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Abstract In laser-assisted milling, higher temperature in shear zone softens the material potentially resulting in a shift of mean re-
sidual stress, which significantly affects the damage tolerance and fatigue performance of product. In order to guide the selection of laser
and cutting parameters based on the preferred mean residual stress, inverse analysis is conducted by predicting residual stress based
on guessed process parameters, which is defined as the forward problem, and applying iterative gradient search to find process parame-
ters for next iteration, which is defined as the inverse problem. An analytical inverse analysis is therefore proposed for the mean residual
stress in laser-assisted milling. The forward problem is solved by analytical prediction of mean residual stress after laser-assisted milling.
The residual stress profile is predicted through the calculation of thermal stress, by treating laser beam as heat source, and plastic stress
by first assuming pure elastic stress in loading process, then obtaining true stress with kinematic hardening followed by the stress relaxa-
tion. The variance-based recursive method is applied to solve inverse problem by updating process parameters to match the measured
mean residual stress. Three cutting parameters including depth of cut, feed per tooth, and cutting speed, and two laser parameters in-
cluding laser-tool distance and laser power, are updated with respected to the minimization of resulting residual stress and measurement
in each iteration. Experimental measurements are referred on the laser-assisted milling of Ti-6Al-4V grade 5 and ELI. The percentage
difference between experiments and predictions is less than 5% for both materials, and the selection is completed within 50 loops.
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been studied through experiments [2-5] and numerical simula-
tions [6, 7], but these methods have low efficiency when ap-

S INTRODUCTION plied in inverse problem, which is defined as the prediction of

The residual stress can largely affect the machined work-
piece in terms of fatigue resistance. With the use of laser,
higher temperature in shear zone softens the material poten-
tially resulting in a shift of mean residual stress after laser-
assisted milling [1], which significantly changes the damage
tolerance and fatigue performance of product. Therefore, an
inverse analysis is conducted on the mean residual stress after
laser-assisted milling, in order to guide the selection of laser
and cutting parameters based on the preferred mean residual
stress. The forward problem, which is defined as the prediction
of residual stress based on guessed process parameters,
needs to be solved first. The methodology of solving forward
problem in both conventional and laser-assisted milling has

process parameters for next iteration through iterative gradient
search. Analytical models for residual stress in the convention-
al milling process have been validated for different materials [8-
12]. However, when the effect of additional heat source by
laser is considered, the microstructure evolution can be trig-
gered and affect the residual stress. The overall forward prob-
lem methodology of the residual stress prediction considering
laser effect is summarized in Fig.1. The heat source is calcu-
lated according to the size of laser spot and the laser power,
and temperature field after laser preheating is calculated based
on the conduction within workpiece [13, 14]. The geometry of
milling tool is simplified as in orthogonal cutting at each in-
stance, in order to predict the flow stress dependent on micro-
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structure evolution [15, 16], followed by cutting forces [17] and
machining temperature [18] predictions. The residual stress is
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Fig. 1. Overall flow chart of forward predictive model.

Iterative gradient search method guesses the process pa-
rameters based on the difference between predicted target
performance and experimental measurement. This procedure
has been widely applied in inverse analysis of hydraulic pa-
rameters [20], material properties [21, 22], torque [23], and
constitutive equation constants [24-26], due to relatively simpli-
fied forward problem. The predictions based on initial guesses
are close to measurements, and the forward problem is solved
by empirical model or numerical simulation within 10 iterations.
However, the prediction of mean residual stress in laser-
assisted milling is a complex procedure, which takes up to
several days if solved by numerical simulation such as finite
element analysis [16]. In addition, the resultant mean residual
stress is very sensitive to cutting and laser parameters, and the
predicted value could be far away from the measurement even
though the initial guesses are close, which takes more itera-
tions to locate the desired parameters. Therefore, a gain coef-
ficient is included in the proposed model. The coefficient is able
to speed up the progress if the initial gap is huge, and avoid
convergence if the stopping criteria has not been reached,
which enhances the computational efficiency and accuracy.
Inverse analysis has been applied to satisfy residual stress [27,
28] but not mean residual stress requirements in laser-assisted
milling. The inverse analysis method conducted in current
study solves the forward problem through an analytical predic-
tion model of mean residual stress in laser-assisted milling and
includes a new iterative gradient search algorithm, which has
been previously used by the authors on cutting force [29] and
surface roughness [30], to solve the inverse problem. Three
cutting parameters including depth of cut, feed per tooth, and
cutting speed, and two laser parameters including laser-tool
distance and laser power, are selected as process parameters.
The analysis is conducted on measured mean residual stress
after laser-assisted milling of Ti-6Al-4V alloy [31, 32].

then predicted through mechanical loading based on forces,
thermal loading based on temperature, and relaxation [19].

