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1+  Abstract: We consider a four-dimensional Riemannian manifold M equipped with an additional

> tensor structure S, whose fourth power is minus identity and the second power is an almost complex

s structure. In a local coordinate system the components of the metric g and the structure S form

«  skew-circulant matrices. Both structures S and g are compatible, such that an isometry is induced in

s every tangent space of M. By a special identity for the curvature tensor, generated by the Riemannian

e connection of g, we determine classes of an Einstein manifolds and an almost Einstein manifolds.
»  For such manifolds we obtain propositions for the sectional curvatures of some special 2-planes in a

s tangent space of M. We consider an almost Hermitian manifold associated with the studied manifold

» and find conditions for g, under which it is a K&hler m anifold. We construct some examples of the
1o considered manifolds on Lie groups.
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s 1. Introduction

I

14 The right circulant matrices and the right skew-circulant matrices are Toeplitz matrices, which
s are thoroughly studied in [1] and [3]. The set of invertible circulant (skew-circulant) matrices form a
1s  group with respect to the matrix multiplication. Such matrices have application to geometry, linear
1z codes, graph theory, vibration analysis (for example [2,7,9,11-13]).

18 A. Gray, L. Hervella and L. Vanhecke used curvature identities to classify and to study the almost
19 Hermitian manifolds (for instance in [4-6,15]). The Hermitian manifolds form a class of manifolds
20 with an integrable complex structure J. The class of the Kédhler manifolds is their subclass and such
21 manifolds have a parallel structure J. According to A. Gray, the Kahler manifolds have an especially
22 rich geometric structure, due to the Kahler curvature identity R(-,-,J-,J-) = R(-,-,-,-). Some of the
23 recent investigations on the curvature properties of the almost Hermitian manifolds are made in
2 [8,10,14,16].

25 In the present work we study a four-dimensional differentiable manifold M with a Riemannian
2 metric g. The manifold M is equipped with an additional tensor structure S of type (1,1), which
27 satisfies S* = —id. Moreover, the component matrix of S is a special skew-circulant matrix. The

2s  structure S is compatible with g, such that an isometry is induced in every tangent space of M. Such
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20 a manifold (M, g, S) is associated with an almost Hermitian manifold (M, g, J), where | = 52 is an
30 almost complex structure.

31 The paper is organized as follows. In Sect. 2, we introduce the manifold (M, g, S). In Sect. 3, we
52 find conditions under which an orthogonal basis of the type {x, Sx, S?x, S3x} exists in every tangent
ss space of (M, g,S). In Sect. 4, we consider a class of almost Einstein manifolds (M, g, S). Also, we
s« obtain conditions for (M, g, S) to be an Einstein manifold. In Sect. 5, we find some curvature properties
35 of these manifolds. In Sect. 6, we obtain a necessary and sufficient condition for S to be parallel with
s respect to the Riemannian connection of g. Also, we get conditions for (M, g, J) to be a Kahler manifold.
sz In Sect. 7, we construct examples of the considered manifolds on Lie groups and find some of their
ss geometric characteristics.

3o 2. Preliminaries

Let M be a 4-dimensional Riemannian manifold equipped with a tensor structure S in every
tangent space T, M at a point p on M. Let S have a skew-circulant matrix, with respect to some basis
{e;}, as follows

0 100
0 010
ky
-1.0 00
Then S has the property
§* = —id. @)
Let the metric g and the structure S satisfy
8(Sx,Sy) = g(xy). ®)

20 Here and anywhere in this work, x,y, z, u will stand for arbitrary elements of the algebra on smooth
a1 vector fields on M or vectors in T, M. The Einstein summation convention is used, the range of the
.2 summation indices being always {1,2,3,4}.

