

1 Article

2

The Gene Master Regulators (GMR) Approach

3

Provides Legitimate Targets for Personalized,

4

Time-Sensitive Cancer Gene Therapy

5 **Sanda Iacobas, Nneka Ede and Dumitru A Iacobas***6 Personalized Genomics Laboratory, Center for Computational Systems Biology, Prairie View A&M
7 University, Prairie View, TX, USA; sandaiacobas@gmail.com (S.I.), nede1@student.pvamu.edu (N.E.),
8 daiacobas@pvamu.edu (D.A.I.)

9 * Correspondence: daiacobas@pvamu.edu; Tel.: +1(936) 261-9926

10 **Abstract:** The dynamic and never exactly repeatable tumor transcriptomic profile of people
11 affected by the same form of cancer requires a personalized and time-sensitive approach of the
12 gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled
13 expression by the homeostatic mechanisms commands the cell phenotype by modulating major
14 functional pathways through expression correlation with their genes. The Gene Commanding
15 Height (GCH), a measure that combines the expression control and expression correlation with all
16 other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the
17 experimental protocol, the mathematical algorithm and the computer software to identify the
18 GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer
19 patients. The GMR approach is illustrated with applications to our microarray data on human
20 kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines.
21 We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and
22 surrounding normal tissue are governed by different GMRs, and that manipulating the expression
23 has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that
24 silencing the GMR may selectively kill the cancer cells from a tissue.25 **Keywords:** papillary thyroid cancer; BCPAP cells; 8505C cells; prostate cancer; LNCaP cells; DU145
26 cells; kidney cancer; HL-60 cells; cancer gene software
2728

1. Introduction

29 A very rich literature compared gene expression profiles in tissues collected from healthy and
30 cancer donors to identify the transcriptomic signatures of various cancer phenotypes [e.g. 1-5] that
31 are periodically organized in the atlas form [e.g. 6,7]. Nanostring launched recently a panel claiming
32 to categorize the disease heterogeneity using 32 biological signatures involving 770 genes across 23
33 key breast cancer pathways (<https://www.nanostring.com/products/gene-expression-panels/gene-expression-panels-overview/ncounter-breast-cancer-360-panel>). There are also available
34 platforms to compare the gene expression profiles of surgically removed tumors with publically
35 available transcriptomes of cancer standard samples (e.g.: <https://www.origene.com/products/tissues/tissuescan>).36 However, comparing samples collected from different persons may not be such a good idea,
37 owing that, in addition to the disease itself, the gene expressions depend on several other risk factors
38 making each human unique and with a unique life pathway. The never repeatable combination of
39 factors affecting the gene expression profile is related to the person's race, sex, age, genetic
40 background, diet (affecting the microbiome), environment (exposure to ionizing radiation,
41 carcinogenic toxins, stress), bad habits (smoking, drugs, alcohol), medical history etc. Our gene
42 expression studies on tissues from humans and animal models proved the transcriptomic profile
43 dependence on strain and genetic background [8], sex [9], age [10], exposure to stress [11] and
44

46 carcinogenic toxins [12], medical history and treatments [13]. This is why numerous investigators
47 (e.g. [14] on papillary thyroid cancer) started to pair the transcriptomes of the cancer region with the
48 cancer free adjacent tissue of the same patient.

49 The legitimate question in the transcriptomic signature quest is how many of the tested genes
50 should be found as regulated (and how many of them up and how many down) to assess the
51 designated form of cancer. Since there are 1.9×10^{22} distinct sets of genes if “only” 10 hits are needed
52 from the 770 candidates of the nanostring nCounter® breast cancer 360TM), there is no way to
53 determine the predictive value of each of these sets from metadata. Moreover, in addition to the
54 checked biomarkers, hundreds other genes are regulated and their (never repeatable) contributions
55 to the cancer phenotype are neglected without knowing whether they are really negligible.

56 Still, let us suppose that a particular cancer form does have a transcriptomic signature as
57 resulted from the meta-analysis of gene expression data from a large population of cancer patients.
58 Are the signature genes valuable targets for the cancer gene therapy or they are good only for
59 diagnosis (if the above supposition is true)? Being selected from the most frequently regulated genes
60 in the population of cancer patients, the signature genes appeared as little protected by the cellular
61 homeostatic mechanisms as are minor players. Therefore, restoring their right expression level may
62 be of little consequence for the cell.

63 Instead, of genes whose altered sequence or expression allegedly triggers a particular form of
64 cancer in everybody [15-20], we proposed [21,22] that the most legitimate targets for cancer gene
65 therapy are what we call “gene master regulators” (GMRs) of cancer nuclei. We defined the GMR as
66 the gene whose highly protected expression level by the cellular homeostatic mechanisms sets up
67 the cell phenotype by controlling major functional pathways through expression correlation with
68 their genes. The high protection makes the GMR less sensitive to the environmental oscillations and
69 therefore less variably expressed among biological replicas. However, small oscillations of the GMR
70 expression are amplified by in-phase (positive) or anti-phase (negative) oscillations of the expression
71 of many other genes. The composite metric termed Gene Commanding Height (GCH) was
72 introduced by us [21,22] to establish the gene hierarchy in each cell phenotype, with the GMR having
73 the top GCH.

74 The idea of “master regulators” was floating in genomics for a long time, most investigators
75 looking for transcription factors whose regulation might have large downstream effects on the
76 expression of many genes [e.g.: 23,24]. In addition to defining the GMRs in quantitative terms (by the
77 GCH), our procedure does not restrict the GMR’s quest to transcription factors. Instead, we rank
78 with respect to the GCH scores all coding AND non-coding RNAs whose abundance was
79 adequately quantified via the used (RNA next generation sequence or microarray) platform.
80 Moreover, in a recent paper [22], we have shown how five non-coding RNAs (ANKRD36BP2,
81 FAM86B3P, H19, HCG11 and PMS2L2) regulate apoptosis in a surgically removed papillary thyroid
82 cancer via expression correlation with apoptotic genes. Thus, our results are in line with other
83 studies reporting the involvement of the non-coding RNAs in cancer development (e.g. [25-7]) and
84 therapy (e.g. [28]).

85 The GMR approach is based on our Genomic Fabric Paradigm [e.g.: 29,30] and runs on the
86 computer software package CANCER-GMR (coded in Python3) with statistical and graphical user
87 interface packages SciPy (<https://www.scipy.org/>) and Tkinter GUI. Our procedure can be applied to
88 the four quarters of >1mm diameter cancer nucleus identified in a biopsy or surgically removed
89 tumor, or to four dishes with a cancer cell line.

90 The GMR targeting would be effective in selectively destroying the cancer cells from a tissue if:
91 i) cancer nuclei and surrounding quasi-normal tissues are governed by different GCH hierarchies, ii)
92 expression manipulation of a gene has larger consequences in cells where that gene has higher GCH
93 and iii) the GCH of the GMR is well above the GCHs of the next genes in the hierarchy. In this
94 report, the GMR approach is illustrated with applications to our microarray data on human kidney,
95 thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines.

96 2. Materials and Methods

97 *2.1. Tumor samples*

98 We have profiled the cancer nuclei (labeled CANCER1 and CANCER2, both Gleason score
99 4+5=9) and the surrounding normal tissues (NORM1 and NORM2) from two surgically removed,
100 frozen prostate cancers. The study was part of Dr. DA Iacobas' project approved by the Institutional
101 Review Boards (IRB) of the New York Medical College's (NYMC) and Westchester Medical Center
102 (WMC) Committees for Protection of Human Subjects. The approved IRB (L11,376 from 02/10/2015)
103 granted access to frozen cancer specimens from the WMC Pathology Archives and depersonalized
104 pathology reports, waiving patient's informed consent. Four 2-8 mm³ samples were collected from
105 the cancer nuclei and normal tissues of each tumor. Although the selected regions were as
106 homogeneous as possible, cells of different phenotypes were not completely eliminated and
107 expression of their genes affected the reported results.

108 In this report, we reprocessed also our previously published microarray data from surgically
109 removed, frozen preserved kidney (CCRCC - clear cell renal cell carcinoma) and papillary thyroid
110 cancer tumors. Two primary cancer nuclei (labeled as PTA and PTB) and the cancer free (NOR)
111 tissue from the right kidney, together with a chest metastasis (MET) were profiled from a 74 years
112 old man with metastatic CCRCC, Fuhrman grade 3 [21]. The unilateral, single, papillary carcinoma
113 (PAP-C), pathological stage pT3NOMx and the cancer free surrounding tissue were collected from a
114 deceased 33y old woman [22].

115

116 *2.2. Cell lines*

117 The results for the surgically removed thyroid and prostate tumors were compared with those
118 obtained from the commercially available standard human cancer cell lines: BCPAP, 8505C, LNCaP
119 and DU145. We have also determined the GCH hierarchy in the human leukemia cell line HL-60.
120 The HL-60 cell line was originally obtained at MD Anderson Cancer Center from a 36-year-old
121 woman with acute promyelocytic leukemia [31].

122 The BCPAP cell line is a papillary thyroid carcinoma cell line isolated from a female patient,
123 with a TP53 mutation in the codon 278 in heterozygosity (Pro→Leu) [32]. The 8505C cell line was
124 established from undifferentiated thyroid carcinomas of a 78-year-old-female patient. Her tumor
125 contained also residual well differentiated components, suggesting "well differentiated to
126 undifferentiated carcinoma progression" [33]. We used both BCPAP and 8505C cell lines to test
127 whether manipulation of the expression of a gene has large transcriptomic consequences if that gene
128 has a higher GCH.