2. INVERSE PROBLEM METHODOLOGY

In inverse analysis, iterative gradient search method is used
to find desired target performance and corresponding process
parameters [9]. After an initial guess Xo, depth of cut da, feed
per tooth f;, cutting speed Vi, laser-tool distance L, and laser
power P are updated in each loop as

X, =(d, £V, 1P )

The process parameters in next loop are dependent on the
gap between predicted and measured residual stress as

Xn+1 = Xn + Kn(a_gxp _5R)G (2)

where g5® is the mean residual stresses in machining and
feed directions from experiments and Gy is the mean residual

stress predicted under X.. The forward prediction of mean
residual stress after laser-assisted milling has been proposed
in previous works [33-35]. The mean residual stresses are
calculated by averaging the residual stress profiles, which are
predicted through the calculation of thermal stress, by treating
laser beam as heat source, and plastic stress by first assuming
pure elastic stress in loading process, then obtaining true
stress with kinematic hardening followed by the stress relaxa-
tion. G is called gain coefficient, and K is called Kalman gain
matrix [36-38] being updated in each loop as

Agn—l T
K :P"[AXR j R (3)
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where AXo=Xo and AG3 =&y . The simulation covariance ma-
trix Pn has an initial value of
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where Ada, Af;, AVy, AL, and AP are the expected ranges of
variance. Pn is updated in each loop as
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The gain coefficient G in Eq. (2) is
— Z(E;XP - 5271) (8)
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The denominator of G avoids local convergence if the stop-
ping criteria has not been reached. The numerator of G speeds
up the gradient search process when the difference between
measurement and guess is large, which enhances computa-
tional efficiency. Therefore, the proposed new iterative gradient
search method is able to avoid convergence, more adaptive,
and more robust. Both forward and inverse problems are
solved analytically in one algorithm summarized in Fig.2.
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Fig. 2. Flow chart of the inverse analysis process.

3. EXPERIMENTAL VALIDATION AND
ESTIMATION OF RESIDUAL STRESS VIA
INVERSE PROBLEM

Experimental measurements are referred on laser-assisted
milling of Ti-6Al-4V grade 5 and grade 23 (ELI) [31, 32] for
validation of inverse analysis. The spindle rotation speed is
1253RPM. The size of laser spot is 2.5mm x 3.6mm, the laser
power P is 185W, and the laser-tool distance L is 3.5mm. For
milling tool, the rake angle is 15°, the diameter is 19.05mm,
and the nose radius is 0.8mm. The cutting speed is 75m/min,
the feed per tooth is 0.1mm/tooth, the axial depth of milling is
1mm, and the radial width of cut is 3mm.

The constitutive model of Ti-6Al-4V for flow stress prediction
is

-0. —n g T-T, m
o= (A +Kyyd °° +BZ )(1+Cln;—0){1—(ﬁ)} )

m

where Tm is melting temperature. All constitutive model param-
eters are listed in Table 1 [34], and do is decided to be 10um.

Table 1. Constitutive model parameters for Ti-6Al-4V.
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Ti-6AI-4V T Aw(MPa) | K, (MPa Jum ) | BMPa) C
Grade 5 803.22 401.61 653.1 0.015
m n Tm(°C) 30 )

0.6 0.45 1668 1

Ti-6AI-4V | An(MPa) | K, (MPa Jum ) | BMPa) C
EL 803.22 401.61 653.1 0.025
m n Tm(%0) 5;0 )

0.8 0.45 1630 1

For Ti-6Al-4V grade 5, the measured mean residual stress
as well as prediction from inverse analysis in laser-assisted
milling are shown in Fig.3. Measurements are collected every
50um up to 200um depth and averaged for mean residual
stress. The initial guesses for inverse analysis are cutting depth
of 1mm, feed per tooth of 0.22mm/s, cutting speed of 2.75m/s,
laser-tool distance of 7.7mm, and laser power of 1034W. In
machining direction, the mean residual stress from experi-
ments is 191MPa in compression, and the prediction through
inverse analysis is -182.72MPa. A close match is found after
44 iterations with a percentage difference of 4.33% as listed in
Table 2. In feed direction, the mean residual stress from exper-
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iments is 130.2MPa in compression, and the prediction through
inverse analysis is -132.80MPa with a percentage difference of
1.99%. The process parameters in final iteration are cutting
depth of 0.79mm, feed per tooth of 0.11mm/s, cutting speed of
1.62m/s, laser-tool distance of 6.03mm, and laser power of
816.6W. As observed in Fig.3, the proposed algorithm is able
to jump out of local extreme several times throughout the in-
verse analysis until the stopping criteria are reached.