The conditions (1) and (3) imply that the matrix of g has the form

A
(&ij) = g (4)

oW Nx ™
W W o

|
:'>U°oou

—-B

i.e. it is skew-circulant. Here A = A(p) and B = B(p) are smooth functions of an arbitrary point
p(X', X%, X3, X*) on M. The determinant of g has a value det(g;j) = (A* —2B?)?. It is supposed that

A(p) > V2B(p) >0 ®)

a3 in order g to be positive definite. A manifold M introduced in this way we denote by (M, g, S).
Now, we consider an associated metric § with g, determined by

§(x,y) = &(x,Sy) +&(Sx,y). ®)
Using (1), (4) and (6) we get that the matrix of its components is

2B A 0 —A
| a 28 4 o0
@)=| 0o 4 28 4

A 0 A 2B

@)
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as  Since (5) is valid, it is easy to see that § is an indefinite metric.
The inverse matrices of (g;;) and (g;;) are as follows:
A —-B 0 B
11-B A —-B 0
1 —
=510 -5 a -s|’ ®
B 0 —-B A
—-2B A 0 —A
1 A -2B A 0
5] = —
€= 0 a -2 al )
—-A 0 A -2B
s where D = A2 —2B2,
s 3. Orthogonal S-basis of T, M
a7 If x is a nonzero vector on (M, g, S), then according to (1) we have Sx # +x. Therefore the angle

ss @ between x and Sx belongs to the interval (0, 7). Evidently, the vectors x, Sx, $2x and S3x determine
a0 six angles, which belong to (O, 7). For these angles we establish the next statement.

Theorem 1. Let x be a nonzero vector on (M, g, S). Then
/(x,8x) = /(Sx,8%x) = /(S%x,S%x) = ¢, [(x,8°x)=m—¢, [(x,S%x)=/(Sx,5%x) = g, (10)
so where ¢ € (0,71).
Proof. Let x = (xl, X2, x3, x4) be a nonzero vector on (M, g, S). By using (1), we get
Sx = (xz, x3, x4, —xl), S%x = (x3, 1 —xl, —xz), S3x = (x4, S — —x3). (11)
From (2) and (3) it follows
g(x,8x) = —g(x,5%x), g(x, 8%x) = 0. (12)
Having in mind (4) and (11), we calculate

g(x,x) = A((x1)? + (232 + (x°)? + (x*)?) +2B(x'x? + 2223 + xx* — x'x?), 13
g(x,Sx) = A(x!a? + 2223 + 232 — xlot) + B((x1)? + (x2)2 + (23)2 + (xh)?)).
Now, due to (3) and (5), we can determine the angle between x and Sx and the angle between x
and S%x as follows:
g(x, S%x)
g(x,x)

cos ¢ = , cos¢p = (14)

We apply (12) and (13) in (14) and find

A(xtx? 4+ 2223 + 3xt — xlat) + B((x1)? + (x2)2 + (23)2 + (x4)?)
A((x1)24 (x2)2 + (x3)2 4 (x4)2) + 2B(x1x2 + x2x3 + x3x% — x1x%)’

cos @ =

cos¢p = 0.
s1  Then, bearing in mind (3) and (12), we get (10). O
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= Definition 1. A basis of type {x, Sx, S*x, S®x} of Ty M is called a S-basis. In this case we say that the vector x
ss induces a S-basis of Ty M.

54 The following statements hold.

Theorem 2. Every nonzero vector x = (xl, %2, x3, x4), which satisfies

42 ()2 = (1)2) + 413 ((x)2 = (2)2) + ()2 + () + (D2 + (xH2))> £0,  (15)
ss induces a S-basis of Ty M.

Proof. If a nonzero vector x € TpyM has coordinates (xl,xz, x3, x4), then using (11) we get the

determinant formed by the coordinates of the vectors x, Sx, S$2x and S3x. Ttis
A =422 ()2 = () + 4 3 ()2 = (2)2) + (22 + (D) + (D)2 + (xH2))%
ss In case that (15) is valid, we have A # 0, i.e. x, Sx, S?x and S3x form a basis. [

Lemma 1. Let a vector x induce a S-basis and let ¢ be the angle between x and Sx. The following inequalities
are valid:

Proof. We suppose without loss of generality that g(x, x) = 1. Then, from (3), (12) and (14), we find
g(x,Sx) = ¢(Sx,5%x) = ¢(5%x,5%x) = —g(x,5%) = cos ¢, g(x,5%) = g(Sx,8%x) =0.  (17)
We consider a nonzero vector y, such that
Y = — cos gx + Sx — cos pS>x. (18)
Since g is a Riemannian metric we have g(y,y) > 0. Substituting (18) into the latter inequality, and

using (17), we get
1—2cos? ¢ > 0.