129 The LNCaP cells (Lymph Node Carcinoma of the Prostate) are androgen-sensitive adherent
130 epithelial cells, obtained from a 50-year-old white male in 1977 [34]. The DU145 hormone insensitive
131 cells were derived in 1976 from prostate adenocarcinoma metastatic to the brain of a 70 year old
132 white male [35].

133

134 *2.3. Biological replicas*

135 The biological replicas (the quarters of a quadrisectioned homogeneous region of a tumor or four
136 cell culture dishes of a cell line) can be considered as being the same system but subjected to slightly
137 different environmental conditions. As such, the transcriptomic data provide valuable information
138 on how much the genes resist or adapt to the external influences and how the variations of their
139 expression levels are correlated to optimize the functional pathways. From the expression values of
140 each coding and non-coding RNA in the biological replicas we derive three independent measures
141 to be used in subsequent analyses: i) average level, ii) coefficient of variation and iii) expression
142 correlation with each other RNA. The average expression level is used to identify what gene is
143 up/down-regulated when compared two conditions. The coefficient of variation (CV) is used to
144 estimate the control of the transcript abundance in each condition, and the expression correlation to
145 identify and quantify the transcriptomic networks.

146

147 *2.4. Microarray*

148 We have used our standard protocol [36] for RNA extraction, purification, reverse transcription
 149 and fluorescent labeling, and hybridization with Agilent human 4x44k gene expression two-color
 150 G2519F microarrays. The chips were scanned with an Agilent G2539A dual laser scanner and
 151 primary analysis performed with (Agilent) feature extraction v. 12.0 software. All spots with
 152 corrupted or saturated pixels, or with forward fluorescence less than twice the background one in
 153 any of the four profiled biological replicas were removed from the analysis of that type of samples.
 154

155 *2.5. Relative Expression Variation (REV) and Relative Expression Stability (RES)*

156 All microarray platforms probe transcripts redundantly by several (unfortunately not uniform
 157 numbers of) spots. Therefore, instead of the coefficient of variation for the expression level in
 158 biological replicas as determined by one spot we use the Relative Expression Variation (REV, [37])
 159 that takes into account all spots R_i probing redundantly the same transcript i . REV is the mid-interval
 160 chi-square estimate of the pooled expression level CVs in biological replicates of that condition
 161 (cancer or normal) with a pre-established probability ε and number of degrees of freedom derived
 162 from the number of spots probing the same transcript:
 163

$$REV_i^{(condition)}(\varepsilon) = \frac{1}{2} \left(\sqrt{\frac{r_i}{\chi^2(r_i; 1 - \varepsilon/2)}} + \sqrt{\frac{r_i}{\chi^2(r_i; \varepsilon/2)}} \right) \sqrt{\frac{1}{R_i} \sum_{k=1}^{R_i} \left(\frac{s_{ik}^{(condition)}}{\mu s_{ik}^{(condition)}} \right)^2}$$

164 s_{ki} = standard deviation of the expression level of gene i probed by spot k

μs_{ik} = average expression level of gene i probed by spot k

$r_i = \lambda R_i - 1$ = number of degrees of freedom

λ = number of biological replicas ($\lambda \geq 4$)

R_i = number of microarray spots probing redundantly transcript i

165 (1)

166

167 In our experiments with Agilent 4x44k microarrays the number of spots probing redundantly
 168 the same transcript ranges from 1 to 28, so that $r = 3, 4, \dots, 71$. Our Cancer GMR software has
 169 uploaded the chi-square values for all these values of r and for $\varepsilon = 0.010, 0.025, 0.050, 0.100$, values
 170 less than 0.010 being useless because of the technical noise affecting the gene expression levels.
 171 However, in the applications presented here, we used $\lambda = 4$ and $\varepsilon = 0.05$ for which the correction
 172 coefficient of the CV ranges from 1.566 ($R = 1$) to 0.960 ($R = 28$). Therefore, λ and ε will be omitted
 173 from the next equations.

174 Relative Expression Stability (RES) is a measure we introduce to rank the priorities of the cell
 175 homeostatic mechanisms in controlling the right abundance of a particular transcript. RES is applied
 176 to all transcripts regardless of them translating into proteins or having only regulatory roles for the
 177 expression of other transcripts.

178

$$179 RES_i = \ln \left(\frac{\langle REV \rangle}{REV_i} \right) , \quad \langle REV \rangle = \text{median REV for all transcripts} \quad (2)$$

180

181 The log form was selected to assign positive values to the more stably expressed and negative ones
 182 to the less stably expressed genes than the median one.

183

184 *2.6. Expression regulation*

185 Instead of an arbitrarily introduced (e.g. 1.5x or 2.0x) absolute fold-change, we consider a gene
 186 as significantly regulated in cancer with respect to the normal counterpart if the absolute expression
 187 ratio $|x|$ exceeds the cut-off calculated for that gene.

$$|x_i| > CUT_i = 1 + \sqrt{2 \left((REV_i^{(cancer)})^2 + (REV_i^{(normal)})^2 \right)} \quad , \quad \text{where:}$$

188
$$|x_i| = \begin{cases} \frac{\mu_i^{(cancer)}}{\mu_i^{(normal)}} & , \quad \text{if } \mu_i^{(cancer)} > \mu_i^{(normal)} \\ -\frac{\mu_i^{(normal)}}{\mu_i^{(cancer)}} & , \quad \text{if } \mu_i^{(cancer)} < \mu_i^{(normal)} \end{cases} \quad , \quad \text{with:} \quad \begin{cases} \mu_i^{(cancer)} = \frac{\mu_{ik}^{(cancer)}}{\mu_{ik}^{(normal)}} \\ \mu_i^{(normal)} = \frac{\mu_{ik}^{(normal)}}{\mu_{ik}^{(cancer)}} \end{cases} \quad (3)$$

189

190 CUT observes the uncertainty about expression regulation by taking into account the
 191 contributions of both biological variability and technical noise. It is not uniform among the
 192 quantified transcripts and takes >1 values that may be smaller than 1.5.

193 However, rather than the popular percentage of the regulated out of quantified genes, we
 194 measure the change in the transcriptional profiles by the Weighted Pathway Regulation (WPR).
 195 WPR is not restricted to the regulated but ponders all quantified genes. We have previously used
 196 WPR to quantify the remodeling and recovery of functional genomic fabrics in heart [38],
 197 hypothalamus [13] and hippocampus [39]:

198

199
$$WPR \equiv \left\langle \mu_i^{(normal)} \left(|x_i^{(cancer)} - 1| \right) \left(1 - p_i^{(cancer)} \right) \right\rangle \quad , \quad \text{where:} \quad (4)$$

200 $p_i^{(cancer)}$ = p-val of the heteroscedastic *t*-test of the equality of the mean expressions

201

202 The percentage of the regulated genes regards all regulated genes as equal contributors
 203 regardless of the fold-change and p-value. In contrast, WPR weights the genes by considering the
 204 expression ratio (x), the p-value of the *t*-test of equal expression, and the average expression level in
 205 the normal tissue ($\mu^{(normal)}$).

206

2.7. Expression Correlation

207 Pearson pair-wise correlation coefficient ρ_{ij} was computed for the \log_2 expressions of all
 208 $N(N-1)/2$ pairs that can be formed with the N adequately quantified distinct transcripts in all
 209 biological replicas. The correlation coefficient takes values from -1 to +1. Close to positive and
 210 negative unit ρ 's indicate that the expression of one gene of the pair has strong synergistic or
 211 antagonistic consequences on the expression of the other, without specifying what gene comes first.
 212 Expressions of synergistic partners fluctuate in phase, those of antagonistic partners fluctuate in
 213 antiphase. We believe that strong synergism and antagonism occur when the expressing genes are
 214 linked in a functional pathway, providing the "transcriptomic stoichiometry" that rules the
 215 expression levels of the involved proteins [40]. Close to zero correlation coefficient means either that
 216 the two genes are independently expressed (not networked in any functional pathway) or (very
 217 unlikely) that their synergistic correlation in some pathways is balanced by their antagonistic
 218 correlation in other pathways.

219

220 2.8. Gene Commanding Height (GCH)

221 The Gene Commanding Height (GCH) was introduced by us [21, 22] to quantify the importance
 222 of each gene for the cell phenotype. We consider that the expression level of a critical gene for the cell
 223 phenotype should be under a stricter control/protection of the homeostatic mechanisms and
 224 therefore should have higher expression stability among biological replicas. The same gene should
 225 also have a major regulatory role by coordinating the expression of many other genes. If we are
 226 allowed a comparison, the most protected persons in the UK are the Queen and the Prime Minister.
 227 However, the Prime Minister not the Queen is the Master Regulator owing to the power of the office
 228 to oversee all major sectors in the UK policy and economy.

$$229 \quad GCH_i = \exp \left(RES_i + \frac{\frac{1}{N-1} \sum_{j=1, j \neq i}^N \rho_{ij}^2}{\underbrace{\frac{1}{N(N-1)} \sum_{k=1}^N \left(\sum_{j=1, j \neq k}^N \rho_{kj}^2 \right)}_{\text{relative coordination power}}} \right) \simeq \frac{\langle REV \rangle}{REV_i} \times \exp \left(4 \overline{\rho_{ij}^2} \Big|_{\forall j \neq i} \right) \quad (5)$$

230 *2.9. Gene ontology and functional pathways*

231 Whenever available through Gene Ontology Consortium [41, 42, www.geneontology.org]
 232 and/or Kyoto Encyclopedia of Genes and Genomes (KEGG, [43, <http://www.genome.jp>]) functional
 233 pathways are assigned to the genes. This can be done either by using the KEGG Ontology number as
 234 in GAEV [44], (https://github.com/UtaDaphniaLab/Gene_Annotation_Easy_Viewer), either by the
 235 gene symbol as in our GMR-Pathway (see below).

