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Abstract: We consider a four-dimensional Riemannian manifold M equipped with an additional 
tensor structure S, whose fourth power is minus identity and the second power is an almost complex 
structure. In a local coordinate system the components of the metric g and the structure S form 
skew-circulant matrices. Both structures S and g are compatible, such that an isometry is induced in 
every tangent space of M. By a special identity for the curvature tensor, generated by the Riemannian 
connection of g, we determine classes of an Einstein manifolds and an almost Einstein manifolds. 
For such manifolds we obtain propositions for the sectional curvatures of some special 2-planes in a 
tangent space of M. We consider an almost Hermitian manifold associated with the studied manifold 
and find conditions for g, under which it is a Kähler m anifold. We construct some examples of the 
considered manifolds on Lie groups.
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1. Introduction13

The right circulant matrices and the right skew-circulant matrices are Toeplitz matrices, which14

are thoroughly studied in [1] and [3]. The set of invertible circulant (skew-circulant) matrices form a15

group with respect to the matrix multiplication. Such matrices have application to geometry, linear16

codes, graph theory, vibration analysis (for example [2,7,9,11–13]).17

A. Gray, L. Hervella and L. Vanhecke used curvature identities to classify and to study the almost18

Hermitian manifolds (for instance in [4–6,15]). The Hermitian manifolds form a class of manifolds19

with an integrable complex structure J. The class of the Kähler manifolds is their subclass and such20

manifolds have a parallel structure J. According to A. Gray, the Kähler manifolds have an especially21

rich geometric structure, due to the Kähler curvature identity R(·, ·, J·, J·) = R(·, ·, ·, ·). Some of the22

recent investigations on the curvature properties of the almost Hermitian manifolds are made in23

[8,10,14,16].24

In the present work we study a four-dimensional differentiable manifold M with a Riemannian25

metric g. The manifold M is equipped with an additional tensor structure S of type (1, 1), which26

satisfies S4 = −id. Moreover, the component matrix of S is a special skew-circulant matrix. The27

structure S is compatible with g, such that an isometry is induced in every tangent space of M. Such28
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a manifold (M, g, S) is associated with an almost Hermitian manifold (M, g, J), where J = S2 is an29

almost complex structure.30

The paper is organized as follows. In Sect. 2, we introduce the manifold (M, g, S). In Sect. 3, we31

find conditions under which an orthogonal basis of the type {x, Sx, S2x, S3x} exists in every tangent32

space of (M, g, S). In Sect. 4, we consider a class of almost Einstein manifolds (M, g, S). Also, we33

obtain conditions for (M, g, S) to be an Einstein manifold. In Sect. 5, we find some curvature properties34

of these manifolds. In Sect. 6, we obtain a necessary and sufficient condition for S to be parallel with35

respect to the Riemannian connection of g. Also, we get conditions for (M, g, J) to be a Kähler manifold.36

In Sect. 7, we construct examples of the considered manifolds on Lie groups and find some of their37

geometric characteristics.38

2. Preliminaries39

Let M be a 4-dimensional Riemannian manifold equipped with a tensor structure S in every
tangent space Tp M at a point p on M. Let S have a skew-circulant matrix, with respect to some basis
{ei}, as follows

(Sk
j ) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 . (1)

Then S has the property
S4 = −id. (2)

Let the metric g and the structure S satisfy

g(Sx, Sy) = g(x, y). (3)

Here and anywhere in this work, x, y, z, u will stand for arbitrary elements of the algebra on smooth40

vector fields on M or vectors in Tp M. The Einstein summation convention is used, the range of the41

summation indices being always {1, 2, 3, 4}.42

The conditions (1) and (3) imply that the matrix of g has the form

(gij) =


A B 0 −B
B A B 0
0 B A B
−B 0 B A

 , (4)

i.e. it is skew-circulant. Here A = A(p) and B = B(p) are smooth functions of an arbitrary point
p(X1, X2, X3, X4) on M. The determinant of g has a value det(gij) = (A2 − 2B2)2. It is supposed that