sz Then, taking into account 0 < ¢ < 71, we obtain (16). [

58 Bearing in mind Theorem 1, Theorem 2 and Lemma 1, we arrive at the following
ss Theorem 3. For every manifold (M, g, S) an orthogonal S-basis of T, M exists.

eo 4. Almost Einstein manifolds

Let V be the Riemannian connection of g. The curvature tensor R of V is determined by
R(x,y)z = ViVyz = VyViz = V|, 2. (19)
The tensor of type (0,4) associated with R is defined by
R(x,y,z,u) = g(R(x,y)z, u). (20)
The Ricci tensor p with respect to g is given by the well-known formula

p(y,z) = §'R(ei,y,2,¢)). (1)
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The scalar curvature T with respect to ¢ and its associated quantity are determined by
t=glo(ee), T =glp(eie). (22)
Now, we consider a manifold (M, g, S) with the condition
Vs =0. (23)
&1 i.e., Sis a parallel structure with respect to V.
Proposition 1. Every manifold (M, g, S) with a parallel structure S satisfies the curvature identity
R(x,y,Sz,Su) = R(x,y,z,u). (24)
Proof. The well-known formula (V,S)y = V,Sy — SVy, together with (23), yields
ViSy = SVyy. (25)

On the other hand (19) implies R(x, y, Sz, Su) = g(R(x, y)Sz, Su). Because of the latter identity, using
(3), (19) and (25), we have successively

R(x,y,Sz,5u) = §(VxVySz — VyVySz — V|, Sz, Su)
8(VxS(Vyz) = VyS(Viz) — S(V[yy2), Su)
= 8(8(VaVyz =V Viz = V|, 12), Su) = g(R(x,y)z,u),

s which completes the proof. [

63 We will note that the identity (24) defines a more general class of manifolds (M, g S) than the
e« class with the condition (23). Farther in this paper, we investigate the properties of manifolds in these
es two classes.
Let Rjjx; be the components of the curvature tensor R of type (0,4). The local form of (24) is
RijlmS,l{S}’l” = Rjjk,- Then, using (1), we find the equalities

R1313 =Ro404 = Ryzp4,
R1212 =R1414 = R2323 = R3434 = R1223 = Ri214 = Ria34 = Ri234 = R334 = Roz14,

Ri213 =R1224 = R1413 = Rog1a = Roao3 = Ropz13 = Rizzs = Roszs.
By applying the Bianchi identity to the above components of R, we obtain

R1313 = Rog24 = Rizp4 =2R1212 = 2R1414 = 2R2323 = 2R3434 = 2R1203 = 2R1214
=2R1434 = 2R1234 = 2R2334 = 2R2314, (26)

R1213 = R1224 = R1413 =Ro414 = Roa23 = Ro313 = Ryz3s = Rogas.

es Vice versa, from (1) and (26) it follows (24).
o7 Hence we arrive at the following

s Proposition 2. The property (24) of the curvature tensor R of the manifold (M, g,S) is equivalent to the
eo conditions (26).

Proposition 3. If a manifold (M, g, S) has the property (24), then the components of the Ricci tensor p satisfy

P11 = 022 = 033 = 044, P12 = P23 = P34 = —P14, P13 = P24 = 0. (27)
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Proof. Due to Proposition 2 the components of the curvature tensor R satisfy (26). For brevity, we
denote
Ri = Riziz, Rz = Rizis. (28)

Thus, having in mind (8), (21), (26) and (28), we get the components of p, as follows:

(— ARy +2BR;),

Tl ™

011 = P22 = P33 = P44 =

2
P12 = P23 = P34 = —P14 = 5(3R1 — AR,), (29)

p13 = p24 = 0.
7 i.e. the equalities (27) are valid. O

A Riemannian manifold is said to be Einstein if its Ricci tensor p is a constant multiple of the
metric tensor g, i.e.

p(x,y) = ag(x,y). (30)

n In [17], for locally decomposable Riemannian manifolds is defined a class of almost Einstein
72 manifolds. For the considered in our paper manifolds, we give the following

Definition 2. A Riemannian manifold (M, g, S) is called almost Einstein if the metrics g and § satisfy
p(xy) = ag(x,y) + BE(x,y), (31)
73 where o and B are smooth functions on M.
7« Theorem 4. If a manifold (M, g, S) has the property (24), then it is almost Einstein.