236 In this report we considered the following KEGG pathways: APO (map hsa4210 apoptosis),
 237 BTF (hsa03022 basal transcription factors), CCY (hsa04110 cell cycle), CSP (hsa04062 chemokine
 238 signaling), OXP (hsa00190 oxidative phosphorylation), RCC (hsa05211 renal cell carcinoma) and
 239 RPO (hsa03020 RNA polymerase).

240 *2.10. CANCER-GMR software*

241 Programs of our CANCER-GMR software package were designed using the Anaconda
 242 distribution of Python 3 with statistical and graphical user interface packages such as SciPy
 243 (<https://www.scipy.org/>) and Tkinter GUI (Graphical User Interface). The GMR Software Package
 244 includes executable programs to determine the absolute fold-change cut-offs (CUT) when
 245 comparing gene expression average levels in cancer and healthy tissues, identify functional
 246 pathways within KEGG dbase (PATHWAY), the Weighted Pathway Regulation (WPR), the Pearson
 247 correlation coefficients between the expression levels of all gene pairs (CORRELATION) and the
 248 Gene Commanding Height (GCH).

```

250
251 #CUT#
252 REV1 = CORRECTION * std1/mean1
253 REV2 = CORRECTION * std2/mean2
254 CUT = 1 + np.sqrt( 2 * ( np.square(df["REV1"]) + np.square(df["REV2"]) ) )
255
256 #PATHWAY#
257 gene = REST.kegg_get(species+':'+gene).read()
258 ### find all pathways in KEGG
259 if current_section == "PATHWAY":
260     gene_identifiers= line[12:].split("; ") #Splits each line based on ;
261
262 #WPR#
263 avg_gch = avg_gch / length #avg of GCH of the genes in a certain pathway
264 wpr = np.mean(avg_gch * (abs(fc)-1) * (1-p_val))
265
266 #CORRELATION#
267 df = pd.read_csv(df, header=0, na_values = "NaN")
268 data = pd.concat([df[condition_input+"1"],df[condition_input+"2"],
269 df[condition_input+"3"], df[condition_input+"4"]], axis=1)
270 logvalues = np.log2(data)
271 results = (logvalues.T).corr(method='pearson') #transpose and find correlation
272 pearsons_df = pd.DataFrame(results.values, columns = df['GeneName'], index =
273 df['GeneName'].values) ## change to dataframe
274
  
```

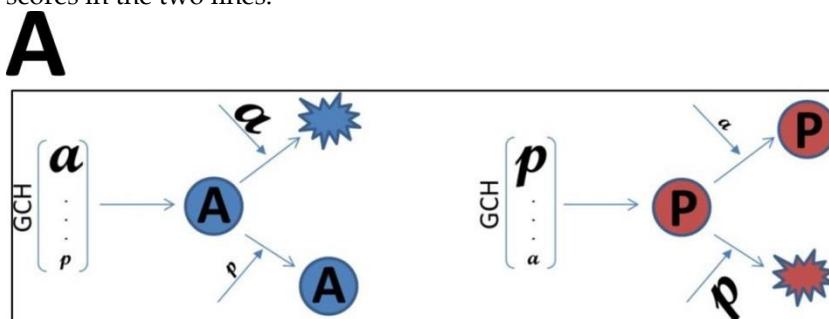
```

275 #GENE COMMANDING HEIGHT#
276 expcon = median / cov #expression control
277 results = (logvalues.T).corr(method='pearson') #transpose and find correlation
278 thesum = (results * results).sum(axis = 0)
279 ### gene commanding height calculations
280 controlcoor = np.exp((4*thesum-1)/len(pearsons_df.index)-1)
281 gch = expcon.values * np.exp((4*thesum-1)/len(pearsons_df.index)-1).values
282 gch = pd.DataFrame(gch, dtype='float')
283

```

284 2.11. Experimental design to validate the GMR theory

285 One way to validate the GMR theory is to establish the GCH hierarchy in two cell lines,
286 transfect each line with genes having same expression level but different GCHs and compare the
287 transcriptomic alterations (Fig.1A). The theory is validated if the alterations of the same gene
288 transfection are higher in the cells where that gene has a higher GCH. We tested the usefulness of the
289 GMR approach for cancer gene therapy by stable lentiviral transfecting the human BCPAP
290 (papillary) and 8505C (anaplastic) thyroid cancer cell lines with four genes NEMP1, PANK2,
291 DDX19B and UBALD1. As presented in Fig.1B, the selected genes have similar average expression
292 levels (AVE, normalized to the median of all quantified transcripts) but significantly different GCH
293 scores in the two lines.



294

295

296 **Figure 1: A. Experimental design to validate the GMR theory.** **a** is a gene with higher GCH in the
297 A-cells (e.g.: 8505C anaplastic thyroid cancer cell line) than in the **P**-cells (e.g.: BCPAP papillary
298 thyroid cancer cell line), while **p** is a gene with higher GCH in the **P**-cells than in the **A**-cells. The
299 theory is verified if transfection of **a** will induce significantly larger WPR in the **A**-cells than in the
300 **P**-cells and transfection of **p** will induce larger WPR in the **P**-cells than in the **A**-cells.

301 **B. The genes used to test the GMR Theory**^{expression data from GSE72304, [22]}. The grey background indicates
302 the larger GCH scores.

303

304 3. Results and Discussion

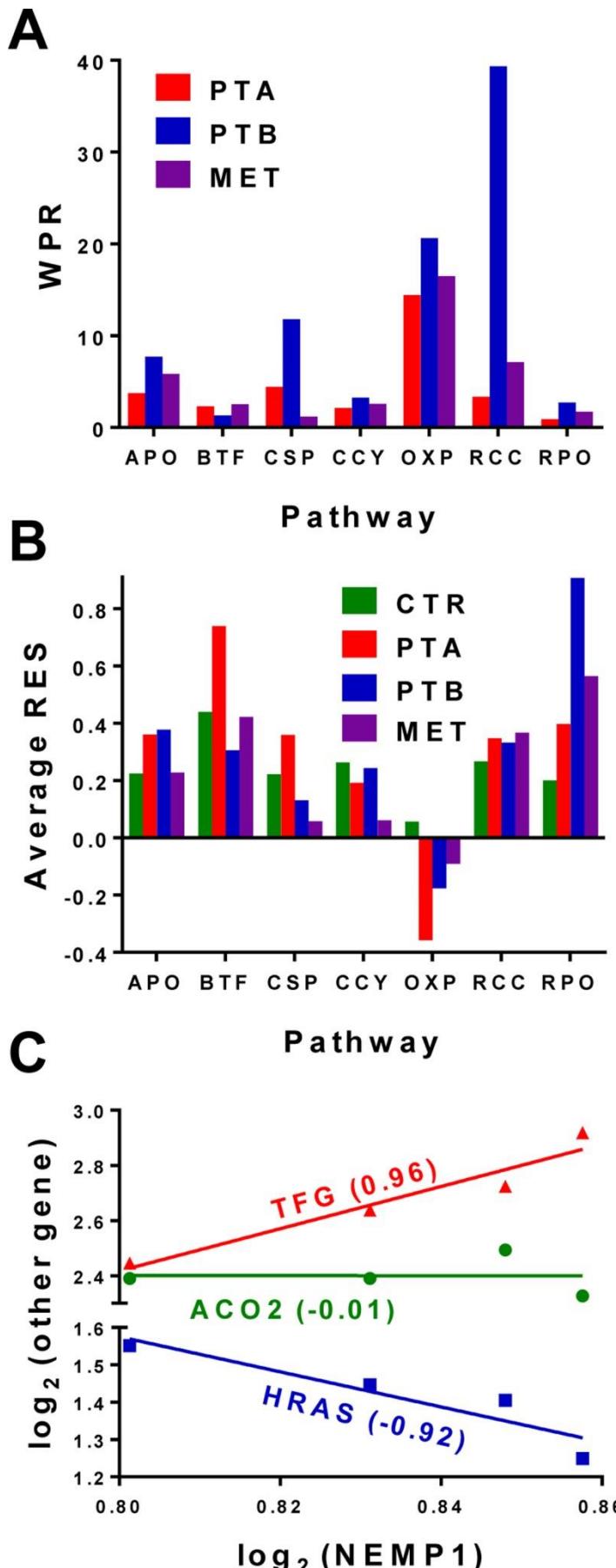
305 3.1. Experimental data

306 The GMR approach is illustrated here with applications to our gene expression datasets from
307 surgically removed human (kidney, thyroid, prostate) cancer tissues and commercially available
308 human cancer cell lines deposited by us in the Gene Expression Omnibus of the National Center for

309 Biotechnology Information (www.ncbi.nlm.nih.gov/gds). Data used in this report were from
310 GSE72304 (a case of metastatic clear cell renal cell carcinoma (CCRCC), GSE97001 (a case of papillary
311 thyroid cancer), GSE97002 (BCPAP papillary and 8505C anaplastic thyroid cancer cell lines) and
312 from two (**GSE to be provided prior to publication**) cases of prostate cancer. Expression data for the
313 GMR Theory validation on thyroid cancer cell lines BCPAP and 8505C were collected from
314 GSE97031 (transfection with NEMP1), GSE97028 (DDX19B), GSE97030 (PANK2) and GSE97427
315 (UBALD1). Other expression data from cancer cell lines were collected from GSE72333 (DU145),
316 GSE72414 (LNCaP) and GSE72415 (HL-60).