A(p) >
√

2B(p) > 0 (5)

in order g to be positive definite. A manifold M introduced in this way we denote by (M, g, S).43

Now, we consider an associated metric g̃ with g, determined by

g̃(x, y) = g(x, Sy) + g(Sx, y). (6)

Using (1), (4) and (6) we get that the matrix of its components is

(g̃ij) =


2B A 0 −A
A 2B A 0
0 A 2B A
−A 0 A 2B

 . (7)
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44 Since (5) is valid, it is easy to see that g̃ is an indefinite metric.
The inverse matrices of (gij) and (g̃ij) are as follows:

(gij) =
1
D


A −B 0 B
−B A −B 0
0 −B A −B
B 0 −B A

 , (8)

(g̃ij) =
1

2D


−2B A 0 −A

A −2B A 0
0 A −2B A
−A 0 A −2B

 , (9)

where D = A2 − 2B2.45

3. Orthogonal S-basis of Tp M46

If x is a nonzero vector on (M, g, S), then according to (1) we have Sx 6= ±x. Therefore the angle47

ϕ between x and Sx belongs to the interval (0, π). Evidently, the vectors x, Sx, S2x and S3x determine48

six angles, which belong to (0, π). For these angles we establish the next statement.49

Theorem 1. Let x be a nonzero vector on (M, g, S). Then

6 (x, Sx) = 6 (Sx, S2x) = 6 (S2x, S3x) = ϕ, 6 (x, S3x) = π − ϕ, 6 (x, S2x) = 6 (Sx, S3x) =
π

2
, (10)

where ϕ ∈ (0, π).50

Proof. Let x = (x1, x2, x3, x4) be a nonzero vector on (M, g, S). By using (1), we get

Sx = (x2, x3, x4,−x1), S2x = (x3, x4,−x1,−x2), S3x = (x4,−x1,−x2,−x3). (11)

From (2) and (3) it follows

g(x, Sx) = −g(x, S3x), g(x, S2x) = 0. (12)

Having in mind (4) and (11), we calculate

g(x, x) = A
(
(x1)2 + (x2)2 + (x3)2 + (x4)2)+ 2B(x1x2 + x2x3 + x3x4 − x1x4),

g(x, Sx) = A(x1x2 + x2x3 + x3x4 − x1x4) + B
(
(x1)2 + (x2)2 + (x3)2 + (x4)2)

)
.

(13)

Now, due to (3) and (5), we can determine the angle between x and Sx and the angle between x
and S2x as follows:

cos ϕ =
g(x, Sx)
g(x, x)

, cos φ =
g(x, S2x)

g(x, x)
. (14)

We apply (12) and (13) in (14) and find

cos ϕ =
A(x1x2 + x2x3 + x3x4 − x1x4) + B

(
(x1)2 + (x2)2 + (x3)2 + (x4)2)

A
(
(x1)2 + (x2)2 + (x3)2 + (x4)2

)
+ 2B(x1x2 + x2x3 + x3x4 − x1x4)

,

cos φ = 0.

Then, bearing in mind (3) and (12), we get (10).51
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} of Tp M is called a S-basis. In this case we say that the vector x52 Definition 1 . A basis of type {x, Sx, S2x, S3x 
induces a S-basis of Tp M.53

The following statements hold.54

Theorem 2. Every nonzero vector x = (x1, x2, x3, x4), which satisfies

4x2x4((x1)2 − (x3)2)+ 4x1x3((x4)2 − (x2)2)+ ((x1)2 + (x3)2)2
+
(
(x2)2 + (x4)2)

)2 6= 0, (15)

induces a S-basis of Tp M.55

Proof. If a nonzero vector x ∈ Tp M has coordinates (x1, x2, x3, x4), then using (11) we get the
determinant formed by the coordinates of the vectors x, Sx, S2x and S3x. It is

4 = 4x2x4((x1)2 − (x3)2)+ 4x1x3((x4)2 − (x2)2)+ ((x1)2 + (x3)2)2
+
(
(x2)2 + (x4)2)

)2.