Proof. Due to Proposition 3, for (M, g, S) the equalities (27) are valid. Consequently, from (22), using
(8), (9) and (27), we get the values of the scalar curvatures T and 7%, as follows:

*

4
T =5 (Aon —2Bpn), T =5 (= Bpu + Apn).

Sl

Immediately from the latter equalities we have

T 27* T T*
=-A+—B =-B+—A 2
pu=3A+—B po= B+A (32)

and bearing in mind (4) and (7) we get

* T*

T B _T L
P11 = 1811 + 1811, P12 = 4812 + 1 S12-

Then, taking into account (4), (7), (27) and (32), we obtain

*

T -
pij = 7 8ij + 4 &ijy (33)

i.e.
*

p(x,y) = 78(xy) + TExY). (34)

s Therefore, comparing (34) with (31), we state that (M, g, S) is an almost Einstein manifold. [

7o Corollary 1. The manifold (M, g, S) with (24) is Einstein if and only if the scalar curvature T* vanishes.
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Proof. If (M, g, S) has the scalar curvature which satisfies
™ =0, (35)

7z then the equality (34) implies p(x,y) = 7g(x,v), i.e. (M, g,S) is an Einstein manifold.
78 Conversely. Since (M, g, S) is an Einstein manifold its Ricci tensor p has the form (30). Thus (34)
7o implies (35). O

80 In the next theorem, we explicitly express the curvature tensor R of an almost Einstein manifold
s1 (M, g,S) by both structures g and S.

Theorem 5. Let (M, g, S) have the property (24). Then the curvature tensor R has an expression

*

(27 + 713) + %

T

R=15

o, (36)
where

m(x,y,z,u) = g(y,z)g(x, u) — g(x,2)8(y, u),
m(x,y,z,u) = g(y,2)§(x,u) + g(x, u)g(y,z) — g(x,2)§(y, u) — gy, u)g(x,2), 37)
m3(x,y,z,u) = §(y,2)8(x,u) — §(x,2)§(y, u).

Proof. Due to Proposition 3, the components of the Ricci tensor p of (M, g,S) are given by (29).
Therefore, by straightforward computation, we get

1 1
Ry = _E(Apll +2Bp12) Ry = —§(BP11 + Ap12).-

We substitute (32) into the above equalities and obtain
— ,1 2 2 * — 71 2 2N %
Ry = 8((A + 2B*)T +4ABT), Ry = 8(2ABT+(ZB + A%)T"). (38)

From (4), (7), (28) and (38) it follows

T o o T - 5 - B
Riz13 = 16 (2(813831 — 811833) + §13831 — 811833> + ) (813831 + 813831 — 811833 — 811833),

T o o T* - 5 - B
Rio13 = 16 (2(813821 — 811823) + §13821 — 811823> + ) (813g21 + 813821 — 811823 — gngza),

Consequently, using (4), (7), (26), (28) and (38), we have
T - . T* - - - -
Rijin = 1¢ (2(gihgjk = gik8jn) + Gindjk — gikgjh) + 5 (8un&jk + Sngjk — Sijn — Six&jn)
s which is equivalent to (36) with (37). O

ss 5. Curvature properties of (M, g, S)

The sectional curvature of a non-degenerate 2-plane {x,y} spanned by the vectors x,y € T, M is

the value R( )
XY, XY
k(x,y) = . (39)
W) = e sy y) - £y)
sa Let x induce a S-basis of T, M for (M, g,S) and let ¢ = {x, Sx} be a 2-plane. Evidently, ify € o

ss and y # x, then Sy ¢ 0. Consequently, ¢ has only two S-bases: {x,Sx} and {—x, —Sx}. Thus the
ss sectional curvature k(x, Sx) depends only on ¢ = Z(x, Sx).
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Theorem 6. Let (M, g, S) have the property (24) and let a vector x induce a S-basis. Then the sectional
curvatures, determined by the S-basis, are