317
318 *3.2. Expression stability, expression correlation and weighted pathway regulation*
319 The Relative Expression Stability (RES) can be used not only to establish the hierarchy of
320 individual genes but also the hierarchy of functional pathways. Fig. 2A presents the average RES
321 scores of several pathway analyzed in each of the four regions profiled from the CCRCC samples.
322 The averages were determined for 107 APO, 37 BTF, 131 CSP, 91 CCY, 100 OXP, 54 RCC and 31 RPO
323 genes out of the 12610 distinct genes whose expression was adequately quantified in all four regions
324 of the CCRCC samples. WPR analysis of the CCRCC samples for the same pathways returned the
325 results from Fig.2B. Note that (by far) the most affected pathway was (as expected) RCC (the renal
326 cell carcinoma) followed by OXP (oxidative phosphorylation).

327 Fig.2C illustrates the correlation analysis with examples of synergistically, antagonistically and
328 independently expressed partners of *NEMP1* (nuclear envelope integral membrane protein 1) in the
329 BCPAP cells. In our opinion, the strong correlations of the (not yet assigned to a pathway) *NEMP1*
330 gene with the oncogenes *TFG* and *HRAS* indicate its potential role in the papillary thyroid cancer.
331 *HRAS* is among the most documented genes whose mutations have been associated with thyroid
332 cancer [45]. *TFG* gene is described in <https://www.ncbi.nlm.nih.gov/gene/10342> as partially
333 encoding several fusion oncoproteins and participating in several “oncogenic rearrangements
334 resulting in anaplastic lymphoma and mixoid chondrosarcoma”. *TFG*-MET (MET proto-oncogene
335 receptor tyrosine-kinase) translocation was reported in a follicular variant of the papillary thyroid
336 carcinoma [46]. Interestingly, *NEMP1* was recently shown as promoting tamoxifen resistance in
337 breast cancer cells [47]. Thus, the correlation analysis may be used to refine the maps of the
338 functional pathways by determining the gene pairs whose correlated expression may result from a
339 functional relationship between their encoded proteins.

340
341342 Figure 2^{reprocessed} expression data from [21]: A. Average Relative Expression Stability (RES) of several
343 functional pathways in the four regions profiled from CCRCC samples. Note that the RNA

344 polymerase (RPO) and basal transcription factors (BTF) are the most protected pathways, while the
 345 control of the oxidative phosphorylation (OXP) is relaxed, presumably to allow the cells to adapt the
 346 environmental conditions. **B. Weighted Pathway Regulation (WPR) analysis of several functional**
 347 **pathways.** Pathways: APO = apoptosis, BTF = basal transcription factors, CCY = cell cycle, CSP =
 348 chemokine signaling, OXP = oxidative phosphorylation, RCC = renal cell carcinoma, RPO = RNA
 349 polymerase. **C. Example of the correlation analysis.** NEMP1 is synergistically expressed with TFG
 350 (trafficking from ER to golgi regulator), antagonistically expressed with HRAS (Harvey rat sarcoma
 351 viral oncogene homolog) and independently expressed with ACO2 (aconitase 2, mitochondrial) in
 352 BCPAP cells.

353

354 3.3. *Cancer nuclei and surrounding normal tissue are governed by distinct GMRs*

355 Tables 1-3 present the GCH scores of the top 3 genes in cancer nuclei and surrounding normal
 356 tissue in a case of metastatic clear cell renal cell carcinoma, a case of papillary thyroid cancer and two
 357 cases of prostate cancer.

GENE	DESCRIPTION	CHR	CTR	PTA	PTB	MET
DAPK3	death-associated protein kinase 3	19	30.31	4.73	1.15	2.52
PMPCA	peptidase (mitochondrial processing) alpha	9	28.35	6.82	3.24	4.26
COA1	cytochrome c oxidase assembly factor 1 homolog	7	22.40	4.83	3.94	1.42
TASOR	transcription activation suppressor	3	3.08	63.97	1.59	5.40
BCR	breakpoint cluster region	22	1.15	57.43	1.14	1.22
C2orf81	chromosome 2 open reading frame 81	2	2.24	51.24	3.19	1.84
FAM27C	family with sequence similarity 27, member C	9	1.75	6.03	57.19	3.73
GTPBP3	GTP binding protein 3 (mitochondrial)	19	2.07	29.80	40.06	14.01
MIR1915HG	MIR1915 host gene (AKA: CASC 10 = cancer susceptibility candidate 10)	10	2.57	5.55	31.14	4.06
ALG13	ALG13, UDP-N-acetylglucosaminyltransferase subunit	X	3.64	9.97	2.12	82.95
NUDT18	nudix (nucleoside diphosphate linked moiety X)-type motif 18	8	1.64	2.69	1.89	48.40
RAD54B	RAD54 homolog B (<i>S. cerevisiae</i>)	8	0.96	6.10	4.09	40.02

358

359 **Table 1** reprocessed expression data from GSE72304, [21]: **Gene Commanding Heights of the top three genes (grey**
 360 **background) in the two primary tumor (PTA, PTB) regions from the right kidney and chest wall**
 361 **(MET) of a patient with metastatic clear cell renal cell carcinoma and their GCH scores in the**
 362 **other regions from the analyzed CCRCC sample. CHR = chromosomal location. Note that,**
 363 **although different from one cancer region to the other, the top genes of cancer nuclei (PTA, PTB and**
 364 **MET) have substantially lower GCH scores in the control (normal, CTR) tissue and that the top**
 365 **genes of CTR region have lower GCH scores in the PTA, PTB and MET regions.**

366

367 In Table 1, only *Alg13* is an actionable GMR (for MET region) owing to its significantly higher
 368 GCH (82.95) with respect to the second gene, *NUDT18* (GCH = 48.40). Interestingly, *ALG13* (an early
 369 target of miR-34a) was reported as correlated with worse clinical outcomes for neuroblastoma [48].
 370 Results in Table 1 also indicate that distinct cancer nuclei of the same tumor (PTA, PTB) may have
 371 distinct gene hierarchy that explains their phenotypic diversity.

GENE	DESCRIPTION	CHR	NORM	PAP-C	BCPAP	8505C
RASD1	RAS, dexamethasone-induced 1	17	41.51	4.50	5.70	7.31
POTEF	POTE ankyrin domain family, member F	2	31.17	8.50	6.90	6.36
RCN2	reticulocalbin 2, EF-hand calcium binding domain	15	31.09	5.53	7.99	10.38
SPINT2	serine peptidase inhibitor, Kunitz type, 2	19	1.93	54.97	18.83	5.88
RPAP3	RNA polymerase II associated protein 3	12	5.33	51.74	3.25	12.69
BZW1	basic leucine zipper and W2 domains 1	2	2.67	44.32	12.77	26.73
RPF1	ribosome production factor 1 homolog	1	8.36	2.22	135.50	22.11
TIMP2	TIMP metallopeptidase inhibitor 2	17	2.68	6.36	110.45	18.04
ECT2	epithelial cell transforming 2	3	6.93	8.16	100.98	28.15
SENP5	SUMO1/sentrin specific peptidase 5	3	9.93	6.32	100.37	13.71
RPL13A	ribosomal protein L13a	19	13.16	8.73	63.26	83.02
ALDOA	aldolase A, fructose-bisphosphate	16	7.00	28.05	2.59	67.30
TIPIN	TIMELESS interacting protein	15	3.11	9.15	37.04	56.85

372

373

374

375 **Table 2** reprocessed expression data from GSE97001, GSE97002, [22]: **Gene Commanding Heights of the top genes (grey**
 376 **background) in normal (NORM) and cancer (PAP-C) regions of the unilateral tumor removed**
 377 **from a 33y old Asian female, with papillary thyroid cancer (pathological stage pT3NOMx).** For
 378 comparison, we present also the results for the standard BCPAP (papillary) and 8505C (anaplastic)
 379 human thyroid cancer cell lines. Owing to their close (and over 100) GCHs, four instead of three
 380 genes are listed for the BCPAP cells. Note the differences in GCH scores between NORM and
 381 PAP-C. Note also the differences between the GCH scores of genes in the surgically removed
 382 carcinoma and the BCPAP cell line, even both are reported as papillary thyroid cancers.

383 In a previous publication [22], we have presented the GCH scores of 78 cancer biomarkers, 44
 384 oncogenes, 55 apoptosis genes and 120 ncRNAs in the cancer and normal areas of a surgically
 385 removed papillary thyroid tumor. In that selection of 297 genes, all but *RAB15* (GCH^(cancer) = 26.14)
 386 had GCH scores below 20. The complete GCH analysis of the expression data in the same tumor
 387 sample revealed that the GMR of the cancer area is *SPINT2* (GCH^(cancer) = 54.97). Interestingly,
 388 *SPINT2* a transmembrane protein that inhibits serine proteases implicated in cancer progression
 389 [49], acts as a putative tumor suppressor when hypermethylated [50].
 390