In case that (15) is valid, we have4 6= 0, i.e. x, Sx, S2x and S3x form a basis.56

Lemma 1. Let a vector x induce a S-basis and let ϕ be the angle between x and Sx. The following inequalities
are valid:

π

4
< ϕ <

3π

4
. (16)

Proof. We suppose without loss of generality that g(x, x) = 1. Then, from (3), (12) and (14), we find

g(x, Sx) = g(Sx, S2x) = g(S2x, S3x) = −g(x, S3x) = cos ϕ, g(x, S2x) = g(Sx, S3x) = 0. (17)

We consider a nonzero vector y, such that

y = − cos ϕx + Sx− cos ϕS2x. (18)

Since g is a Riemannian metric we have g(y, y) > 0. Substituting (18) into the latter inequality, and
using (17), we get

1− 2 cos2 ϕ > 0.

Then, taking into account 0 < ϕ < π, we obtain (16).57

Bearing in mind Theorem 1, Theorem 2 and Lemma 1, we arrive at the following58

Theorem 3. For every manifold (M, g, S) an orthogonal S-basis of Tp M exists.59

4. Almost Einstein manifolds60

Let ∇ be the Riemannian connection of g. The curvature tensor R of ∇ is determined by

R(x, y)z = ∇x∇yz−∇y∇xz−∇[x,y]z. (19)

The tensor of type (0, 4) associated with R is defined by

R(x, y, z, u) = g(R(x, y)z, u). (20)

The Ricci tensor ρ with respect to g is given by the well-known formula

ρ(y, z) = gijR(ei, y, z, ej). (21)
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The scalar curvature τ with respect to g and its associated quantity are determined by

τ = gijρ(ei, ej), τ∗ = g̃ijρ(ei, ej). (22)

Now, we consider a manifold (M, g, S) with the condition

∇S = 0. (23)

i.e., S is a parallel structure with respect to ∇.61

Proposition 1. Every manifold (M, g, S) with a parallel structure S satisfies the curvature identity

R(x, y, Sz, Su) = R(x, y, z, u). (24)

Proof. The well-known formula (∇xS)y = ∇xSy− S∇xy, together with (23), yields

∇xSy = S∇xy. (25)

On the other hand (19) implies R(x, y, Sz, Su) = g
(

R(x, y)Sz, Su
)
. Because of the latter identity, using

(3), (19) and (25), we have successively

R(x, y, Sz, Su) = g
(
∇x∇ySz−∇y∇xSz−∇[x,y]Sz, Su

)
= g

(
∇xS(∇yz)−∇yS(∇xz)− S(∇[x,y]z), Su

)
= g

(
S(∇x∇yz−∇y∇xz−∇[x,y]z), Su

)
= g(R(x, y)z, u),

which completes the proof.62

We will note that the identity (24) defines a more general class of manifolds (M, g, S) than the63

class with the condition (23). Farther in this paper, we investigate the properties of manifolds in these64

two classes.65

Let Rijkh be the components of the curvature tensor R of type (0, 4). The local form of (24) is
RijlmSl

kSm
h = Rijkh. Then, using (1), we find the equalities

R1313 =R2424 = R1324,

R1212 =R1414 = R2323 = R3434 = R1223 = R1214 = R1434 = R1234 = R2334 = R2314,

R1213 =R1224 = R1413 = R2414 = R2423 = R2313 = R1334 = R2434.

By applying the Bianchi identity to the above components of R, we obtain

R1313 = R2424 = R1324 =2R1212 = 2R1414 = 2R2323 = 2R3434 = 2R1223 = 2R1214

=2R1434 = 2R1234 = 2R2334 = 2R2314, (26)

R1213 = R1224 = R1413 =R2414 = R2423 = R2313 = R1334 = R2434.