k(x,Sx) = k(Sx, S*x) = k(x,S$>x) = k(S%x, S>x)
1

= Tolcos2g—1) (t(+ 2008 g) 447 cosg), (g

k(x,S%x) = k(Sx,S%x) = —% (T(l +2cos® @) + 47" cos cp),

sz where ¢ = /(x,5x).
Proof. Let a vector x induce a S-basis. The equalities (3), (12) and (14) imply

g(x,Sx) = g(Sx,5%x) = g(S%x,Sx) = —g(x,Sx) = g(x, x) cos @,

g(x,5%x) = g(Sx,8%x) = 0. (41)

ss Due to Lemma 1, the angle ¢ = /(x, Sx) satisfies (16).
Now, from (2), (3), (6) and (41) we find
§(x,x) =2g(x,x)cosp, g(x,Sx) =g(x,x), §(x,5%x)=0, §(x,%x)=—g(x,x). (42
s Applying (36), (37), (41) and (42) in (39), we obtain (40). O
Corollary 2. Let a vector x induce an orthonormal S-basis. Then

k(x, Sx) =k(Sx, S%x) = k(x, S*x) = k(S%x, S%x) = _%,

k(x,S%x) = k(Sx,S%x) = —g
oo Proof. The proof follows directly from (40), when ¢ = 7. O
o1 Due to Theorem 6 and Corollary 1 we establish the following

Proposition 4. If (M, g, S) with (24) is an Einstein manifold, then the sectional curvatures, determined by an
S-basis, are

_ 2.y — 3.0 1ic2, 3y _ T(1+2cos” ¢)
k(x,Sx) =k(Sx,S5°x) = k(x,S°x) = k(5°x,5°x) = T6(cos2g —1)"
k(x,S%x) = k(Sx,$%x) = —%(1 +2co0s? ).

Now, we recall that the Ricci curvature in the direction of a non-zero vector x is the value

r(x) = gg: zg (43)

Theorem 7. Let (M, g, S) have the property (24) and let a vector x induce a S-basis. Then the Ricci curvatures
are

r(x) =r(Sx) = r(Szx) = r(S3x) = i + i cos @, (44)

2
o2 where ¢ = /(x,Sx).
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Proof. According to Theorem 4, the Ricci tensor p is given by (34). Then, using (3), we find
p(x,x) = p(Sx,Sx) = p(S%x,5%x) =p(S3x, $3x) = Eg(x,x) + ng(x, x). (45)
o3 Leta vector x induce a S-basis. From (3), (42), (43) and (45) it follows (44). O
9 Further, Theorem 7 and Corollary 1 imply the next statement.

Proposition 5. Let (M, g, S) with (24) be an Einstein manifold. Then the Ricci curvatures are
r(x) = r(Sx) = r(S%x) = r(Sx) = 2

os Proof. These equalities follow directly by substituting 7" = 0 into (44). O

9 6. Manifolds with parallel structures

In this section we study a manifold (M, g, S), whose structure S satisfies (23). Also, we consider
an associated manifold (M, g, J) with a structure | = S2. Bearing in mind (2) and (3), we get that the
manifold (M, g, J) is almost Hermitian and the structure | is almost complex. In case that | is parallel
(M, g,]) is a Kéhler manifold. The characteristic condition of a Kdhler manifold is

VJ]=0. (46)
oz We note that equalities (23) and | = s2 imply (46).

Theorem 8. Let (M, g, S) have the property (23). Then the scalar curvatures T and T* satisfy

3n=7—-7, 3n=1+1, 3B=1+7, 3u=-17+13, (47)
*
98 where'q:%,ri*:%.

Proof. It is known that in a Riemannian manifold for the scalar curvature T and the Ricci tensor p it is
valid 1
ity = 5 Vi, (48)

9 where pf( = kg™
On the other hand, if (M, g, S) satisfies (23), then it satisfies (24). Therefore, the Ricci tensor has
the expression (33). Hence, from (1), (4), (7), (8) and (33), we get

T T ;
o= 30+ 7 (Sk— (5D,

where (5,i are the Kronecker symbols. Using the above equalities, (23) and (48) we obtain

. ™ . .
T = O+ o (Sk— (51)7).

