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Abstract: The dynamic and never exactly repeatable tumor transcriptomic profile of people 10 

affected by the same form of cancer requires a personalized and time-sensitive approach of the 11 
gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled 12 
expression by the homeostatic mechanisms commands the cell phenotype by modulating major 13 
functional pathways through expression correlation with their genes. The Gene Commanding 14 
Height (GCH), a measure that combines the expression control and expression correlation with all 15 
other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the 16 
experimental protocol, the mathematical algorithm and the computer software to identify the 17 
GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer 18 
patients. The GMR approach is illustrated with applications to our microarray data on human 19 
kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. 20 
We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and 21 
surrounding normal tissue are governed by different GMRs, and that manipulating the expression 22 
has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that 23 
silencing the GMR may selectively kill the cancer cells from a tissue.  24 
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 27 

1. Introduction 28 

A very rich literature compared gene expression profiles in tissues collected from healthy and 29 
cancer donors to identify the transcriptomic signatures of various cancer phenotypes [e.g. 1-5] that 30 
are periodically organized in the atlas form [e.g. 6,7]. Nanostring launched recently a panel claiming 31 
to categorize the disease heterogeneity using 32 biological signatures involving 770 genes across 23 32 
key breast cancer pathways (https://www.nanostring.com/products/gene-expression-panels/ 33 
gene-expression-panels-overview/ncounter-breast-cancer-360-panel). There are also available 34 
platforms to compare the gene expression profiles of surgically removed tumors with publically 35 
available transcriptomes of cancer standard samples (e.g.: https://www.origene.com/products/ 36 
tissues/tissuescan).  37 

However, comparing samples collected from different persons may not be such a good idea, 38 
owing that, in addition to the disease itself, the gene expressions depend on several other risk factors 39 
making each human unique and with a unique life pathway. The never repeatable combination of 40 
factors affecting the gene expression profile is related to the person’s race, sex, age, genetic 41 
background, diet (affecting the microbiome), environment (exposure to ionizing radiation, 42 
carcinogenic toxins, stress), bad habits (smocking, drugs, alcohol), medial history etc. Our gene 43 
expression studies on tissues from humans and animal models proved the transcriptomic profile 44 
dependence on strain and genetic background [8], sex [9], age [10], exposure to stress [11] and 45 
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carcinogenic toxins [12], medical history and treatments [13]. This is why numerous investigators 46 
(e.g. [14] on papillary thyroid cancer) started to pair the transcriptomes of the cancer region with the 47 
cancer free adjacent tissue of the same patient. 48 

The legitimate question in the transcriptomic signature quest is how many of the tested genes 49 
should be found as regulated (and how many of them up and how many down) to assess the 50 
designated form of cancer. Since there are 1.9x1022 distinct sets of genes if “only” 10 hits are needed 51 
from the 770 candidates of the nanostring nCounter®  breast cancer 360TM), there is no way to 52 
determine the predictive value of each of these sets from metadata. Moreover, in addition to the 53 
checked biomarkers, hundreds other genes are regulated and their (never repeatable) contributions 54 
to the cancer phenotype are neglected without knowing whether they are really negligible.  55 

Still, let us suppose that a particular cancer form does have a transcriptomic signature as 56 
resulted from the meta-analysis of gene expression data from a large population of cancer patients. 57 
Are the signature genes valuable targets for the cancer gene therapy or they are good only for 58 
diagnosis (if the above supposition is true)? Being selected from the most frequently regulated genes 59 
in the population of cancer patients, the signature genes appeared as little protected by the cellular 60 
homeostatic mechanisms as are minor players. Therefore, restoring their right expression level may 61 
be of little consequence for the cell. 62 

Instead, of genes whose altered sequence or expression allegedly triggers a particular form of 63 
cancer in everybody [15-20], we proposed [21,22] that the most legitimate targets for cancer gene 64 
therapy are what we call “gene master regulators” (GMRs) of cancer nuclei. We defined the GMR as 65 
the gene whose highly protected expression level by the cellular homeostatic mechanisms sets up 66 
the cell phenotype by controlling major functional pathways through expression correlation with 67 
their genes. The high protection makes the GMR less sensitive to the environmental oscillations and 68 
therefore less variably expressed among biological replicas. However, small oscillations of the GMR 69 
expression are amplified by in-phase (positive) or anti-phase (negative) oscillations of the expression 70 
of many other genes. The composite metric termed Gene Commanding Height (GCH) was 71 
introduced by us [21,22] to establish the gene hierarchy in each cell phenotype, with the GMR having 72 
the top GCH.  73 