GENE	DESCRIPTION	CHR	NORM1	CANCER1	NORM2	CANCER2	LNCaP	DU145
TOR1A	torsin family 1, member A	9	84.24	1.91	3.27	10.94	6.57	16.47
MRPS12	mitochondrial ribosomal protein S12	19	80.71	4.09	3.50	3.04	12.16	15.71
GTF2H1	general transcription factor IIH, polypeptide 1	11	42.66	5.71	5.27	5.83	4.34	17.34
BAIAP2L1	BAI1-associated protein 2-like 1	7	2.06	49.38	0.86	2.56	3.72	15.95
FAM71E1	family with sequence similarity 71, member E1	19	0.93	48.21	1.08	4.49	3.59	16.26
MAP6D1	MAP6 domain containing 1	3	1.29	45.26	1.34	2.05	7.50	16.61
SFR1	SWI5-dependent recombination repair 1	10	2.66	1.36	40.10	4.64	5.01	17.10
EDF1	endothelial differentiation-related factor 1	9	2.52	1.86	29.51	5.75	5.18	17.25
RHOD	ras homolog family member D	11	1.25	1.15	27.90	2.50	3.92	14.89
LOC145474	uncharacterized long non-coding RNA	14	2.23	1.64	1.16	126.75	1.01	12.33
PRRG1	proline rich Gla (G-carboxyglutamic acid) 1	X	N/A	N/A	1.82	87.53	5.10	14.33
ASAP3	ArfGAP with SH3 domain, ankyrin repeat and PH domain 3	1	1.19	1.73	1.97	76.23	4.15	16.28
WFDC3	WAP four-disulfide core domain 3	20	3.57	1.90	1.33	11.61	173.58	15.89
RPL31	60S ribosomal protein L31	2	1.30	0.94	2.19	8.25	39.11	18.16
ALX4	ALX homeobox 4	11	N/A	N/A	N/A	6.32	35.18	18.16
VIM	vimentin	10	1.28	1.97	N/A	2.85	3.51	33.95
POTEM	POTE ankyrin domain family, member M	14	1.18	2.40	0.54	4.18	2.51	33.25
EXOC5	exocyst complex component 5	14	1.32	1.32	1.03	5.28	2.75	32.19

391

392

393 **Table 3** data from GSE... to be communicated prior to publication: **Gene Commanding Heights of the top three genes**
 394 (**grey background**) in **normal (NORM)** and **cancerous (CANCER)** regions of surgically removed
 395 prostate tumors from a 65y old black male and of a 47y old white male, both with prostatic
 396 adenocarcinoma (**Gleason score 4+5=9/10**) and negative for adenocarcinoma resection margins.
 397 Note the differences in GCH scores between NORMAL and CANCER. Note that the two men have
 398 different GMRs in both normal and cancer regions. For comparison, we show also the GCHs of the
 399 same genes (and of their own GMRs) for two standard prostate cancer cell lines: the
 400 androgen-sensitive LNCaP and the hormone insensitive DU145. Note also the large GCH gap
 401 between the first two genes (*WFDC3* and *RPL31*) in the LNCaP cells.

402

403 It is notable that *WFDC3*, the far above GMR of the androgen-sensitive prostate cancer LNCaP
 404 cells, was also reported as one of the most down-regulated gene in the ventral prostate of aged (18
 405 months) estrogen receptor $\beta^{-/-}$ mouse [51]. Interestingly, the GMR of the cancer nucleus of the second
 406 man (*LOC145474*) is a non-coding RNA, confirming that both coding and non-coding RNAs may
 407 play dominant roles in prostate tumorigenesis [52]. To our knowledge, this is the first time that
 408 *LOC145474* is reported as related to a prostate cancer.

409

410 *3.4. Experimental validation of the GMR theory*

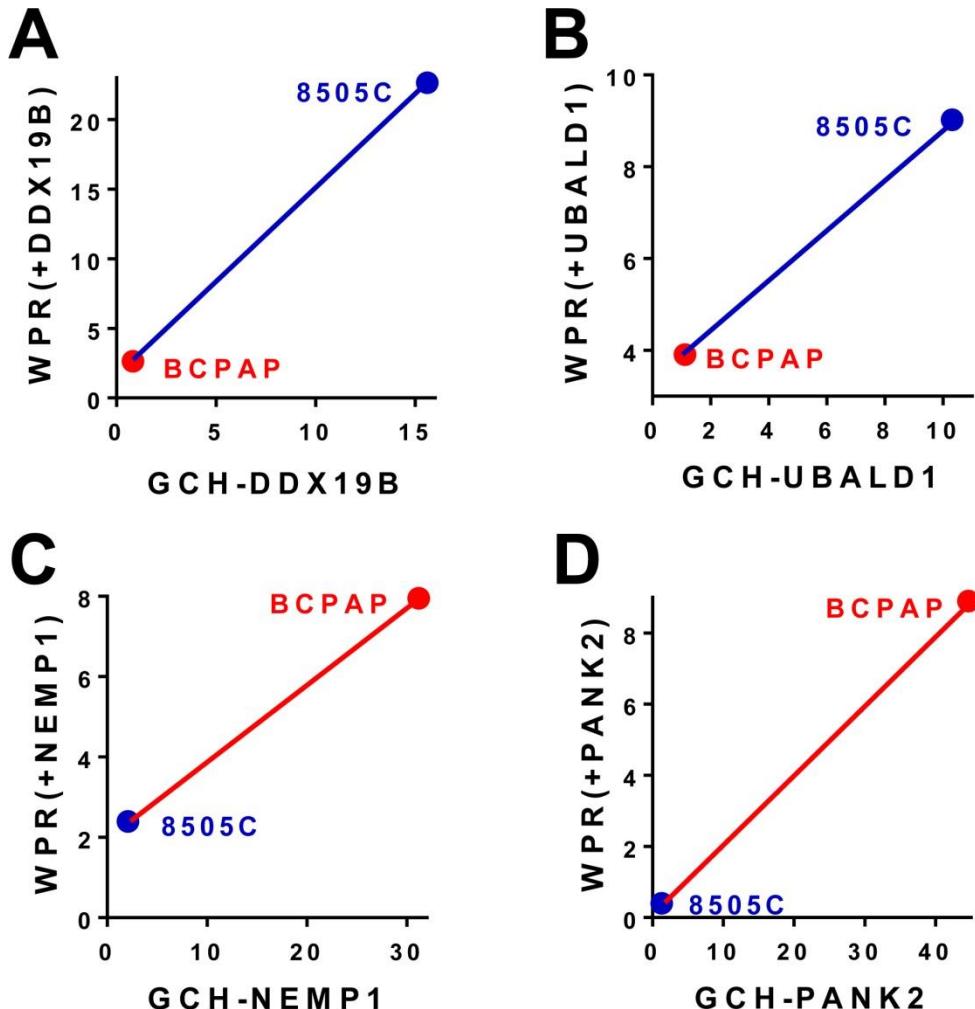
411 Our experimental results (summarized in Fig. 3) on the 8505C (anaplastic, 3A & 3C) and BCPAP
 412 (papillary, 3B & 3D) human thyroid cancer cell lines stably transfected with DDX19B, NEMP1,
 413 PANK2 or UBALD1 (characteristics in Fig.1) indicate that:

414

$$\begin{aligned}
 GCH_{NEMP1}^{(BCPAP)} &> GCH_{NEMP1}^{(8505C)} \Rightarrow WPR_{NEMP1}^{(BCPAP)} &> WPR_{NEMP1}^{(8505C)} & 415 \\
 GCH_{PANK2}^{(BCPAP)} &> GCH_{PANK2}^{(8505C)} \Rightarrow WPR_{PANK2}^{(BCPAP)} &> WPR_{PANK2}^{(8505C)} \\
 GCH_{DDX19B}^{(BCPAP)} &< GCH_{DDX19B}^{(8505C)} \Rightarrow WPR_{DDX19B}^{(BCPAP)} &< WPR_{DDX19B}^{(8505C)} & 416 \\
 GCH_{UBALD1}^{(BCPAP)} &< GCH_{UBALD1}^{(8505C)} \Rightarrow WPR_{UBALD1}^{(BCPAP)} &< WPR_{UBALD1}^{(8505C)} & 417
 \end{aligned} \tag{6}$$

418

419 We have also observed that transfections of NEMP1 and PANK2 significantly slowed down
 420 multiplication of BCPAP cells, while transfection of DDX19B or UBALD1 had little effect on these
 421 cells. By contrast, both transfections of DDX19B and UBALD1 significantly slowed down grow of
 422 8505C cells, while transfection of NEMP1 and PANK2 had little effect. Together, these observations
 423 confirms that expression manipulation of a gene has larger consequences in cells where that gene
has higher GCH.

