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Abstract  In laser-assisted milling, higher temperature in shear zone softens the material potentially resulting in a shift of mean re-

sidual stress, which significantly affects the damage tolerance and fatigue performance of product. In order to guide the selection of laser 

and cutting parameters based on the preferred mean residual stress, inverse analysis is conducted by predicting residual stress based 

on guessed process parameters, which is defined as the forward problem, and applying iterative gradient search to find process parame-

ters for next iteration, which is defined as the inverse problem. An analytical inverse analysis is therefore proposed for the mean residual 

stress in laser-assisted milling. The forward problem is solved by analytical prediction of mean residual stress after laser-assisted milling. 

The residual stress profile is predicted through the calculation of thermal stress, by treating laser beam as heat source, and plastic stress 

by first assuming pure elastic stress in loading process, then obtaining true stress with kinematic hardening followed by the stress relaxa-

tion. The variance-based recursive method is applied to solve inverse problem by updating process parameters to match the measured 

mean residual stress. Three cutting parameters including depth of cut, feed per tooth, and cutting speed, and two laser parameters in-

cluding laser-tool distance and laser power, are updated with respected to the minimization of resulting residual stress and measurement 

in each iteration. Experimental measurements are referred on the laser-assisted milling of Ti-6Al-4V grade 5 and ELI. The percentage 

difference between experiments and predictions is less than 5% for both materials, and the selection is completed within 50 loops. 

Keywords: Inverse analysis; Iterative gradient search; Laser-assisted milling; Residual stress; Ti-6Al-4V 

1. INTRODUCTION  

The residual stress can largely affect the machined work-

piece in terms of fatigue resistance. With the use of laser, 

higher temperature in shear zone softens the material poten-

tially resulting in a shift of mean residual stress after laser-

assisted milling [1], which significantly changes the damage 

tolerance and fatigue performance of product. Therefore, an 

inverse analysis is conducted on the mean residual stress after 

laser-assisted milling, in order to guide the selection of laser 

and cutting parameters based on the preferred mean residual 

stress. The forward problem, which is defined as the prediction 

of residual stress based on guessed process parameters, 

needs to be solved first. The methodology of solving forward 

problem in both conventional and laser-assisted milling has 

been studied through experiments [2-5] and numerical simula-

tions [6, 7], but these methods have low efficiency when ap-

plied in inverse problem, which is defined as the prediction of 

process parameters for next iteration through iterative gradient 

search. Analytical models for residual stress in the convention-

al milling process have been validated for different materials [8-

12]. However, when the effect of additional heat source by 

laser is considered, the microstructure evolution can be trig-

gered and affect the residual stress. The overall forward prob-

lem methodology of the residual stress prediction considering 

laser effect is summarized in Fig.1. The heat source is calcu-

lated according to the size of laser spot and the laser power, 

and temperature field after laser preheating is calculated based 

on the conduction within workpiece [13, 14]. The geometry of 

milling tool is simplified as in orthogonal cutting at each in-

stance, in order to predict the flow stress dependent on micro-
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structure evolution [15, 16], followed by cutting forces [17] and 

machining temperature [18] predictions. The residual stress is 

then predicted through mechanical loading based on forces, 

thermal loading based on temperature, and relaxation [19].  

 

Fig. 1. Overall flow chart of forward predictive model. 

 

Iterative gradient search method guesses the process pa-

rameters based on the difference between predicted target 

performance and experimental measurement. This procedure 

has been widely applied in inverse analysis of hydraulic pa-

rameters [20], material properties [21, 22], torque [23],  and 

constitutive equation constants [24-26], due to relatively simpli-

fied forward problem. The predictions based on initial guesses 

are close to measurements, and the forward problem is solved 

by empirical model or numerical simulation within 10 iterations. 