The idea of “master regulators” was floating in genomics for a long time, most investigators 74 
looking for transcription factors whose regulation might have large downstream effects on the 75 
expression of many genes [e.g.: 23,24]. In addition to defining the GMRs in quantitative terms (by the 76 
GCH), our procedure does not restrict the GMR’s quest to transcription factors. Instead, we rank 77 
with respect to the GCH scores all coding AND non-coding RNAs whose abundance was 78 
adequately quantified via the used (RNA next generation sequence or microarray) platform. 79 
Moreover, in a recent paper [22], we have shown how five non-coding RNAs (ANKRD36BP2, 80 
FAM86B3P, H19, HCG11 and PMS2L2) regulate apoptosis in a surgically removed papillary thyroid 81 
cancer via expression correlation with apoptotic genes. Thus, our results are in line with other 82 
studies reporting the involvement of the non-coding RNAs in cancer development (e.g. [25-7]) and 83 
therapy (e.g. [28]).  84 

The GMR approach is based on our Genomic Fabric Paradigm [e.g.: 29,30] and runs on the 85 
computer software package CANCER-GMR (coded in Python3) with statistical and graphical user 86 
interface packages SciPy (https://www.scipy.org/) and Tkinter GUI. Our procedure can be applied to 87 
the four quarters of >1mm diameter cancer nucleus identified in a biopsy or surgically removed 88 
tumor, or to four dishes with a cancer cell line. 89 

The GMR targeting would be effective in selectively destroying the cancer cells from a tissue if: 90 
i) cancer nuclei and surrounding quasi-normal tissues are governed by different GCH hierarchies, ii) 91 
expression manipulation of a gene has larger consequences in cells where that gene has higher GCH 92 
and iii) the GCH of the GMR is well above the GCHs of the next genes in the hierarchy. In this 93 
report, the GMR approach is illustrated with applications to our microarray data on human kidney, 94 
thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. 95 

2. Materials and Methods  96 
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2.1. Tumor samples 97 
We have profiled the cancer nuclei (labeled CANCER1 and CANCER2, both Gleason score 98 

4+5=9) and the surrounding normal tissues (NORM1 and NORM2) from two surgically removed, 99 
frozen prostate cancers. The study was part of Dr. DA Iacobas’ project approved by the Institutional 100 
Review Boards (IRB) of the New York Medical College’s (NYMC) and Westchester Medical Center 101 
(WMC) Committees for Protection of Human Subjects. The approved IRB (L11,376 from 02/10/2015) 102 
granted access to frozen cancer specimens from the WMC Pathology Archives and depersonalized 103 
pathology reports, waiving patient’s informed consent. Four 2-8 mm3 samples were collected from 104 
the cancer nuclei and normal tissues of each tumor. Although the selected regions were as 105 
homogeneous as possible, cells of different phenotypes were not completely eliminated and 106 
expression of their genes affected the reported results. 107 

In this report, we reprocessed also our previously published microarray data from surgically 108 
removed, frozen preserved kidney (CCRCC - clear cell renal cell carcinoma) and papillary thyroid 109 
cancer tumors. Two primary cancer nuclei (labeled as PTA and PTB) and the cancer free (NOR) 110 
tissue from the right kidney, together with a chest metastasis (MET) were profiled from a 74 years 111 
old man with metastatic CCRCC, Fuhrman grade 3 [21]. The unilateral, single, papillary carcinoma 112 
(PAP-C), pathological stage pT3NOMx and the cancer free surrounding tissue were collected from a 113 
deceased 33y old woman [22]. 114 

 115 
2.2. Cell lines 116 

The results for the surgically removed thyroid and prostate tumors were compared with those 117 
obtained from the commercially available standard human cancer cell lines: BCPAP, 8505C, LNCaP 118 
and DU145. We have also determined the GCH hierarchy in the human leukemia cell line HL-60. 119 
The HL-60 cell line was originally obtained at MD Anderson Cancer Center from a 36-year-old 120 
woman with acute promyelocytic leukemia [31].  121 

The BCPAP cell line is a papillary thyroid carcinoma cell line isolated from a female patient, 122 
with a TP53 mutation in the codon 278 in heterozygosity (Pro→Leu) [32]. The 8505C cell line was 123 
established from undifferentiated thyroid carcinomas of a 78-year-old-female patient. Her tumor 124 
contained also residual well differentiated components, suggesting “well differentiated to 125 
undifferentiated carcinoma progression” [33]. We used both BCPAP and 8505C cell lines to test 126 
whether manipulation of the expression of a gene has large transcriptomic consequences if that gene 127 
has a higher GCH.  128 

The LNCaP cells (Lymph Node Carcinoma of the Prostate) are androgen-sensitive adherent 129 
epithelial cells, obtained from a 50-year-old white male in 1977 [34]. The DU145 hormone insensitive 130 
cells were derived in 1976 from prostate adenocarcinoma metastatic to the brain of a 70 year old 131 
white male [35]. 132 