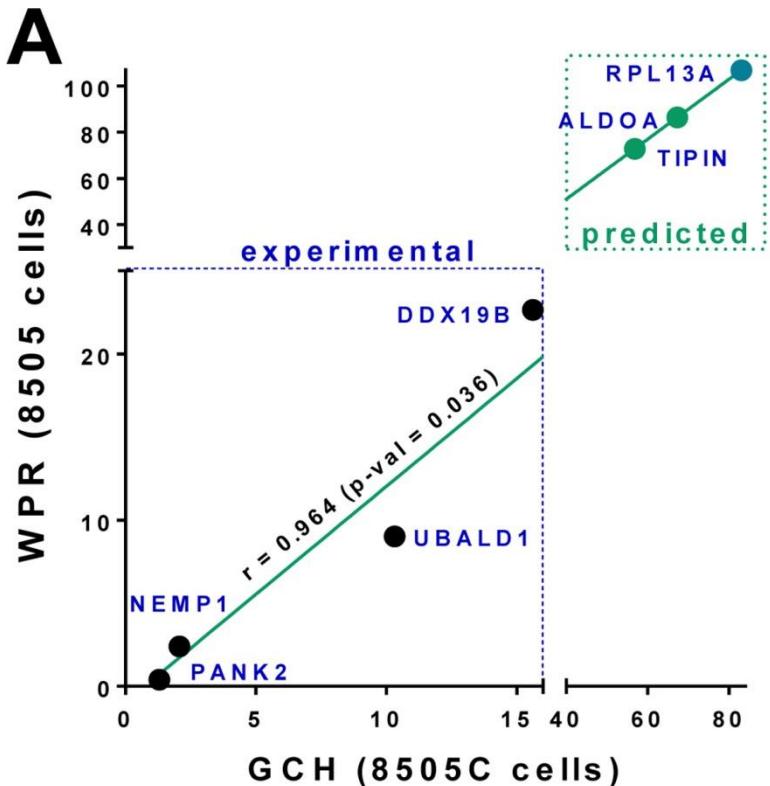
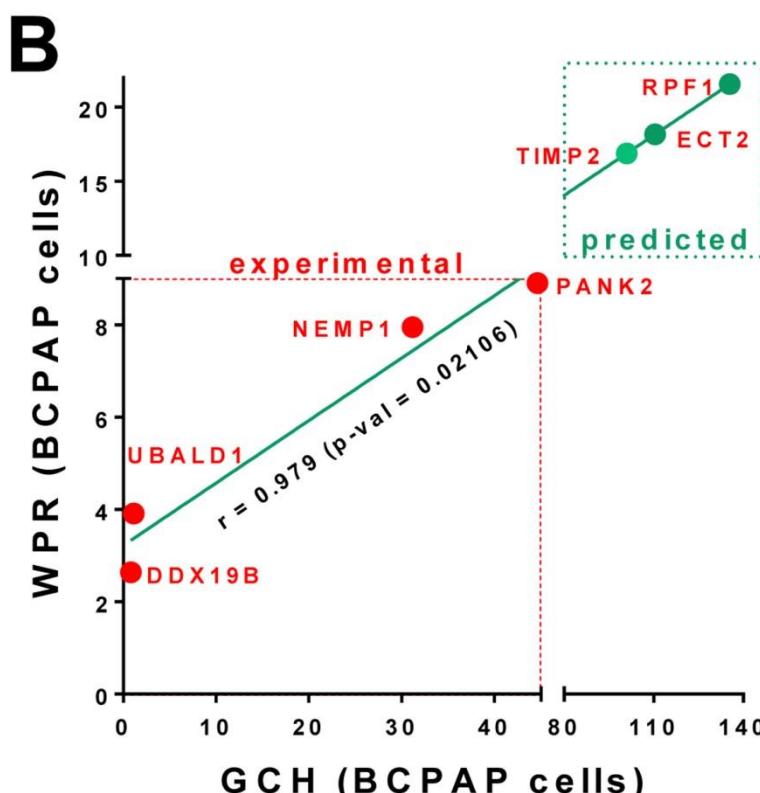


424

425 **Figure 3** expression data from GSE97031, GSE97028, GSE97030, GSE97427, [22]. **Validation of the GMR Theory.** A & B. Stable
 426 transfection of genes with higher GCH in the 8505C cells than in BCPAP cells had larger
 427 transcriptomic effects in 8505C cells as measured by the Weighted Pathway Regulation (WPR). C &
 428 D. Stable transfection of genes with higher GCH in the BCPAP cells than in 8505C cells had larger
 429 transcriptomic effects in BCPAP cells as measured by the Weighted Pathway Regulation (WPR).

430 *3.5. Predicted transcriptomic alteration by GMR manipulation*

431 At the time, we had no possibility to alter the expression of the GMRs identified in the thyroid
 432 cancer cell lines 8505C and BCPAP. Fig. 4 presents the predicted Weighted Pathway Regulation if
 433 significantly altering the expressions of the top three genes in the 8505C and BCPAP cells.

434
435

436 **Figure 4:** A. Experimentally measured and theoretically predicted effects of stably transfecting
 437 PANK2, NEMP1, UBALD1, DDX19B and the top three genes (RPL13A, ALDOA and TIPIN) in the
 438 8505C. B. Experimentally measured and theoretically predicted effects of stably transfecting PANK2,
 439 NEMP1, UBALD1, DDX19B and the top three genes (RPF1, ECT2 and TIMP2) in the BCPAP cells.

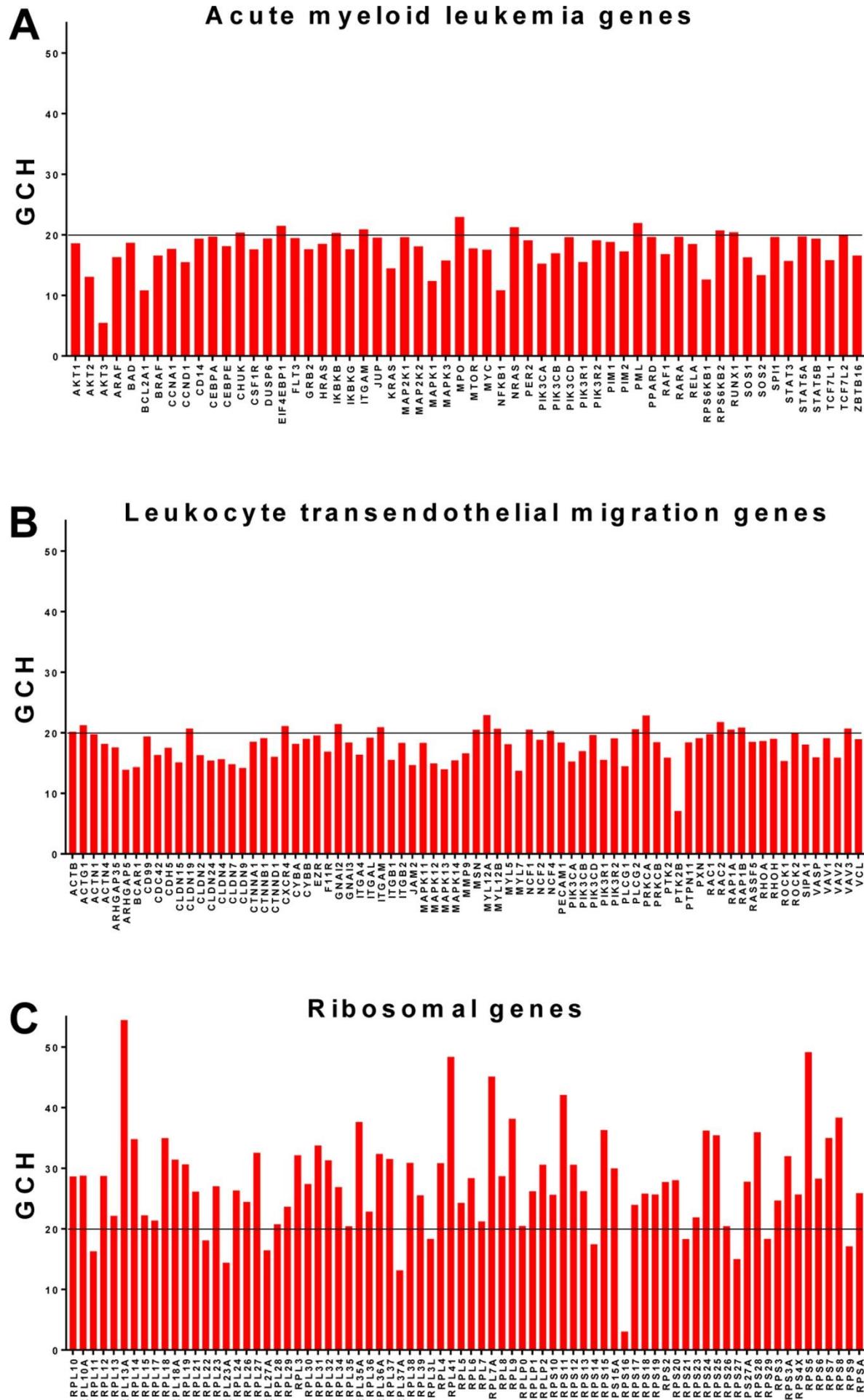
440
 441 Interestingly, the GMR of the anaplastic cell line (RPL13A) was found as the most stably expressed
 442 gene in two ovarian cancer cell lines (UACC-1598 and SKOV3) subjected to two widely used

443 anticancer treatment [53], confirming the major role played by this gene in stabilizing the cancer
444 phenotype.

445

446 *3.6. Ribosomal genes top the hierarchy in the acute promyelocytic leukemia HL-60 cell line*

447 An interesting gene hierarchy was obtained for the HL-60 cells (Fig. 5), where most of the
448 ribosomal genes top all KEGG identified genes as associated with acute myeloid leukemia (AML,
449 https://www.kegg.jp/kegg-bin/show_pathway?map=has05221&show_description=show). Thus, the
450 top two AML genes, *MPO* (myeloperoxidase) and *PML* (promyelocytic leukemia) have the GCHs
451 22.96 and 21.95, below those of the 56th and the 59th ranked ribosomal proteins RPL29 (23.64) and
452 RPL13 (22.12). As presented in Fig. 5C, genes from both large (RPL) and small (RPS) ribosomal
453 subunits are among the highest ranked genes in the HL-60 cells. According to our results, certain
454 ribosomal genes (RPL13A, RPS5) are more influential in dictating/preserving the HL-60 phenotype
455 than *RARA* (retinoic acid receptor alpha, GCH = 19.67), the gene whose translocation t(15;17) [53,54]
456 is associated with 98% of acute promyelocytic leukemia cases. Interestingly, *RPL13A* was also found
457 as the most influential gene in 8505C (anaplastic thyroid cancer) cells and with high GCH (63.26) in
458 the BCPAP cells (Table 2 above). For comparison, Fig. 5 presents also the GCH scores for the genes
459 associated with the immune system KEGG pathway of leukocyte transendothelial migration
460 (https://www.kegg.jp/kegg-bin/show_pathway?map=hsa04670&show_description=show).
461



463 **Figure 5** expression data from GSE72415: Gene Commanding Height (GCH) scores in the acute promyelocytic
464 leukemia cell line HL-60. A. GCH scores of genes associated with acute myeloid leukemia. B.
465 GHC scores of genes associated with KEGG pathway of leukocyte transendothelial migration. C.
466 GCH scores of the ribosomal genes.