Vice versa, from (1) and (26) it follows (24).66

Hence we arrive at the following67

Proposition 2. The property (24) of the curvature tensor R of the manifold (M, g, S) is equivalent to the68

conditions (26).69

Proposition 3. If a manifold (M, g, S) has the property (24), then the components of the Ricci tensor ρ satisfy

ρ11 = ρ22 = ρ33 = ρ44, ρ12 = ρ23 = ρ34 = −ρ14, ρ13 = ρ24 = 0. (27)
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Proof. Due to Proposition 2 the components of the curvature tensor R satisfy (26). For brevity, we
denote

R1 = R1313, R2 = R1213. (28)

Thus, having in mind (8), (21), (26) and (28), we get the components of ρ, as follows:

ρ11 = ρ22 = ρ33 = ρ44 =
2
D
(
− AR1 + 2BR2

)
,

ρ12 = ρ23 = ρ34 = −ρ14 =
2
D
(

BR1 − AR2
)
,

ρ13 = ρ24 = 0.

(29)

i.e. the equalities (27) are valid.70

A Riemannian manifold is said to be Einstein if its Ricci tensor ρ is a constant multiple of the
metric tensor g, i.e.

ρ(x, y) = αg(x, y). (30)

In [17], for locally decomposable Riemannian manifolds is defined a class of almost Einstein71

manifolds. For the considered in our paper manifolds, we give the following72

Definition 2. A Riemannian manifold (M, g, S) is called almost Einstein if the metrics g and g̃ satisfy

ρ(x, y) = αg(x, y) + βg̃(x, y), (31)

where α and β are smooth functions on M.73

Theorem 4. If a manifold (M, g, S) has the property (24), then it is almost Einstein.74

Proof. Due to Proposition 3, for (M, g, S) the equalities (27) are valid. Consequently, from (22), using
(8), (9) and (27), we get the values of the scalar curvatures τ and τ∗, as follows:

τ =
4
D
(

Aρ11 − 2Bρ12
)
, τ∗ =

4
D
(
− Bρ11 + Aρ12

)
.

Immediately from the latter equalities we have

ρ11 =
τ

4
A +

2τ∗

4
B, ρ12 =

τ

4
B +

τ∗

4
A, (32)

and bearing in mind (4) and (7) we get

ρ11 =
τ

4
g11 +

τ∗

4
g̃11, ρ12 =

τ

4
g12 +

τ∗

4
g̃12.

Then, taking into account (4), (7), (27) and (32), we obtain

ρij =
τ

4
gij +

τ∗

4
g̃ij, (33)

i.e.
ρ(x, y) =

τ

4
g(x, y) +

τ∗

4
g̃(x, y). (34)

Therefore, comparing (34) with (31), we state that (M, g, S) is an almost Einstein manifold.75

Corollary 1. The manifold (M, g, S) with (24) is Einstein if and only if the scalar curvature τ∗ vanishes.76
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Proof. If (M, g, S) has the scalar curvature which satisfies

τ∗ = 0, (35)

then the equality (34) implies ρ(x, y) = τ
4 g(x, y), i.e. (M, g, S) is an Einstein manifold.77

Conversely. Since (M, g, S) is an Einstein manifold its Ricci tensor ρ has the form (30). Thus (34)78

implies (35).79

In the next theorem, we explicitly express the curvature tensor R of an almost Einstein manifold80

(M, g, S) by both structures g and S.81

Theorem 5. Let (M, g, S) have the property (24). Then the curvature tensor R has an expression

R =
τ

16
(
2π1 + π3

)
+

τ∗

8
π2, (36)

where

π1(x, y, z, u) = g(y, z)g(x, u)− g(x, z)g(y, u),

π2(x, y, z, u) = g(y, z)g̃(x, u) + g(x, u)g̃(y, z)− g(x, z)g̃(y, u)− g(y, u)g̃(x, z), (37)

π3(x, y, z, u) = g̃(y, z)g̃(x, u)− g̃(x, z)g̃(y, u).