 133 
2.3. Biological replicas 134 
 The biological replicas (the quarters of a quadrisected homogeneous region of a tumor or four 135 
cell culture dishes of a cell line) can be considered as being the same system but subjected to slightly 136 
different environmental conditions. As such, the transcriptomic data provide valuable information 137 
on how much the genes resist or adapt to the external influences and how the variations of their 138 
expression levels are correlated to optimize the functional pathways. From the expression values of 139 
each coding and non-coding RNA in the biological replicas we derive three independent measures 140 
to be used in subsequent analyses: i) average level, ii) coefficient of variation and iii) expression 141 
correlation with each other RNA. The average expression level is used to identify what gene is 142 
up/down-regulated when compared two conditions. The coefficient of variation (CV) is used to 143 
estimate the control of the transcript abundance in each condition, and the expression correlation to 144 
identify and quantify the transcriptomic networks. 145 
 146 
2.4. Microarray 147 
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We have used our standard protocol [36] for RNA extraction, purification, reverse transcription 148 
and fluorescent labeling, and hybridization with Agilent human 4x44k gene expression two-color 149 
G2519F microarrays. The chips were scanned with an Agilent G2539A dual laser scanner and 150 
primary analysis performed with (Agilent) feature extraction v. 12.0 software. All spots with 151 
corrupted or saturated pixels, or with forward fluorescence less than twice the background one in 152 
any of the four profiled biological replicas were removed from the analysis of that type of samples.  153 

 154 
2.5. Relative Expression Variation (REV) and Relative Expression Stability (RES) 155 

All microarray platforms probe transcripts redundantly by several (unfortunately not uniform 156 
numbers of) spots. Therefore, instead of the coefficient of variation for the expression level in 157 
biological replicas as determined by one spot we use the Relative Expression Variation (REV, [37]) 158 
that takes into account all spots Ri probing redundantly the same transcript i. REV is the mid-interval 159 
chi-square estimate of the pooled expression level CVs in biological replicates of that condition 160 
(cancer or normal) with a pre-established probability ε and number of degrees of freedom derived 161 
from the number of spots probing the same transcript: 162 

 163 
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 166 

In our experiments with Agilent 4x44k microarrays the number of spots probing redundantly 167 
the same transcript ranges from 1 to 28, so that r = 3, 4, … , 71. Our Cancer GMR software has 168 
uploaded the chi-square values for all these values of r and for ε = 0.010, 0.025, 0.050, 0.100, values 169 
less than 0.010 being useless because of the technical noise affecting the gene expression levels. 170 
However, in the applications presented here, we used λ = 4 and ε = 0.05 for which the correction 171 
coefficient of the CV ranges from 1.566 (R = 1) to 0.960 (R = 28). Therefore, λ and ε will be omitted 172 
from the next equations. 173 

Relative Expression Stability (RES) is a measure we introduce to rank the priorities of the cell 174 
homeostatic mechanisms in controlling the right abundance of a particular transcript. RES is applied 175 
to all transcripts regardless of them translating into proteins or having only regulatory roles for the 176 
expression of other transcripts.  177 

 178 
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          (2) 179 

 180 
The log form was selected to assign positive values to the more stably expressed and negative ones 181 
to the less stably expressed genes than the median one. 182 
 183 
2.6. Expression regulation  184 

Instead of an arbitrarily introduced (e.g. 1.5x or 2.0x) absolute fold-change, we consider a gene 185 
as significantly regulated in cancer with respect to the normal counterpart if the absolute expression 186 
ratio |x| exceeds the cut-off calculated for that gene.  187 
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 189 
CUT observes the uncertainty about expression regulation by taking into account the 190 

contributions of both biological variability and technical noise. It is not uniform among the 191 
quantified transcripts and takes >1 values that may be even smaller than 1.5.  192 

However, rather than the popular percentage of the regulated out of quantified genes, we 193 
measure the change in the transcriptional profiles by the Weighted Pathway Regulation (WPR). 194 
WPR is not restricted to the regulated but ponders all quantified genes. We have previously used 195 
WPR to quantify the remodeling and recovery of functional genomic fabrics in heart [38], 196 
hypothalamus [13] and hippocampus [39]: 197 

 198 
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 200 
 The percentage of the regulated genes regards all regulated genes as equal contributors 201 
regardless of the fold-change and p-value. In contrast, WPR weights the genes by considering the 202 
expression ratio (x), the p-value of the t-test of equal expression, and the average expression level in 203 
the normal tissue (µ (normal)). 204 
 205 
2.7. Expression Correlation 206 

