaining entries
126 are the ratio of computation time of the current interval to the previous interval. An entry of the form
120 1:j in row with #factors = F indicates there are j integers < 2% with F prime factors and i idempotent
130 factorizations.

131 All answers are rounded to the indicated number of decimals. We ignore order when counting
132 factorizations.

max n 212 215 218 221 224 227 230
Rsf 61 | 37 | 28 21 17 A3 |11
RN .09 | .09 | .08 .07 .06 .05 | .04
Repu - 27s | 11.3 | 106 | 133 | 9.8 | 104

Table 5. Proportion of integers with idempotent factorizations

133 8. Idempotent tuples and RSA

134 Unlike factorizations of # with p and g prime, idempotent factorizations of n with composite
135 and/or § offer no cryptographic utility. Like the Carmichael numbers, they should never be used in
136 practice [19]. Nonetheless, all idempotent factorizations of n produce correct results if used in the
137 2-prime RSA protocol. Given n = g, choosing any integers (e, d) with ed E( 1) 1 yields public and

13e  private keys that work correctly. This arises from the definition of idempotency.
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#factors 0 1 2 3 4 5

6
3 184510285 34215577 0O 15189 0 0 0 0
4 132479584 11347214 4448 15678 28 235 0 315
5 50515758 1733232 6530 13743 93 599 1 441
6 10004651 242377 6143 6906 167 586 12 302
7 931270 35473 2994 1597 124 286 22 102
8 29211 2956 477 158 39 43 5 6
9 99 28 7 2 1 0 1 1

Table 6. Factor distribution of idempotent factorizations < 2%
(< 8 factorizations)

# factors

5 82 96 11:18 15:2

6 83 910 11:31 15:20

7 83 95 10:1 11:24 153 31:1
8 81 92 11:4

Table 7. Factor distribution of idempotent factorizations < 2%
(= 8 factorizations)

13e  Theorem 3. A factorization of square-free n into (p,q) with n = pg and (p,§) > 1 produces correctly
w0 functioning keys for 2-prime RSA iff the factorization is idempotent.

141 We note a well-known property of the Carmichael function: A(n) is the smallest positive integer

12 such that Va € Z,,, AR = a. It follows by induction that Va € Zn,akA(")+1 =a Vk = 0.

Proof. (—): Let n = pg produce correctly functioning keys for 2-prime RSA. Encryptions and

decryption keys (e,d) are chosen such so that ed — 1 " 1)5( 1) 0. By hypothesis, we have a* =
p=i\q=
aVa e Z,. Since ed —1is a multiple of (p —1)(g — 1), we have

200 2 g1, 2 Kp=D(g-1)
n n

a

=

for allk > 0. Writing (p —1)(g—1) asmA(n) +r,0 <r < A, wehave Ya € Z:

FPD-1), o KA
n n

13 We must show r = 0.
By the exponent cycle length property of A, we have

k(mA(n)+r)  _  kmA(n) kr _  kmA(n)+1 kr kr kr+1
a a=a a a=a a aa a

S|
=N
=

n n

s Ya€Z,, Yk 20. Choosing k = 1, we have att =a Va € Z,. A(n) is the smallest positive integer for

145 which this is possible, so r = 0.
(<): By hypothesis let 1 be a square-free positive integer, n = p7, (7 —1)(§—1) = mA(n) for some
positive integer . Let (e, d) be positive integers such that ed — 1 . 1)5( . 0. We have
p—lg=

ed ed-1 _ k
a a=a
n n n

i (p—l)(q—l)a = akm)x(n)a = akm)\(n)+1 a

=
Sl

s Dy the exponent cycle length property of A. O
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147 For example, consider the idempotent tuple n = 1365, p = 15,7 = 91. Note that both p and 7 are
s composite. Possible (e,d) pairs include (13,97), (19,199), (71,71), (17,593), (11,1031), (83,167) and so
10 forth. The reader may confirm that for any such (e, d), Va € Zy3¢5, 2 ) 356 ; a.

150 9. Conclusions and future work

151 We conjecture that for any square-free p, a composite non-Carmichael § can be found such that
12 1 = pf is an idempotent factorization. We have verified this conjecture for all square-free p < 2" For
153 certain p — 1 prime, the resulting § can be quite large, requiring the use of heuristic algorithms for
1ss  these cases. This is work in progress.

155 Rather than view idempotency as an all-or-nothing property of a bipartite factorization, it may be
1ss viewed as a ratio between 0 and 1. In that case, the previous definition of idempotent factorizations
157 could be regarded as indicating full idempotency, because all (e, d) pairs have the desired idempotency
158 property. A value of 0 corresponds to minimal idempotency, in which no non-trivial (e, d) pairs are
10 functional RSA keys. Values in between indicate the idempotency ratio for a given n = pg factorization,
10 based on the fraction of (e, d) pairs for which o =a VaeZ,.

161 The (e, d) pairs that lend idempotency to a factorization of n = pj are exactly those for which
162 ed = 1, where L = lem((p —1)(7 — 1), A(p7)). The desired (e, d) are then exactly those solutions to the

163 2-variable system of nonlinear modular equations ed = 1,ed = 1...ed = 1, where my, my...m j are the
my my mj

1es  prime power factors of L. Determining whether or not such systems have solutions and calculating their
16 exact number are known NP-complete problems. Thus simple, efficient calculations of idempotency
166 ratios are likely to prove elusive. This is work in progress.

167 We conjecture that due to redundancy in the equations for idempotency, no non-maximally
1es idempotent integer n can have exactly one of its factorizations be non-idempotent. No counterexamples
1o below 2* have been found. This suggests the question of the maximum number of idempotent
170 factorizations an integer n with m prime factors can have without being maximally idempotent. Other
i questions include the asymptotic density of various kinds of idempotent factorizations, calculations of
12 various idempotency ratios, the development of efficient algorithms to find idempotent factorizations,
173 and more rigorous bounds on maximally idempotent integers.

174 Finding idempotent factorizations connects factoring, graph theory, number theory, complexity
s theory, and cryptography. They depend on the relationship of products of primes p; and their
e immediate predecessors a; = p; — 1, so necessary and sufficient conditions for their existence beyond
177 their defining equations are likely to prove elusive.

178 Various files related to idempotent factorizations are available at the Online Encyclopedia of
s Integer Sequences, cited in the references below.
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