w0 Then, from (1) it follows (47). O

101 According to Theorem 8 and Corollary 1 we establish the following

102 Proposition 6. If (M, g,S) with (23) is an Einstein manifold, then the scalar curvature T is a constant.
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ws 6.1, Conditions for parallel structures
Theorem 9. The manifold (M, g, S) satisfies (23) if and only if
A1=By—By, Ay=Bi+B;, A3=By+By,  Ay=Bys=B3— By, (49)
0A oB
e where Ai = ﬁ, Bi = ﬁ
Proof. If Ffj are the Christoffel symbols of V, then
k_ Tk
VZ-S§ = al-s]f. + rfksj — rz.].s,fc. (50)
Together with (23), (50) yields
sk =1k St (51)
From (1) and (51) we get
r%l :F%z = I‘% = I“1L4 = 1’22 = 1“4213 = _F%AL = —F§3 = _1%4 = —1’24,
r%1 :ri)z = F‘f3 = —1"%4 = r%z = —1"%3 = —1%4 = _1%3 = —r§4 = —1"14, (52)
1“?1 :Filz = r13 = —1"%4 = _réz = —1"%3 = —1"24 = —1"33 = —F§4 = rzl14/
T =-Th = Ty =Ty = T3 =-T5 = 5y =T = I3 =Th
Now, using (1), (4), (8) and the well known identities
215 = 8" (0i8aj + 9j8ai — 9agij),
we calculate
Il = 55 (AA; — B(4B; — Ay + Ag)), 2, = 55 (A(2By — Ay) + B(As — Ay)),
I3, = 55 (B(A; +A4 — AA3), It = 55 (B(A; +A3 — A(2B1 + Ay)),
rl, = %(AA2 - A1 + By + By)), 2, = 55 (AA; — B(Ay + By — B3)),
I3, = S5 (A( —B(A; —By—By)), T}, = 35(B(Az +33 — B1) — A(By + By)),
I, = %(AA3 — 2333) 2, = 55 (A(B1 + B3 B(A1 + A3)),
1%, = .4 (AA; — 2BBy), I, = 25 (A(By — B3) + B(A3 — A1),
ri, = %(AA4 + B(Ay — B, — By)), I3, = 55 (A B2 + B4 — B(A4+ By + B3)),
I3, = 55 (A(B1 + B3) — B(A1 + B+ By)), Ti, = 55(AA1+ B(Ay— By —B3)),
I}, = 55 (A(2By — A1) — B(As+ Ag)), T3 = 55(AAr — B(4B, — Ay — A3)),
I3, = 55 (A(2B, — A3) + B(As — Ay)), I3, = 35 (B(A3 — A1) — AAy), (53)
Il = 55(A(Bs — B1) — B(A3 — By + By)), T% = 55(AAs+B(By — B3 — Ay)),
I3 = op (AA2 — B( BZ*B4+A3)) I35 = 25 (A(B2 — Bs) — B(A2 + By — By)),
I, = 55 (A(Bs — By) — B(As — Ay)), I3, = 55 (AAs — 2BBy),
I3, = 25 (A(By + By) — B(A2 + Ay)), T4, = .5 (AA, — 2BBy),
Il = 55(B(A; — A4 — AAy), 2, = 55 (A(2B; — A) + B(A1 — A3)),
I3, = 55 (AA; — B(4B3 — Ay — Ag)), T4, = 55 (A(2Bs — Ag) — B(A1 + A3)),
Y, = 55(B(As+ By — By) — A(By + B3)), T%, = 55 (A(Bs—By) + B(Bs + By — By)),
I3, = 55 (ABy — B(A3 — By + By)), I3, = 55 (AA; — B(B; + B3 + By)),
Tly = op (B(A2 + Ag) — A(2By + Ay)), 2, = 55 (B(A1 + A3) — AAy),
1—24 = %( (2B4 — A3) +B(A2—A4)) 1—‘24 = %(AA4— (4By + Ay — Ag))
s We apply (53) in (52) and obtain the conditions (49).
106 Vice versa. Let (49) hold true. We put equalities (49) into (53) and find (52). Hence (1) and (52)

w7z imply (51). Consequently, from (1), (50) and (51) we get (23). O
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1s Theorem 10. The manifold (M, g, ]) is Kihler if and only if the equalities (49) are valid.