Pearson pair-wise correlation coefficient ρij was computed for the log2 expressions of all 207 
N(N-1)/2 pairs that can be formed with the N adequately quantified distinct transcripts in all 208 
biological replicas. The correlation coefficient takes values from -1 to +1. Close to positive and 209 
negative unit ρ’s indicate that the expression of one gene of the pair has strong synergistic or 210 
antagonistic consequences on the expression of the other, without specifying what gene comes first. 211 
Expressions of synergistic partners fluctuate in phase, those of antagonistic partners fluctuate in 212 
antiphase. We believe that strong synergism and antagonism occur when the expressing genes are 213 
linked in a functional pathway, providing the “transcriptomic stoichiometry” that rules the 214 
expression levels of the involved proteins [40]. Close to zero correlation coefficient means either that 215 
the two genes are independently expressed (not networked in any functional pathway) or (very 216 
unlikely) that their synergistic correlation in some pathways is balanced by their antagonistic 217 
correlation in other pathways.   218 
 219 
2.8. Gene Commanding Height (GCH) 220 

The Gene Commanding Height (GCH) was introduced by us [21, 22] to quantify the importance 221 
of each gene for the cell phenotype. We consider that the expression level of a critical gene for the cell 222 
phenotype should be under a stricter control/protection of the homeostatic mechanisms and 223 
therefore should have higher expression stability among biological replicas. The same gene should 224 
also have a major regulatory role by coordinating the expression of many other genes. If we are 225 
allowed a comparison, the most protected persons in the UK are the Queen and the Prime Minister. 226 
However, the Prime Minister not the Queen is the Master Regulator owing to the power of the office 227 
to oversee all major sectors in the UK policy and economy. 228 
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2.9. Gene ontology and functional pathways 230 
 Whenever available through Gene Ontology Consortium [41, 42, www.geneontology.org] 231 
and/or Kyoto Encyclopedia of Genes and Genomes (KEGG, [43, http://www.genome.jp]) functional 232 
pathways are assigned to the genes. This can be done either by using the KEGG Ontology number as 233 
in GAEV [44], (https://github.com/UtaDaphniaLab/Gene_Annotation_Easy_Viewer), either by the 234 
gene symbol as in our GMR-Pathway (see below).  235 
 In this report we considered the following KEGG pathways:  APO (map hsa4210 apoptosis), 236 
BTF (hsa03022 basal transcription factors), CCY (hsa04110 cell cycle), CSP (hsa04062 chemokine 237 
signaling), OXP (hsa00190 oxidative phosphorylation), RCC (hsa05211 renal cell carcinoma) and 238 
RPO (hsa03020 RNA polymerase).  239 
 240 
2.10. CANCER-GMR software 241 

 Programs of our CANCER-GMR software package were designed using the Anaconda 242 
distribution of Python 3 with statistical and graphical user interface packages such as SciPy 243 
(https://www.scipy.org/) and Tkinter GUI (Graphical User Interface). The GMR Software Package 244 
includes executable programs to determine the absolute fold-change cut-offs (CUT) when 245 

comparing gene expression average levels in cancer and healthy tissues, identify functional 246 
pathways within KEGG dbase (PATHWAY), the Weighted Pathway Regulation (WPR), the Pearson 247 
correlation coefficients between the expression levels of all gene pairs (CORRELATION) and the 248 
Gene Commanding Height (GCH).  249 

 250 
#CUT# 251 
REV1 = CORRECTION * std1/mean1 252 
REVV2 = CORRECTION * std2/mean2 253 
CUT = 1 + np.sqrt( 2 * ( np.square(df["REV1"]) + np.square(df["REV2"]) ) ) 254 
 255 
#PATHWAY# 256 
gene = REST.kegg_get(species+':'+gene).read() 257 
### find all pathways in KEGG 258 
if current_section == "PATHWAY": 259 
gene_identifiers= line[12:].split("; ") #Splits each line based on ';' 260 
 261 
#WPR# 262 
avg_gch = avg_gch / length #avg of GCH of the genes in a certain pathway 263 
wpr = np.mean(avg_gch * (abs(fc)-1) * (1-p_val)) 264 
 265 
#CORRELATION# 266 

df = pd.read_csv(df,  header=0, na_values = "NaN") 267 
data = pd.concat([df[condition_input+"1"],df[condition_input+"2"], 268 
df[condition_input+"3"], df[condition_input+"4"]], axis=1) 269 
logvalues =  np.log2(data) 270 
results = (logvalues.T).corr(method='pearson') #transpose and find correlation 271 
pearsons_df = pd.DataFrame(results.values, columns = df['GeneName'], index = 272 

 df['GeneName'].values) ## change to dataframe 273 
 274 
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#GENE COMMANDING HEIGHT# 275 
expcon = median / cov #expression control 276 
results = (logvalues.T).corr(method='pearson') #transpose and find correlation 277 
thesum = (results * results).sum(axis = 0) 278 
### gene commanding height calculations 279 
controlcoor = np.exp((4*thesum-1)/len(pearsons_df.index)-1) 280 
gch = expcon.values * np.exp((4*thesum-1)/len(pearsons_df.index)-1).values  281 
   gch = pd.DataFrame(gch, dtype='float') 282 
 283 