However, the prediction of mean residual stress in laser-

assisted milling is a complex procedure, which takes up to 

several days if solved by numerical simulation such as finite 

element analysis [16]. In addition, the resultant mean residual 

stress is very sensitive to cutting and laser parameters, and the 

predicted value could be far away from the measurement even 

though the initial guesses are close, which takes more itera-

tions to locate the desired parameters. Therefore, a gain coef-

ficient is included in the proposed model. The coefficient is able 

to speed up the progress if the initial gap is huge, and avoid 

convergence if the stopping criteria has not been reached, 

which enhances the computational efficiency and accuracy. 

Inverse analysis has been applied to satisfy residual stress [27, 

28] but not mean residual stress requirements in laser-assisted 

milling. The inverse analysis method conducted in current 

study solves the forward problem through an analytical predic-

tion model of mean residual stress in laser-assisted milling and 

includes a new iterative gradient search algorithm, which has 

been previously used by the authors on cutting force [29] and 

surface roughness [30], to solve the inverse problem. Three 

cutting parameters including depth of cut, feed per tooth, and 

cutting speed, and two laser parameters including laser-tool 

distance and laser power, are selected as process parameters. 

The analysis is conducted on measured mean residual stress 

after laser-assisted milling of Ti-6Al-4V alloy [31, 32].  

 

2. INVERSE PROBLEM METHODOLOGY 

In inverse analysis, iterative gradient search method is used 

to find desired target performance and corresponding process 

parameters [9]. After an initial guess X0, depth of cut da, feed 

per tooth fz, cutting speed Vr, laser-tool distance L, and laser 

power P are updated in each loop as  

( , , , , )n n n n n T
n a z rX d f V L P   (1) 

The process parameters in next loop are dependent on the 

gap between predicted and measured residual stress as 

exp
1 ( )n

n n n R RX X K G       (2) 

where exp
R is the mean residual stresses in machining and 

feed directions from experiments and n
R is the mean residual 

stress predicted under Xn. The forward prediction of mean 
residual stress after laser-assisted milling has been proposed 
in previous works [33-35]. The mean residual stresses are 
calculated by averaging the residual stress profiles, which are 
predicted through the calculation of thermal stress, by treating 
laser beam as heat source, and plastic stress by first assuming 
pure elastic stress in loading process, then obtaining true 
stress with kinematic hardening followed by the stress relaxa-
tion. G is called gain coefficient, and Kn is called Kalman gain 
matrix [36-38] being updated in each loop as 
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where ΔX0=X0 and 0
R = 0

R . The simulation covariance ma-

trix Pn has an initial value of 
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where Δda, Δfz, ΔVr, ΔL, and ΔP are the expected ranges of 

variance. Pn is updated in each loop as 
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The gain coefficient G in Eq. (2) is 
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The denominator of G avoids local convergence if the stop-

ping criteria has not been reached. The numerator of G speeds 

up the gradient search process when the difference between 

measurement and guess is large, which enhances computa-

tional efficiency. Therefore, the proposed new iterative gradient 

search method is able to avoid convergence, more adaptive, 

and more robust. Both forward and inverse problems are 

solved analytically in one algorithm summarized in Fig.2. 

 

Fig. 2. Flow chart of the inverse analysis process. 

3. EXPERIMENTAL VALIDATION AND 

ESTIMATION OF RESIDUAL STRESS VIA 

INVERSE PROBLEM 

Experimental measurements are referred on laser-assisted 

milling of Ti-6Al-4V grade 5 and grade 23 (ELI) [31, 32] for 

validation of inverse analysis. The spindle rotation speed is 

1253RPM. The size of laser spot is 2.5mm x 3.6mm, the laser 

power P is 185W, and the laser-tool distance L is 3.5mm. For 

milling tool, the rake angle is 15°, the diameter is 19.05mm, 

and the nose radius is 0.8mm. The cutting speed is 75m/min, 

the feed per tooth is 0.1mm/tooth, the axial depth of milling is 

1mm, and the radial width of cut is 3mm.  