Proof. Having in mind (1), we get that the components of the structure | = S%on (M, g, ]) are given
by the skew-circulant matrix

0 0 1 0
K 0 0 0 1
ky — 54
0O -1 0 0
Therefore, from (46), (54) and
Vil = aifl + ThJf ~ TiJi
it follows
ThJf =THL (55)
Together with (54), (55) yields
1 13 _ 11 4 _ 14 _ T2 _ 12 3 _ 1l _ 713
r%l = 1:113 = _rgsr F%4 = 1%3 = F123_ _ngy riz = —1“%4 = _1&4/
1:111 = _F%a = _riaf F%4 = rgs = —11"12 = F:iw 1"%2 = 11214 = _1%4/
Iy =T =I5, I=In=10,=-Iy I3 =10%=-T4

1o We apply (53) in (56) and obtain conditions (49).
110 Vice versa. From (49) it follows (23). Obviously (23) implies (46). O

111 Bearing in mind Theorem 9 and Theorem 10 we state the following

12 Corollary 3. The structure S of (M, g, S) is parallel with respect to V if and only if the structure | of (M, g, ])
us s parallel with respect to V.

us 7. Lie groups as 4-dimensional Riemannian manifolds with skew-circulant structures

Let G be a 4-dimensional real connected Lie group and g be its Lie algebra with a basis
{x1,x2, x3, x4 }. We introduce a structure S and left invariant metric g as follows

Sx1 = x2, Sxp = x3, SX3 = X4, Sx4 = —Xq, (57)
0, i#j;
g(xi, x;) = { 1, ie] (58)

us  Obviously (2) and (3) are valid. Therefore (G, g, S) is a Riemannian manifold of the considered type.
For the manifold (G, g, S) we suppose that S is an Abelian structure, i.e.

[xi, x]} = [le', Sx]] (59)
According to (57), (59) and the Jacobi identity for the commutators [x;, x;] we obtain

[x1,x2) = [x1, x4] =[x, x3] = [x3, x4] = A1x7 + Aox + Agxz + Agxy,
[xl, X3] = [x2, X4] :(/\2 — }\4)9(1 + ()Ll + )\3))(2 + (/\2 + /\4)3(3 + ()\3 — )Ll)X4, (60)
us where A; € R.

117 It is easy to see that a manifold (G, g, S) with a Lie algebra g, determined by (60), has an Abelian
us structure S.
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1o Theorem 11. Let (G, g, S) be a manifold with a Lie algebra g determined by (60). Then (G, g, S) satisfies the
120 identity (23)

Proof. The well-known Koszul formula implies

2¢(Vixj, xx) = g([xi, xj], xx) + g([xx, xi], xj) + g([xx, xj], x1),
and having in mind (58) and (60), we get

Vixr = —A1(x2 +x4) + (A4 — A2)x3, Vixa = A(x1 — x3) + (Ag — A2)xg,
Vaxz =A1(x —x4) + (A2 = Ag)xy,  Vixg = A(x +x3) + (A2 — Ag)xo,
Vixt = =A2(x2 +x4) — (A1 +A3)x3, Vipxo = Aa(x1 — x3) — (A1 + A3)xy,
Vixs = Az(x2 —x4) + (M1 +A3)x1,  Vipxg = Ap(xq + x3) + (M +A3)x2, 61)
VX1 = =A3(x2 +x1) — (A2 +A4)x3, Vigxo = Az(x1 — x3) — (A2 + Ag)xy,
VX3X3 = /\3(x2 — X4) + (Az + )L4)X1, VX3X4 = 3(JC1 + X3) + (Az + )»4)x2,
Vixr = =Aa(x2 +x4) + (A = A3)x3,  Vixo = Au(x1 — x3) + (A1 — A3)xy,
Vaxs = Ag(xa — x4) + (A3 = AM)x1, Vg = Ag(x1 +x3) + (A3 — Ap)xa.