Proof. Due to Proposition 3, the components of the Ricci tensor ρ of (M, g, S) are given by (29).
Therefore, by straightforward computation, we get

R1 = −1
2
(Aρ11 + 2Bρ12) R2 = −1

2
(Bρ11 + Aρ12).

We substitute (32) into the above equalities and obtain

R1 = −1
8
(
(A2 + 2B2)τ + 4ABτ∗

)
, R2 = −1

8
(
2ABτ + (2B2 + A2)τ∗

)
. (38)

From (4), (7), (28) and (38) it follows

R1313 =
τ

16

(
2(g13g31 − g11g33) + g̃13 g̃31 − g̃11 g̃33

)
+

τ∗

8
(

g13 g̃31 + g̃13g31 − g̃11g33 − g11 g̃33
)
,

R1213 =
τ

16

(
2(g13g21 − g11g23) + g̃13 g̃21 − g̃11 g̃23

)
+

τ∗

8
(

g13 g̃21 + g̃13g21 − g̃11g23 − g11 g̃23
)
,

Consequently, using (4), (7), (26), (28) and (38), we have

Rijkh =
τ

16

(
2(gihgjk − gikgjh) + g̃ih g̃jk − g̃ik g̃jh

)
+

τ∗

8
(

gih g̃jk + g̃ihgjk − g̃ikgjh − gik g̃jh
)
,

which is equivalent to (36) with (37).82

5. Curvature properties of (M, g, S)83

The sectional curvature of a non-degenerate 2-plane {x, y} spanned by the vectors x, y ∈ Tp M is
the value

k(x, y) =
R(x, y, x, y)

g(x, x)g(y, y)− g2(x, y)
. (39)

Let x induce a S-basis of Tp M for (M, g, S) and let σ = {x, Sx} be a 2-plane. Evidently, if y ∈ σ84

and y 6= x, then Sy /∈ σ. Consequently, σ has only two S-bases: {x, Sx} and {−x,−Sx}. Thus the85

sectional curvature k(x, Sx) depends only on ϕ = 6 (x, Sx).86
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Theorem 6. Let (M, g, S) have the property (24) and let a vector x induce a S-basis. Then the sectional
curvatures, determined by the S-basis, are

k(x, Sx) = k(Sx, S2x) = k(x, S3x) = k(S2x, S3x)

=
1

16(cos2 ϕ− 1)

(
τ(1 + 2 cos2 ϕ) + 4τ∗ cos ϕ

)
,

k(x, S2x) = k(Sx, S3x) = −1
8

(
τ(1 + 2 cos2 ϕ) + 4τ∗ cos ϕ

)
,

(40)

where ϕ = 6 (x, Sx).87

Proof. Let a vector x induce a S-basis. The equalities (3), (12) and (14) imply

g(x, Sx) = g(Sx, S2x) = g(S2x, S3x) = −g(x, S3x) = g(x, x) cos ϕ,

g(x, S2x) = g(Sx, S3x) = 0.
(41)

Due to Lemma 1, the angle ϕ = 6 (x, Sx) satisfies (16).88

Now, from (2), (3), (6) and (41) we find

g̃(x, x) = 2g(x, x) cos ϕ, g̃(x, Sx) = g(x, x), g̃(x, S2x) = 0, g̃(x, S3x) = −g(x, x). (42)

Applying (36), (37), (41) and (42) in (39), we obtain (40).89

Corollary 2. Let a vector x induce an orthonormal S-basis. Then

k(x, Sx) =k(Sx, S2x) = k(x, S3x) = k(S2x, S3x) = − τ

16
,

k(x, S2x) = k(Sx, S3x) = −τ

8
.