The constitutive model of Ti-6Al-4V for flow stress prediction 

is  

0.5 0
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where Tm is melting temperature. All constitutive model param-

eters are listed in Table 1 [34], and d0 is decided to be 10µm. 

 

Table 1. Constitutive model parameters for Ti-6Al-4V. 

Ti-6Al-4V 

Grade 5 

Ahp(MPa) Khp(MPa m ) B(MPa) C 

803.22 401.61 653.1 0.015 

m n Tm(℃) 
0 (s-1) 

0.6 0.45 1668 1 

Ti-6Al-4V 

ELI 

Ahp(MPa) Khp(MPa m ) B(MPa) C 

803.22 401.61 653.1 0.025 

m n Tm(℃) 
0 (s-1) 

0.8 0.45 1630 1 

 

For Ti-6Al-4V grade 5, the measured mean residual stress 

as well as prediction from inverse analysis in laser-assisted 

milling are shown in Fig.3. Measurements are collected every 

50µm up to 200µm depth and averaged for mean residual 

stress. The initial guesses for inverse analysis are cutting depth 

of 1mm, feed per tooth of 0.22mm/s, cutting speed of 2.75m/s, 

laser-tool distance of 7.7mm, and laser power of 1034W. In 

machining direction, the mean residual stress from experi-

ments is 191MPa in compression, and the prediction through 

inverse analysis is -182.72MPa. A close match is found after 

44 iterations with a percentage difference of 4.33% as listed in 

Table 2. In feed direction, the mean residual stress from exper-

Solve the forward problem: mean residual stress under the current process parameters  

n

R   
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Decide the initial guesses of process parameters 
0 0 0 0 0

0 ( , , , , )T
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Evaluate the error covariance matrix 

R (Eq. 4) 

Evaluate the initial simulation covariance matrix 

0P (Eq. 6) 

Calculate the derivative matrix 

1

1

n

R
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
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(Eq. 5) 

Outputs 
n

R  and nX  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 June 2019                   doi:10.20944/preprints201906.0152.v1

Peer-reviewed version available at Int. J. Adv. Manuf. Technol. 2019; doi:10.1007/s00170-019-04794-9

https://doi.org/10.20944/preprints201906.0152.v1
https://doi.org/10.1007/s00170-019-04794-9


4  

 

 

iments is 130.2MPa in compression, and the prediction through 

inverse analysis is -132.80MPa with a percentage difference of 

1.99%. The process parameters in final iteration are cutting 

depth of 0.79mm, feed per tooth of 0.11mm/s, cutting speed of 

1.62m/s, laser-tool distance of 6.03mm, and laser power of 

816.6W. As observed in Fig.3, the proposed algorithm is able 

to jump out of local extreme several times throughout the in-

verse analysis until the stopping criteria are reached. 

 

Fig. 3. Estimation of mean residual stress via inverse analysis on Ti-6Al-4V 

grade 5. 

 

Table 2. Comparison of mean residual stress between experimental meas-

urements and predictions through inverse analysis. 

 Ti-6Al-4V Grade 5 

Measured 

mean residual 

stress (MPa) 

Prediction from 

inverse analy-

sis (MPa) 

Percentage 

difference 

(%) 

Machining 

direction 
-191 -182.72 4.33 

Feed 

direction 
-130.2 -132.80 1.99 

 Ti-6Al-4V ELI 

Measured 

mean residual 

stress (MPa) 

Prediction from 

inverse analy-

sis (MPa) 

Percentage 

difference 

(%) 

Machining 

direction 
-175  -171.50 2.00 

Feed 

direction 
-143.5  -146.68 2.21 

 