467 **4. Conclusions**

468 In this report, we proposed that the most legitimate targets for the cancer gene therapy are the
469 genes whose highly controlled expressions by the homeostatic mechanisms are the most influential
470 by being correlated with expressions of many other genes. We termed these targets Gene Master
471 Regulators (GMRs), and developed and used the necessary experimental protocol, mathematical
472 algorithm and computer software to identify them from gene expression studies.

473 The GMR approach was applied to our microarray data on five standard (anaplastic thyroid,
474 papillary thyroid, prostate androgen-sensitive and insensitive, and blood) cancer cell lines and ten
475 profiled regions from surgically removed CCRCC (4), and prostate (4) and papillary thyroid (2)
476 cancers. The studies revealed that the GMRs may differ even for patients with the same form of
477 cancer (like in the above two prostate cases and in comparisons with cell lines), justifying the
478 necessity of a personalized approach of cancer gene therapy. We found that the GMRs can be located
479 in any chromosome, that their transcripts can be both coding and non-coding RNAs and that the
480 encoded proteins may be involved in a wide diversity of biological processes. Although we don't
481 have yet the experimental evidence, most likely the gene hierarchy changes in time, so that the
482 GMRs should be targeted as soon as possible after their identification.

483 Importantly, we found that the cancer nuclei and the surrounding normal tissues are governed
484 by different GMRs and that manipulation of the expression of a gene has consequences in line with
485 its Gene Commanding Height. Based on these findings, we launch the hypothesis that silencing the
486 GMR (using CRISPR or shRNA) may selectively kill the cancer cells with little effect on the normal
487 cells of the tissue. However, not always we found the GMR being well above the rest of the genes,
488 with the most notable exception in this report for WFDC3 (GCH = 173.58) in LNCaP cells (next gene
489 is RPL31 at 39.11). Therefore, this hypothesis may work for only cases where the GMR has a
490 significantly dominant GCH over the other genes in the cancer nucleus and a very low GCH in the
491 normal cells of the tissue.

492 **Author Contributions:** Conceptualization, D.A.I.; methodology, D.A.I., S.I.; software, N.E.; validation, S.I.,
493 D.A.I.; formal analysis, S.I., D.A.I.; investigation, S.I., D.A.I.; resources, D.A.I.; data curation, D.A.I.;
494 writing—original draft preparation, D.A.I.; writing—review and editing, D.A.I.; visualization, D.A.I.;
495 supervision, D.A.I.; project administration, D.A.I.; funding acquisition, D.A.I.

496 **Funding:** This research was funded in part by the Texas A&M University System Chancellor's Research
497 Initiative and by the PVAMU Undergraduate scholarly research award.

498 **Conflicts of Interest:** The authors declare no conflict of interest. the results".

499 **References**

- 500 1. Erstad, D.J.; Fuchs, B.C.; Tanabe, K.K. Molecular signatures in hepatocellular carcinoma: A step
501 toward rationally designed cancer therapy. *Cancer* **2018**, *124*(15):3084-3104. doi: 10.1002/cncr.31257.
- 502 2. Kretschmer, A.; Tilki, D. Biomarkers in prostate cancer - Current clinical utility and future
503 perspectives. *Crit Rev Oncol Hematol.* **2017**, *120*:180-193. doi: 10.1016/j.critrevonc.2017.11.007.
- 504 3. Lam, M.; Roszik, J.; Kanikarla-Marie, P.; Davis, J.S.; Morris, J.; Kopetz, S.; et al. The potential role of
505 platelets in the consensus molecular subtypes of colorectal cancer. *Cancer Metastasis Rev* **2017**,
506 *36*(2):273-288. doi: 10.1007/s10555-017-9678-9.
- 507 4. Sacco, A.; Fenotti, A.; Affò, L.; Bazzana, S.; Russo, D.; Presta, M.; et al. The importance of the genomic
508 landscape in Waldenström's Macroglobulinemia for targeted therapeutical interventions. *Oncotarget*
509 **2017**, *8*(21):35435-35444.
- 510 5. Santosh, A.B.; Jones, T.; Harvey, J. A review on oral cancer biomarkers: Understanding the past and
511 learning from the present. *J Cancer Res Ther* **2016**, *12*(2):486-92. doi: 10.4103/0973-1482.176414

512 6. The Cancer Genome Atlas (TCGA) Research Network et al. The Cancer Genome Atlas Pan-Cancer
513 analysis project. *Nat Genet* **2013**, *45*, 1113–1120. doi: 10.1038/ng.2764

514 7. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhor, G.; et al. A pathology atlas of the
515 human cancer transcriptome. *Science* **2017**, *357*(6352). pii: eaan2507. doi: 10.1126/science.aan2507

516 8. Iacobas, S.; Iacobas, D.A.; Spray, D.C.; Scemes, E. The connexin43 transcriptome during brain
517 development: importance of genetic background. *Brain Research* **2012**, *1487*: 131–139. doi:
518 10.1016/j.brainres.2012.05.062.

519 9. Iacobas, D.A.; Iacobas, S.; Thomas, N.; Spray, D.C. Sex-dependent gene regulatory networks of the
520 heart rhythm. *Funct Integr Genomics* **2010**, *10*(1):73–86. doi: 10.1007/s10142-009-0137-8.

521 10. Iacobas, D.A.; Fan, C.; Iacobas, S.; Spray, D.C.; Haddad, G.G. Transcriptomic changes in developing
522 kidney exposed to chronic hypoxia. *Biochem Biophys Res Comm* **2006**, *349*(1), 329–338.
523 DOI:10.1016/j.bbrc.2006.08.056.

524 11. Iacobas, D.A.; Fan, C.; Iacobas, S.; Haddad, G.G. Integrated transcriptomic response to cardiac chronic
525 hypoxia: translation regulators and response to stress in cell survival. *Funct Integr Genomics* **2008**,
526 *8*(3):265–75. doi: 10.1007/s10142-008-0082-y.

527 12. Kobets, T.; Iatropoulos, M.J.; Duan, J.D.; Brunnemann, K.D.; Iacobas, D.A.; Iacobas, S.; et al. Effects of
528 Nitrosamines on the Expression of Genes Involved in Xenobiotic Metabolism in the Chicken Egg
529 Alternative Genotoxicity Model. *Toxicol Sci* **2018**; *166*(1), 82–96, doi: 10.1093/toxsci/kfy197.

530 13. Iacobas, D.A.; Chachua, T.; Iacobas, S.; Benson, M.J.; Borges, K.; Veliskova, J.; Velisek, L. ACTH and
531 PMX53 recover the normal synaptic transcriptome in a rat model of infantile spasms. *Sci Rep* **2018**,
532 8:5722, DOI:10.1038/s41598-018-24013-x.

533 14. Teng, H.; Mao, F.; Liang, J.; Xue, M.; Wei, W.; Li, X.; et al. Transcriptomic signature associated with
534 carcinogenesis and aggressiveness of papillary thyroid carcinoma. *Theranostics* **2018**, *8*(16):4345–4358.
535 doi:10.7150/thno.26862.

536 15. Coghlain, C.; Murray, G.I. Biomarkers of colorectal cancer: Recent advances and future challenges.
537 *Proteomics Clin Appl* **2015**, *9*(1–2):64–71. doi: 10.1002/prca.201400082.

538 16. Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A. Jr.; Kinzler, K.W. Cancer
539 genome landscapes. *Science* **2013**, *339*(6127):1546–58.5. doi: 10.1126/science.1235122.

540 17. Estevez-Garcia, P.; Rivera, F.; Molina-Pinelo, S.; Benavent, M.; Gómez, J.; Limón, M.L.; et al. Gene
541 expression profile predictive of response to chemotherapy in metastatic colorectal cancer. *Oncotarget*
542 **2015**, *6*(8):6151–9. DOI:10.18632/oncotarget.3152

543 18. Li, H.; Samawi, H.; Heng, D.Y. The use of prognostic factors in metastatic renal cell carcinoma. *Urol
544 Oncol* **2015**, *33*(12):509–16 Review. doi: 10.1016/j.urolonc.2015.08.003

545 19. Martínez-Bosch, N.; Rodriguez-Vida, A.; Juanpere, N.; Lloreta, J.; Rovira, A.; Albanell, J.; et al.
546 Galectins in prostate and bladder cancer: tumorigenic roles and clinical opportunities. *Nat Rev Urol*
547 **2019**, [Epub ahead of print]. doi: 10.1038/s41585-019-0183-5.

548 20. Tang, K.; Xu, H. Prognostic value of meta-signature miRNAs in renal cell carcinoma: an integrated
549 miRNA expression profiling analysis. *Sci Rep* **2015**, *14*; 5:10272. doi: 10.1038/srep10272.

550 21. Iacobas, D.A.; Iacobas, S. Towards a personalized cancer gene therapy: a case of clear cell renal cell
551 carcinoma. *Cancer & Oncol Res* **2017**, *5*(3):45–52. DOI:10.13189/cor.2017.050301

552 22. Iacobas, D.A.; Tuli, N.; Iacobas, S.; Rasamny, J.K.; Moscatello, A.; Geliebter, J.; et al. Gene master
553 regulators of papillary and anaplastic thyroid cancer phenotypes. *Oncotarget* **2018**, *9*(2), 2410–2424.
554 doi: 10.18632/oncotarget.23417

555 23. Clevers, H.C.; Owen, M.J. Towards a molecular understanding of T-cell differentiation. *Immunol
556 Today* **1991**, *12*(2):86–92. DOI: 10.1016/0167-5699(91)90163-N

557 24. Doevedans, P.A.; van Bilsen, M. Transcription factors and the cardiac gene programme. *Int J Biochem
558 Cell Biol* **1996**, *28*(4):387–403.