2.11. Experimental design to validate the GMR theory 284 
 One way to validate the GMR theory is to establish the GCH hierarchy in two cell lines, 285 
transfect each line with genes having same expression level but different GCHs and compare the 286 
transcriptomic alterations (Fig.1A). The theory is validated if the alterations of the same gene 287 
transfection are higher in the cells where that gene has a higher GCH. We tested the usefulness of the 288 
GMR approach for cancer gene therapy by stable lentiviral transfecting the human BCPAP 289 
(papillary) and 8505C (anaplastic) thyroid cancer cell lines with four genes NEMP1, PANK2, 290 
DDX19B and UBALD1. As presented in Fig.1B, the selected genes have similar average expression 291 
levels (AVE, normalized to the median of all quantified transcripts) but significantly different GCH 292 
scores in the two lines. 293 

 294 
 295 
Figure 1: A. Experimental design to validate the GMR theory. a is a gene with higher GCH in the 296 
A-cells (e.g.: 8505C anaplastic thyroid cancer cell line) than in the P-cells (e.g.: BCPAP papillary 297 
thyroid cancer cell line), while p is a gene with higher GCH in the P-cells than in the A-cells. The 298 
theory is verified if transfection of a will induce significantly larger WPR in the A-cells than in the 299 
P-cells and transfection of p will induce larger WPR in the P-calls than in the A-cells.  300 
B. The genes used to test the GMR Theoryexpression data from GSE72304, [22]. The grey background indicates 301 

the larger GCH scores. 302 
 303 

3. Results and Discussion 304 

3.1. Experimental data 305 
 The GMR approach is illustrated here with applications to our gene expression datasets from 306 
surgically removed human (kidney, thyroid, prostate) cancer tissues and commercially available 307 
human cancer cell lines deposited by us in the Gene Expression Omnibus of the National Center for 308 
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Biotechnology Information (www.ncbi.nlm.nih.gov/gds). Data used in this report were from 309 
GSE72304 (a case of metastatic clear cell renal cell carcinoma (CCRCC), GSE97001 (a case of papillary 310 
thyroid cancer), GSE97002 (BCPAP papillary and 8505C anaplastic thyroid cancer cell lines) and 311 
from two (GSE to be provided prior to publication) cases of prostate cancer. Expression data for the 312 
GMR Theory validation on thyroid cancer cell lines BCPAP and 8505C were collected from 313 
GSE97031 (transfection with NEMP1), GSE97028 (DDX19B), GSE97030 (PANK2) and GSE97427 314 
(UBALD1). Other expression data from cancer cell lines were collected from GSE72333 (DU145), 315 
GSE72414 (LNCaP) and GSE72415 (HL-60). 316 
 317 
3.2. Expression stability, expression correlation and weighted pathway regulation  318 
 The Relative Expression Stability (RES) can be used not only to establish the hierarchy of 319 
individual genes but also the hierarchy of functional pathways. Fig. 2A presents the average RES 320 
scores of several pathway analyzed in each of the four regions profiled from the CCRCC samples. 321 
The averages were determined for 107 APO, 37 BTF, 131 CSP, 91 CCY, 100 OXP, 54 RCC and 31 RPO 322 
genes out of the 12610 distinct genes whose expression was adequately quantified in all four regions 323 
of the CCRCC samples. WPR analysis of the CCRCC samples for the same pathways returned the 324 
results from Fig.2B. Note that (by far) the most affected pathway was (as expected) RCC (the renal 325 
cell carcinoma) followed by OXP (oxidative phosphorylation).  326 
 Fig.2C illustrates the correlation analysis with examples of synergistically, antagonistically and 327 
independently expressed partners of NEMP1 (nuclear envelope integral membrane protein 1) in the 328 
BCPAP cells. In our opinion, the strong correlations of the (not yet assigned to a pathway) NEMP1 329 
gene with the oncogenes TFG and HRAS indicate its potential role in the papillary thyroid cancer. 330 
HRAS is among the most documented genes whose mutations have been associated with thyroid 331 
cancer [45]. TFG gene is described in https://www.ncbi.nlm.nih.gov/gene/10342 as partially 332 
encoding several fusion oncoproteins and participating in several “oncogenic rearrangements 333 
resulting in anaplastic lymphoma and mixoid chondrosarcoma”. TFG-MET (MET proto-oncogene 334 
receptor tyrosine-kinase) translocation was reported in a follicular variant of the papillary thyroid 335 
carcinoma [46]. Interestingly, NEMP1 was recently shown as promoting tamoxifen resistance in 336 
breast cancer cells [47]. Thus, the correlation analysis may be used to refine the maps of the 337 
functional pathways by determining the gene pairs whose correlated expression may result from a 338 
functional relationship between their encoded proteins.  339 
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 340 
 341 
Figure 2reprocessed expression data from [21]: A. Average Relative Expression Stability (RES) of several 342 
functional pathways in the four regions profiled from CCRCC samples. Note that the RNA 343 
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polymerase (RPO) and basal transcription factors (BTF) are the most protected pathways, while the 344 
control of the oxidative phosphorylation (OXP) is relaxed, presumably to allow the cells to adapt the 345 
environmental conditions. B. Weighted Pathway Regulation (WPR) analysis of several functional 346 
pathways. Pathways: APO = apoptosis, BTF = basal transcription factors, CCY = cell cycle, CSP = 347 