The measured mean residual stress as well as prediction 

from inverse analysis in laser-assisted milling of Ti-6Al-4V ELI 

are shown in Fig.4. The initial guesses for inverse analysis are 

cutting depth of 1mm, feed per tooth of 0.1mm/s, cutting speed 

of 1.25m/s, laser-tool distance of 3.5mm, and laser power of 

70W. In machining direction, the mean residual stress from 

experiments is 175MPa in compression, and the prediction 

through inverse analysis is -171.5MPa. A close match is found 

after 27 iterations with a percentage difference of 2% as listed 

in Table 2. In feed direction, the mean residual stress from 

experiments is 143.5MPa in compression, and the prediction 

through inverse analysis is -146.68MPa with a percentage 

difference of 2.21%. The process parameters in final iteration 

are cutting depth of 0.51mm, feed per tooth of 0.06mm/s, cut-

ting speed of 0.74m/s, laser-tool distance of 1.78mm, and laser 

power of 237.37W. Again, the proposed inverse analysis 

method is able to reach both high computational efficiency and 

accuracy.  

Fig. 4. Estimation of mean residual stress via inverse analysis on Ti-6Al-4V 

ELI. 

When comparing the process parameters in final loop to ini-

tial guesses and experimental values, it is observed that alt-

hough the process parameters are relatively close to initial 

guesses, they may be very different than experimental process 

parameters since the mean residual stress solutions may not 

be unique. In addition, the model-predicted residual stresses 

under experimental process parameters have been calculated 

by solving forward problem only [35]. The percentage errors for 

Ti-6Al-4V grade 5 and ELI are higher than 10% in both direc-

tions, which also indicates that the proposed inverse analysis 

method is highly accurate as the errors are mainly from the 

forward model. 

4. CONCLUSIONS 

An inverse analysis is conducted on the mean residual 

stress in laser-assisted milling which solves the forward prob-

lem of predicting residual stress based on guessed process 

parameters and the inverse problem of finding process param-

eters for next iteration by applying iterative gradient search. For 

forward problem, residual stress is affected by material recrys-

tallization under laser effect. The laser beam is treated as a 

heat source on top. The milling tool geometry and process 

parameters are recalculated in orthogonal cutting. The recrys-

tallization and grain growth are described by calibrated models 

showing the dependency of strain, strain rate, and temperature 
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on recrystallization. For the loading process, the elastic stress-

es are first predicted, and the real stresses are calculated con-

sidering kinematic hardening. The mean residual stress is then 

predicted after the stress relaxation. The variance-based re-

cursive method is applied to solve inverse problem and update 

process parameters to match the measurements. Three cutting 

parameters including depth of cut, feed per tooth, and cutting 

speed, and two laser parameters including laser-tool distance 

and laser power, are updated in each iteration. The proposed 

iterative gradient search method introduces the gain coefficient 

that updates the parameters according to the difference be-

tween measurement and prediction, as well as the differences 

of predicted mean residual stress over loops, which makes the 

model able to avoid convergence, more adaptive, and more 

robust. The proposed model is validated through experimental 

measurements on the laser-assisted milling of Ti-6Al-4V grade 

5 and ELI. The percentage difference between experiments 

and predictions is less than 5%, and the process is completed 

within 50 loops. Therefore, the proposed inverse analysis 

model is also highly accurate, and computationally efficient. 

The selected process parameters may be very different than 

experimental process parameters due to the multiple solutions 

issue. In addition, when comparing the model-predicted resid-

ual stresses under experimental process parameters to meas-

urements, it is concluded that the errors are mainly from the 

forward model. 

The proposed inverse analysis is the first approach to satisfy 

mean residual stress requirement after laser-assisted milling, 

which provides a reliable reference for the selection of process 

parameters when desirable mean residual stress is needed. 

 

ACKNOWLEDGMENT 

This work was supported by the Metal Industries Research 

and Development Centre (MIRDC), Kaohsiung, Taiwan 

 

NOMENCLATURE----------------------------------------

-------------------------- 

da          : Axial depth of milling 

fz           : Feed per tooth 

G      : Gain coefficient 

Kn         : Kalman gain matrix 

L       : Laser-tool distance 

P      : Laser power 

Pn         : Simulation covariance matrix 

R         : Error covariance matrix 

Tm        : Melting temperature 

Vr      : Cutting speed 
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