Ti-6Al-4V grade 5

ntal measurement (Feed

Mean residual stress (MPa)

werse analysis (Feed direction)

Fig. 3. Estimation of mean residual stress via inverse analysis on Ti-6Al-4V
grade 5.

Table 2. Comparison of mean residual stress between experimental meas-
urements and predictions through inverse analysis.

Ti-6Al-4V Grade 5
Measured Prediction from | Percentage
mean residual inverse analy- difference
stress (MPa) sis (MPa) (%)
Machining 101 -182.72 4.33
direction
Feed -130.2 -132.80 1.99
direction
Ti-6Al-4V ELI
Measured Prediction from | Percentage
mean residual inverse analy- difference
stress (MPa) sis (MPa) (%)
Machining 175 -171.50 2.00
direction
Feed -1435 -146.68 2.21
direction

The measured mean residual stress as well as prediction

from inverse analysis in laser-assisted milling of Ti-6Al-4V ELI
are shown in Fig.4. The initial guesses for inverse analysis are
cutting depth of 1mm, feed per tooth of 0.1mm/s, cutting speed
of 1.25m/s, laser-tool distance of 3.5mm, and laser power of

70W. In machining direction, the mean residual stress from
experiments is 175MPa in compression, and the prediction
through inverse analysis is -171.5MPa. A close match is found
after 27 iterations with a percentage difference of 2% as listed
in Table 2. In feed direction, the mean residual stress from
experiments is 143.5MPa in compression, and the prediction
through inverse analysis is -146.68MPa with a percentage
difference of 2.21%. The process parameters in final iteration
are cutting depth of 0.51mm, feed per tooth of 0.06mm/s, cut-
ting speed of 0.74m/s, laser-tool distance of 1.78mm, and laser
power of 237.37W. Again, the proposed inverse analysis
method is able to reach both high computational efficiency and
accuracy.
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Fig. 4. Estimation of mean residual stress via inverse analysis on Ti-6Al-4V
ELI.

When comparing the process parameters in final loop to ini-
tial guesses and experimental values, it is observed that alt-
hough the process parameters are relatively close to initial
guesses, they may be very different than experimental process
parameters since the mean residual stress solutions may not
be unique. In addition, the model-predicted residual stresses
under experimental process parameters have been calculated
by solving forward problem only [35]. The percentage errors for
Ti-6Al-4V grade 5 and ELI are higher than 10% in both direc-
tions, which also indicates that the proposed inverse analysis
method is highly accurate as the errors are mainly from the
forward model.

4. CONCLUSIONS

An inverse analysis is conducted on the mean residual
stress in laser-assisted milling which solves the forward prob-
lem of predicting residual stress based on guessed process
parameters and the inverse problem of finding process param-
eters for next iteration by applying iterative gradient search. For
forward problem, residual stress is affected by material recrys-
tallization under laser effect. The laser beam is treated as a
heat source on top. The milling tool geometry and process
parameters are recalculated in orthogonal cutting. The recrys-
tallization and grain growth are described by calibrated models
showing the dependency of strain, strain rate, and temperature

d0i:10.20944/preprints201906.0152.v1
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on recrystallization. For the loading process, the elastic stress-
es are first predicted, and the real stresses are calculated con-
sidering kinematic hardening. The mean residual stress is then
predicted after the stress relaxation. The variance-based re-
cursive method is applied to solve inverse problem and update
process parameters to match the measurements. Three cutting
parameters including depth of cut, feed per tooth, and cutting
speed, and two laser parameters including laser-tool distance
and laser power, are updated in each iteration. The proposed
iterative gradient search method introduces the gain coefficient
that updates the parameters according to the difference be-
tween measurement and prediction, as well as the differences
of predicted mean residual stress over loops, which makes the
model able to avoid convergence, more adaptive, and more
robust. The proposed model is validated through experimental
measurements on the laser-assisted milling of Ti-6Al-4V grade
5 and ELI. The percentage difference between experiments
and predictions is less than 5%, and the process is completed
within 50 loops. Therefore, the proposed inverse analysis
model is also highly accurate, and computationally efficient.
The selected process parameters may be very different than
experimental process parameters due to the multiple solutions
issue. In addition, when comparing the model-predicted resid-
ual stresses under experimental process parameters to meas-
urements, it is concluded that the errors are mainly from the
forward model.

The proposed inverse analysis is the first approach to satisfy
mean residual stress requirement after laser-assisted milling,
which provides a reliable reference for the selection of process
parameters when desirable mean residual stress is needed.
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NOMENCLATURE
da : Axial depth of milling
fz : Feed per tooth
G : Gain coefficient
Kn : Kalman gain matrix

L : Laser-tool distance

P : Laser power

Pn : Simulation covariance matrix

R : Error covariance matrix

Tm : Melting temperature

Ve : Cutting speed
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