chemokine signaling, OXP = oxidative phosphorylation, RCC = renal cell carcinoma, RPO = RNA 348 
polymerase. C. Example of the correlation analysis. NEMP1 is synergistically expressed with TFG 349 

(trafficking from ER to golgi regulator), antagonistically expressed with HRAS (Harvey rat sarcoma 350 
viral oncogene homolog) and independently expressed with ACO2 (aconitase 2, mitochondrial) in 351 
BCPAP cells. 352 
 353 
3.3. Cancer nuclei and surrounding normal tissue are governed by distinct GMRs  354 
 Tables 1-3 present the GCH scores of the top 3 genes in cancer nuclei and surrounding normal 355 
tissue in a case of metastatic clear cell renal cell carcinoma, a case of papillary thyroid cancer and two 356 
cases of prostate cancer.   357 

 358 

Table 1reprocessed expression data from GSE72304, [21]: Gene Commanding Heights of the top three genes (grey 359 
background) in the two primary tumor (PTA, PTB) regions from the right kidney and chest wall 360 
(MET) of a patient with metastatic clear cell renal cell carcinoma and their GCH scores in the 361 
other regions from the analyzed CCRCC sample. CHR = chromosomal location. Note that, 362 

although different from one cancer region to the other, the top genes of cancer nuclei (PTA, PTB and 363 
MET) have substantially lower GCH scores in the control (normal, CTR) tissue and that the top 364 
genes of CTR region have lower GCH scores in the PTA, PTB and MET regions.  365 
   366 
 In Table 1, only Alg13 is an actionable GMR (for MET region) owing to its significantly higher 367 
GCH (82.95) with respect to the second gene, NUDT18 (GCH = 48.40). Interestingly, ALG13 (an early 368 
target of miR-34a) was reported as correlated with worse clinical outcomes for neuroblastoma [48]. 369 
Results in Table 1 also indicate that distinct cancer nuclei of the same tumor (PTA, PTB) may have 370 
distinct gene hierarchy that explains their phenotypic diversity.  371 
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 372 

  373 

 374 

Table 2reprocessed expression data from GSE97001, GSE97002, [22]: Gene Commanding Heights of the top genes (grey 375 
background) in normal (NORM) and cancer (PAP-C) regions of the unilateral tumor removed 376 
from a 33y old Asian female, with papillary thyroid cancer (pathological stage pT3NOMx). For 377 
comparison, we present also the results for the standard BCPAP (papillary) and 8505C (anaplastic) 378 
human thyroid cancer cell lines. Owing to their close (and over 100) GCHs, four instead of three 379 
genes are listed for the BCPAP cells. Note the differences in GCH scores between NORM and 380 
PAP-C. Note also the differences between the GCH scores of genes in the surgically removed 381 
carcinoma and the BCPAP cell line, even both are reported as papillary thyroid cancers.  382 

 In a previous publication [22], we have presented the GCH scores of 78 cancer biomarkers, 44 383 
oncogenes, 55 apoptosis genes and 120 ncRNAs in the cancer and normal areas of a surgically 384 
removed papillary thyroid tumor. In that selection of 297 genes, all but RAB15 (GCH(cancer) = 26.14) 385 
had GCH scores below 20. The complete GCH analysis of the expression data in the same tumor 386 
sample revealed that the GMR of the cancer area is SPINT2 (GCH(cancer) = 54.97). Interestingly, 387 
SPINT2 a transmembrane protein that inhibits serine proteases implicated in cancer progression 388 
[49], acts as a putative tumor suppressor when hypermethylated [50].  389 
  390 