559 25. Liyanarachchi, S.; Li, W.; Yan, P.; Bundschuh, R.; Brock, P.; Senter, L.; et al. Genome-Wide Expression
560 Screening Discloses Long Noncoding RNAs Involved in Thyroid Carcinogenesis. *J Clin Endocrinol
561 Metab* **2016**; *101*(11):4005–4013. DOI: 10.1210/jc.2016-1991

562 26. Wang, Y.Y.; Lin, X.D.; Fu, X.H.; Yan, W.; Lin, F.S.; Kuang, P.H.; et al. Long non-coding RNA BANCR
563 regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling
564 pathway. *ONCOLOGY REPORTS* **2018**; *40*(2): 859–866, DOI: 10.3892/or.2018.6502

565 27. Braicu, C.; Zimta, A.A.; Harangus, A.; Iurca, I.; Irimie, A.; Coza, O.; Berindan-Neagoe, I. The Function
566 of Non-Coding RNAs in Lung Cancer Tumorigenesis. *Cancers* (Basel). **2019**, *11*(5). pii: E605. doi:
567 10.3390/cancers11050605. Review.

568 28. Braicu, C.; Gulei, D.; Cojocneanu, R.; Raduly, L.; Jurj, A.; Knutsen, E.; et al. miR-181a/b therapy in lung
569 cancer: reality or myth? *Mol Oncol* **2019**, *13*(1):9–25. doi: 10.1002/1878-0261.12420.

570 29. Iacobas, D.A.; Iacobas, S.; Haddad, G.G. Heart rhythm genomic fabric in hypoxia. *Biochem. Biophys.
571 Res. Commun* **2010**, *391*(4):1769–1774. doi: 10.1016/j.bbrc.2009.12.151

572 30. Iacobas, D.A. The Genomic Fabric Perspective on the transcriptome between universal quantifiers
573 and personalized genomic medicine. *Biol Theory* **2016**, *11*(3): 123–137. DOI 10.1007/s13752-016-0245-3.

574 31. Gallagher, R.; Collins, S.; Trujillo, J.; McCredie, K.; Ahearn, M.; Tsai, S.; et al. Characterization of the
575 continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic
576 leukemia. *Blood* **1979**, *54*(3): 713–33.

577 32. Corso, C.; Ulucan, H.; Parry, E.M.; Parry, J.M. Comparative analysis of two thyroid tumor cell lines by
578 fluorescence in situ hybridization and comparative genomic hybridization. *Cancer Genet Cytogenet*
579 **2002**, *137*(2):108–18.

580 33. Ito, T.; Seyama, T.; Hayashi, Y.; Hayashi, T.; Dohi, K.; Mizuno, T.; et al. Establishment of 2 human
581 thyroid-carcinoma cell-lines (8305c, 8505c) bearing p53 gene-mutations. *Int J Oncol* **1994**, *4*(3):583–6.
582 https://doi.org/10.3892/ijo.4.3.583.

583 34. Horoszewicz, J.S.; Leong, S.S.; Chu, T.M.; Wajsman, Z.L.; Friedman, M.; Papsidero, L; et al. The
584 LNCaP cell line—a new model for studies on human prostatic carcinoma. *Prog Clin Biol Res* **1980**,
585 *37*:115–32.

586 35. Stone, K.R.; Mickey, D.D.; Wunderli, H.; Mickey, G.H.; Paulson, D.F. Isolation of a human prostate
587 carcinoma cell line (DU 145). *Int. J. Cancer* **1978**, *21* (3): 274–81. doi:10.1002/ijc.2910210305.

588 36. Kravchick, D.O.; Hrdinka, M.; Iacobas, S.; Iacobas, D.A.; Kreutz, M.R.; Jordan, B.A. Synaptosomal
589 messenger PRR7 inhibits c-Jun ubiquitination and regulates NMDA mediated excitotoxicity. *EMBO J*
590 **2016**, *35*(17):1923–34. doi: 10.15252/embj.201593070.

591 37. Iacobas, D.A.; Iacobas, S.; Urban-Maldonado, M.; Spray, D.C. Sensitivity of the brain transcriptome to
592 connexin ablation. *Biochim Biophys Acta* **2005**, *1711*: 183–196. Review. DOI:
593 10.1016/j.bbamem.2004.12.002.

594 38. Iacobas, D.A.; Iacobas, S.; Tanowitz, H.B.; deCarvalho, A.C.; Spray, D.C. Functional genomic fabrics
595 are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy.
596 *Microbes Infect* **2018**, *20*(3), 185–195. doi: 10.1016/j.micinf.2017.11.003

597 39. Iacobas, D.A.; Iacobas, S.; Nebieridze, N.; Velisek, L.; Veliskova, J. Estrogen protects
598 neurotransmission transcriptome during status epilepticus. *Front Neurosci* **2018**, *12*:232. doi:
599 10.3389/fnins.2018.00332.

600 40. Iacobas, D.A.; Iacobas, S.; Spray, D.C. Connexin43 and the brain transcriptome of the newborn mice.
601 *Genomics* **2007**, *89*(1), 113–123. DOI:10.1016/j.ygeno.2006.09.007.

602 41. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; et al. Gene ontology: tool
603 for the unification of biology. The Gene Ontology Consortium. *Nat Genet* **2000**, *25*(1):25–9.

604 42. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources.
605 *Nucleic Acids Res* **2017**, *45*(D1):D331–D338.

606 43. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on
607 genomes, pathways, diseases and drugs. *Nucleic Acids Res* **2017**, *45*, D353–D361

608 44. Huynh, T.; Xu, S. Gene Annotation Easy Viewer (GAEV): Integrating KEGG's Gene Function
609 Annotations and Associated Molecular Pathways **2018** F1000Research, 7:416. doi:
610 10.12688/f1000research.14012.2.

611 45. Dou, R.; Zhang, L.; Lu, T.; Liu, D.; Mei, F.; Huang, J.; et al. Identification of a novel HRAS variant and
612 its association with papillary thyroid carcinoma. *Oncol Lett* **2018**, *15*(4):4511–4516. doi:
613 10.3892/ol.2018.7818.

614 46. Cipriani, N.A.; Agarwal, S.; Dias-Santagata, D.; Faquin, W.C.; Sadow, P.M. Clear Cell Change in
615 Thyroid Carcinoma: A Clinicopathologic and Molecular Study with Identification of Variable Genetic
616 Anomalies. *Thyroid* **2017**, *27*(6):819–824. doi: 10.1089/thy.2016.0631.

617 47. Liu, Y.; Tong, C.; Cao, J.; Xiong, M. NEMP1 Promotes Tamoxifen Resistance in Breast Cancer Cells.
618 *Biochem Genet* **2019**, doi: 10.1007/s10528-019-09926-0. [Epub ahead of print]

619 48. De Antonellis, P.; Carotenuto, M.; Vandenbussche, J.; De Vita, G.; Ferrucci, V.; Medaglia, C.; et al.
620 Early targets of miR-34a in neuroblastoma. *Mol Cell Proteomics* **2014**, *13*(8):2114-31. doi:
621 10.1074/mcp.M113.035808.

622 49. Pereira, M.S.; de Almeida, G.C.; Pinto, F.; Viana-Pereira, M.; Reis, R.M. SPINT2 Deregulation in
623 Prostate Carcinoma, *J Histochem Cytochem* **2016**, *64*(1):32-41. doi: 10.1369/0022155415612874

624 50. Liu, F.; Cox, C.D.; Chowdhury, R.; Dovek, L.; Nguyen, H.; Li, T.; et al. SPINT2 is hypermethylated in
625 both IDH1 mutated and wild-type glioblastomas, and exerts tumor suppression via reduction of
626 c-Met activation. *J Neurooncol* **2019**, *142*(3):423-434. doi: 10.1007/s11060-019-03126-x.

627 51. Wu, W.F.; Maneix, L.; Insunza, J.; Nalvarte, I.; Antonson, P.; Kere, J.; et al. Estrogen receptor β , a
628 regulator of androgen receptor signaling in the mouse ventral prostate. *Proc Natl Acad Sci U S A* **2017**,
629 *114*(19):E3816-E3822. doi: 10.1073/pnas.1702211114.

630 52. Wang, X.F.; Chen, J.; Gong, Y.B.; Qin, Y.C.; Wang, L.; Li, N.C. Long non-coding RNA DUXAP10
631 promotes the proliferation, migration, and inhibits apoptosis of prostate cancer cells. *Eur Rev Med
632 Pharmacol Sci* **2019**, *23*(9):3699-3708. doi: 10.26355/eurrev_201905_17793.

633 53. Bian, Z; Yu, Y.; Quan, C.; Guan, R.; Jin, Y.; Wu, J.; et al. RPL13A as a reference gene for normalizing
634 mRNA transcription of ovarian cancer cells with paclitaxel and 10-hydroxycamptothecin treatments.
635 *Mol Med Rep* **2015**, *11*(4):3188-94. doi: 10.3892/mmr.2014.3108.

636 54. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA
637 generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered
638 RAR. *Cell*. 1991; *66*(4):675-84.

639 55. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute
640 promyelocytic leukemia. *Oncogene* 2001; *20*(49):7186-203. DOI: 10.1038/si.onc.1204766.