121 From (57), (61) and the formula (V,S)x; = V,Sx; — SVy,xj we get (Vy,S)x; = 0, i.e. (23) is valid. [

Further, using (19), (20), (58), (60) and (61) we calculate the following components of the curvature
tensor R:

R1313 = Rogpa = Rizpa =2R1212 = 2R1414 = 2R2303 = 2R3434 = 2R1203 = 2R1p14
= 2Ry434 = 2Ry234 = 2Rp334 = 2Ro314 = 2(A2 + A3+ A+ A3), 62)
R1213 = R1224 = R1413 =Ro414 = Rogp3 = Ro313 = Ry334 = Roazs

= 2(AM A2+ AA3 + AzAy — AqAy).
The rest of the nonzero components are obtained from the properties
Rijks = Rysijs Rijks = —Rjiks = —Rijsk-
From (58), (62) and the formula (21) we get the components of the Ricci tensor p:

P11 = P2 = p33 = pas = —4(AT + A3+ A3+ A),
P12 = P23 = P3a = —4(A 1A + AA3 4+ A3y — AMAy), (63)
p13 =024 =0, p14=—p12.

Now, using (6) and (58), we find the components of § and the components of its inverse. They are
as follows:
;o 813=8u= 0

1
1 513 _ 524 _
2

S§11=82=83=824=0, S10=83=8§u=—-8u=
11 =1 B¢

g~ — gZZ — g‘.33 — g~44 — O, g.lz g.23 g.34 - _
Then, applying (58), (63) in (22), we get the values of the scalar curvatures T and T* as follows:
T=—16(A2+ A3+ A2+ A2), T = —16(A1As + AaAs3 + AsAy — AjAy). (64)

122 Consequently, the equalities (58), (63) and (64) imply (33), i.e. (G, g, S) is an almost Einstein manifold.
Further, using (39), (58) and (62), for the sectional curvatures of the basic 2-planes we find

K(xo,x3) = k{31, 33) = 20 + A3 + A3 +A3),

(65)
k(x1,x0) = k(x1,x4) = k(x2,x3) = k(x3,x4) = AT+ A3+ A3 + A%
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123 Therefore, we arrive at the following
12« Theorem 12. Let (G, g, S) be a manifold with a Lie algebra g determined by (60). Then
125 (i) The nonzero components of the curvature tensor R are (62);
we  (ii) The components of the Ricci tensor p are (63);
w7 (iii) The scalar curvatures T and T are (64). The manifold is almost Einstein;
we  (iv) The sectional curvatures of the basic 2-planes are (65).
120 Bearing in mind Corollary 1 and the second equality of (64) we construct two examples of Einstein

1o manifolds (G, g,S).
Proposition 7. Let (G, g, S) be a manifold with a Lie algebra g determined by

[x1,x2] = [x1, x4] =[x2, x3] = [x3, x4] = A1 + A1x3 + Agxy,

[x1,x3] = [x2, X4] = — Aux1 4+ 2A122 + Ay
w1 Then
(i) The nonzero components of the Ricci tensor p are
o1 = P22 = P33 = pas = —4(2A7 + AY);
(ii) The manifold is Einstein and the scalar curvatures T and T* are
T=-16(2A +13), T =0;
(ii1) The sectional curvatures of the basic 2-planes are

k(x2,x4) = k(x1,%3) = 2(2A2 +A3),  k(xy,x2) = k(x1,x4) = k(x2,x3) = k(x3,x4) = 203 + A2,

12 Proof. This example we get by substituting A3 = A; and A, = 0 into each of the equalities (60), (63),
133 (64) and (65) [

Proposition 8. Let (G, g, S) be a manifold with a Lie algebra g determined by

[x1, 2] = [x1, 4] =[x2, 23] = [x3,%4] = (A2 + Ag)x1 + Aaxa + (Ag — A2)x3 + Agxy,
[xl, X3] = [XZ, X4] :(Az — )L4)X1 + 2A4x0 + (/\2 + /\4)X3 —2Aox4.

13« Then

(i) The nonzero components of the Ricci tensor p are
P11 = P2 = P33 = pas = —12(A3 + AQ);
(ii) The manifold is Einstein and the scalar curvatures T and T* are
T=-48(A3+A%), T =0
(iii) The sectional curvatures of the basic 2-planes are

k(XQ, X4) = k(xl,X3) = 6()\% + Ai), k(xl,xz) = k(xl,x4) = k(XQ, X3) = k(JC3, X4) = 3()\% + Ai)

s Proof. We put Ay = Ay + A4 and A3 = A4 — Ay into each of the equalities (60), (63), (64) and (65). O
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