 391 
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 392 
Table 3 data from GSE… to be communicated prior to publication: Gene Commanding Heights of the top three genes 393 
(grey background) in normal (NORM) and cancerous (CANCER) regions of surgically removed 394 
prostate tumors from a 65y old black male and of a 47y old white male, both with prostatic 395 
adenocarcinoma (Gleason score 4+5=9/10) and negative for adenocarcinoma resection margins. 396 
Note the differences in GCH scores between NORMAL and CANCER. Note that the two men have 397 
different GMRs in both normal and cancer regions. For comparison, we show also the GCHs of the 398 
same genes (and of their own GMRs) for two standard prostate cancer cell lines: the 399 
androgen-sensitive LNCaP and the hormone insensitive DU145. Note also the large GCH gap 400 
between the first two genes (WFDC3 and RPL31) in the LNCaP cells. 401 
 402 
 It is notable that WFDC3, the far above GMR of the androgen-sensitive prostate cancer LNCaP 403 
cells, was also reported as one of the most down-regulated gene in the ventral prostate of aged (18 404 
moths) estrogen receptor β-/- mouse [51]. Interestingly, the GMR of the cancer nucleus of the second 405 
man (LOC145474) is a non-coding RNA, confirming that both coding and non-coding RNAs may 406 
play dominant roles in prostate tumorigenesis [52]. To our knowledge, this is the first time that 407 
LOC145474 is reported as related to a prostate cancer. 408 
 409 
3.4. Experimental validation of the GMR theory  410 
 Our experimental results (summarized in Fig. 3) on the 8505C (anaplastic, 3A & 3C) and BCPAP 411 
(papillary, 3B & 3D) human thyroid cancer cell lines stably transfected with DDX19B, NEMP1, 412 
PANK2 or UBALD1 (characteristics in Fig.1) indicate that: 413 
 414 

 415 

            (6) 416 

 417 

We have also observed that transfections of NEMP1 and PANK2 significantly slowed down 418 
multiplication of BCPAP cells, while transfection of DDX19B or UBALD1 had little effect on these 419 
cells. By contrast, both transfections of DDX19B and UBALD1 significantly slowed down grow of 420 
8505C cells, while transfection of NEMP1 and PANK2 had little effect. Together, these observations 421 
confirms that expression manipulation of a gene has larger consequences in cells where that gene 422 
has higher GCH. 423 

( ) (8505 ) ( ) (8505 )

1 1 1 1

( ) (8505 ) ( ) (8505 )

2 2 2 2

( ) (8505 ) ( ) (8505 )

19 19 19 19

BCPAP C BCPAP C

NEMP NEMP NEMP NEMP

BCPAP C BCPAP C

PANK PANK PANK PANK

BCPAP C BCPAP C

DDX B DDX B DDX B DDX B

UBAL

GCH GCH WPR WPR

GCH GCH WPR WPR

GCH GCH WPR WPR

GCH

  

  

  
( ) (8505 ) ( ) (8505 )

1 1 1 1

BCPAP C BCPAP C

D UBALD UBALD UBALDGCH WPR WPR  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 June 2019                   doi:10.20944/preprints201906.0198.v1

Peer-reviewed version available at Genes 2019, 10, 560; doi:10.3390/genes10080560

https://doi.org/10.20944/preprints201906.0198.v1
https://doi.org/10.3390/genes10080560


 13 of 20 

 

 424 

Figure 3expression data from GSE97031, GSE97028, GSE97030, GSE97427, [22]: Validation of the GMR Theory. A & B. Stable 425 
transfection of genes with higher GCH in the 8505C cells than in BCAP cells had larger 426 
transcriptomic effects in 8505C cells as measured by the Weighted Pathway Regulation (WPR). C & 427 
D. Stable transfection of genes with higher GCH in the BCPAP cells than in 8505C cells had larger 428 

transcriptomic effects in BCPAP cells as measured by the Weighted Pathway Regulation (WPR).  429 

3.5. Predicted transcriptomic alteration by GMR manipulation 430 
  At the time, we had no possibility to alter the expression of the GMRs identified in the thyroid 431 
cancer cell lines 8505C and BCPAP. Fig. 4 presents the predicted Weighted Pathway Regulation if 432 
significantly altering the expressions of the top three genes in the 8505C and BCPAP cells.  433 
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 434 
 435 
Figure 4: A. Experimentally measured and theoretically predicted effects of stably transfecting 436 