Proof. The proof follows directly from (40), when ϕ = π
2 .90

Due to Theorem 6 and Corollary 1 we establish the following91

Proposition 4. If (M, g, S) with (24) is an Einstein manifold, then the sectional curvatures, determined by an
S-basis, are

k(x, Sx) =k(Sx, S2x) = k(x, S3x) = k(S2x, S3x) =
τ(1 + 2 cos2 ϕ)

16(cos2 ϕ− 1)
,

k(x, S2x) = k(Sx, S3x) = −τ

8
(1 + 2 cos2 ϕ).

Now, we recall that the Ricci curvature in the direction of a non-zero vector x is the value

r(x) =
ρ(x, x)
g(x, x)

. (43)

Theorem 7. Let (M, g, S) have the property (24) and let a vector x induce a S-basis. Then the Ricci curvatures
are

r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
+

τ∗

2
cos ϕ, (44)

where ϕ = 6 (x, Sx).92
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Proof. According to Theorem 4, the Ricci tensor ρ is given by (34). Then, using (3), we find

ρ(x, x) = ρ(Sx, Sx) = ρ(S2x, S2x) =ρ(S3x, S3x) =
τ

4
g(x, x) +

τ∗

4
g̃(x, x). (45)

Let a vector x induce a S-basis. From (3), (42), (43) and (45) it follows (44).93

Further, Theorem 7 and Corollary 1 imply the next statement.94

Proposition 5. Let (M, g, S) with (24) be an Einstein manifold. Then the Ricci curvatures are

r(x) = r(Sx) = r(S2x) = r(S3x) =
τ

4
.

Proof. These equalities follow directly by substituting τ∗ = 0 into (44).95

6. Manifolds with parallel structures96

In this section we study a manifold (M, g, S), whose structure S satisfies (23). Also, we consider
an associated manifold (M, g, J) with a structure J = S2. Bearing in mind (2) and (3), we get that the
manifold (M, g, J) is almost Hermitian and the structure J is almost complex. In case that J is parallel
(M, g, J) is a Kähler manifold. The characteristic condition of a Kähler manifold is

∇J = 0. (46)

We note that equalities (23) and J = S2 imply (46).97

Theorem 8. Let (M, g, S) have the property (23). Then the scalar curvatures τ and τ∗ satisfy

3τ1 = τ∗2 − τ∗4 , 3τ2 = τ∗1 + τ∗3 , 3τ3 = τ∗2 + τ∗4 , 3τ4 = −τ∗1 + τ∗3 , (47)

where τi =
∂τ

∂Xi , τ∗i = ∂τ∗

∂Xi .98

Proof. It is known that in a Riemannian manifold for the scalar curvature τ and the Ricci tensor ρ it is
valid

∇iρ
i
k =

1
2
∇kτ, (48)

where ρi
k = ρakgai.99

On the other hand, if (M, g, S) satisfies (23), then it satisfies (24). Therefore, the Ricci tensor has
the expression (33). Hence, from (1), (4), (7), (8) and (33), we get

ρi
k =

τ

4
δ

i

k +
τ∗

4
(
Si

k − (Si
k)

3),
where δi

k are the Kronecker symbols. Using the above equalities, (23) and (48) we obtain

τk =
τi
4

δi
k +

τ∗i
4
(
Si

k − (Si
k)

3).
Then, from (1) it follows (47).100

According to Theorem 8 and Corollary 1 we establish the following101

Proposition 6. If (M, g, S) with (23) is an Einstein manifold, then the scalar curvature τ is a constant.102
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103 6.1. Conditions for parallel structures

Theorem 9. The manifold (M, g, S) satisfies (23) if and only if

A1 = B2 − B4, A2 = B1 + B3, A3 = B2 + B4, A4 = B4 = B3 − B1, (49)

where Ai =
∂A
∂Xi , Bi =

∂B
∂Xi .104

Proof. If Γs
ij are the Christoffel symbols of ∇, then

∇iSt
j = ∂iSt

j + Γt
ikSk

j − Γk
ijS

t
k. (50)