PANK2, NEMP1, UBALD1, DDX19B and the top three genes (RPL13A, ALDOA and TIPIN) in the 437 
8505C. B. Experimentally measured and theoretically predicted effects of stably transfecting PANK2, 438 

NEMP1, UBALD1, DDX19B and the top three genes (RPF1, ECT2 and TIMP2) in the BCPAP cells.  439 
 440 
Interestingly, the GMR of the anaplastic cell line (RPL13A) was found as the most stably expressed 441 
gene in two ovarian cancer cell lines (UACC‑1598 and SKOV3) subjected to two widely used 442 
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anticancer treatment [53], confirming the major role played by this gene in stabilizing the cancer 443 
phenotype. 444 
 445 
3.6. Ribosomal genes top the hierarchy in the acute promyelocytic leukemia HL-60 cell line 446 
 An interesting gene hierarchy was obtained for the HL-60 cells (Fig. 5), where most of the 447 
ribosomal genes top all KEGG identified genes as associated with acute myeloid leukemia (AML, 448 
https://www.kegg.jp/kegg-bin/show_pathway?map=has05221&show_description=show). Thus, the 449 
top two AML genes, MPO (myeloperoxidase) and PML (promyelocytic leukemia) have the GCHs 450 
22.96 and 21.95, below those of the 56th and the 59th ranked ribosomal proteins RPL29 (23.64) and 451 
RPL13 (22.12). As presented in Fig. 5C, genes from both large (RPL) and small (RPS) ribosomal 452 
subunits are among the highest ranked genes in the HL-60 cells. According to our results, certain 453 
ribosomal genes (RPL13A, RPS5) are more influential in dictating/preserving the HL-60 phenotype 454 
than RARA (retinoic acid receptor alpha, GCH = 19.67), the gene whose translocation t(15;17) [53,54] 455 
is associated with 98% of acute promyelocytic leukemia cases. Interestingly, RPL13A was also found 456 
as the most influential gene in 8505C (anaplastic thyroid cancer) cells and with high GCH (63.26) in 457 
the BCPAP cells (Table 2 above). For comparison, Fig. 5 presents also the GCH scores for the genes 458 
associated with the immune system KEGG pathway of leukocyte transendothelial migration 459 
(https://www.kegg.jp/kegg-bin/show_pathway?map=hsa04670&show_description=show).    460 
 461 
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Figure 5expression data from GSE72415: Gene Commanding Height (GCH) scores in the acute promyelocytic 463 
leukemia cell line HL-60. A. GCH scores of genes associated with acute myeloid leukemia. B. 464 
GHC scores of genes associated with KEGG pathway of leukocyte transendothelial migration. C. 465 
GCH scores of the ribosomal genes.  466 

4. Conclusions 467 

In this report, we proposed that the most legitimate targets for the cancer gene therapy are the 468 
genes whose highly controlled expressions by the homeostatic mechanisms are the most influential 469 
by being correlated with expressions of many other genes. We termed these targets Gene Master 470 
Regulators (GMRs), and developed and used the necessary experimental protocol, mathematical 471 
algorithm and computer software to identify them from gene expression studies.  472 

The GMR approach was applied to our microarray data on five standard (anaplastic thyroid, 473 
papillary thyroid, prostate androgen-sensitive and insensitive, and blood) cancer cell lines and ten 474 
profiled regions from surgically removed CCRCC (4), and prostate (4) and papillary thyroid (2) 475 
cancers. The studies revealed that the GMRs may differ even for patients with the same form of 476 
cancer (like in the above two prostate cases and in comparisons with cell lines), justifying the 477 
necessity of a personalized approach of cancer gene therapy. We found that the GMRs can be located 478 
in any chromosome, that their transcripts can be both coding and non-coding RNAs and that the 479 
encoded proteins may be involved in a wide diversity of biological processes. Although we don’t 480 
have yet the experimental evidence, most likely the gene hierarchy changes in time, so that the 481 
GMRs should be targeted as soon as possible after their identification.  482 

Importantly, we found that the cancer nuclei and the surrounding normal tissues are governed 483 
by different GMRs and that manipulation of the expression of a gene has consequences in line with 484 
its Gene Commanding Height. Based on these findings, we launch the hypothesis that silencing the 485 
GMR (using CRISPR or shRNA) may selectively kill the cancer cells with little effect on the normal 486 
cells of the tissue. However, not always we found the GMR being well above the rest of the genes, 487 
with the most notable exception in this report for WFDC3 (GCH = 173.58) in LNCaP cells (next gene 488 
is RPL31 at 39.11). Therefore, this hypothesis may work for only cases where the GMR has a 489 
significantly dominant GCH over the other genes in the cancer nucleus and a very low GCH in the 490 
normal cells of the tissue. 491 
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