Together with (23), (50) yields
Γt

ikSk
j = Γk

ijS
t
k. (51)

From (1) and (51) we get

Γ1
11 =Γ2

12 = Γ3
13 = Γ4

14 = Γ3
22 = Γ4

23 = −Γ1
24 = −Γ1

33 = −Γ2
34 = −Γ3

44,

Γ2
11 =Γ3

12 = Γ4
13 = −Γ1

14 = Γ4
22 = −Γ1

23 = −Γ2
24 = −Γ2

33 = −Γ3
34 = −Γ4

44,

Γ3
11 =Γ4

12 = −Γ1
13 = −Γ2

14 = −Γ1
22 = −Γ2

23 = −Γ3
24 = −Γ3

33 = −Γ4
34 = Γ1

44,

Γ4
11 =− Γ1

12 = −Γ2
13 = −Γ3

14 = −Γ2
22 = −Γ3

23 = −Γ4
24 = −Γ4

33 = Γ1
34 = Γ2

44.

(52)

Now, using (1), (4), (8) and the well known identities

2Γs
ij = gas(∂igaj + ∂jgai − ∂agij),

we calculate

Γ1
11 = 1

2D
(

AA1 − B(4B1 − A2 + A4)
)
, Γ2

11 = 1
2D
(

A(2B1 − A2) + B(A3 − A1)
)
,

Γ3
11 = 1

2D
(

B(A2 + A4)− AA3
)
, Γ4

11 = 1
2D
(

B(A1 + A3)− A(2B1 + A4)
)
,

Γ1
12 = 1

2D
(

AA2 − B(A1 + B2 + B4)
)
, Γ2

12 = 1
2D
(

AA1 − B(A2 + B1 − B3)
)
,

Γ3
12 = 1

2D
(

A(B1 − B3)− B(A1 − B2 − B4)
)
, Γ4

12 = 1
2D
(

B(A2 + B3 − B1)− A(B2 + B4)
)
,

Γ1
13 = 1

2D
(

AA3 − 2BB3
)
, Γ2

13 = 1
2D
(

A(B1 + B3)− B(A1 + A3)
)
,

Γ3
13 = 1

2D
(

AA1 − 2BB1
)
, Γ4

13 = 1
2D
(

A(B1 − B3) + B(A3 − A1)
)
,

Γ1
14 = 1

2D
(

AA4 + B(A1 − B2 − B4)
)
, Γ2

14 = 1
2D
(

A(B2 + B4)− B(A4 + B1 + B3)
)
,

Γ3
14 = 1

2D
(

A(B1 + B3)− B(A1 + B2 + B4)
)
, Γ4

14 = 1
2D
(

AA1 + B(A4 − B1 − B3)
)
,

Γ1
22 = 1

2D
(

A(2B2 − A1)− B(A2 + A4)
)
, Γ2

22 = 1
2D
(

AA2 − B(4B2 − A1 − A3)
)
,

Γ3
22 = 1

2D
(

A(2B2 − A3) + B(A4 − A2)
)
, Γ4

22 = 1
2D
(

B(A3 − A1)− AA4
)
,

Γ1
23 = 1

2D
(

A(B3 − B1)− B(A3 − B2 + B4)
)
, Γ2

23 = 1
2D
(

AA3 + B(B1 − B3 − A2)
)
,

Γ3
23 = 1

2D
(

AA2 − B(B2 − B4 + A3)
)
, Γ4

23 = 1
2D
(

A(B2 − B4)− B(A2 + B1 − B3)
)
,

Γ1
24 = 1

2D
(

A(B4 − B2)− B(A4 − A2)
)
, Γ2

24 = 1
2D
(

AA4 − 2BB4
)
,

Γ3
24 = 1

2D
(

A(B2 + B4)− B(A2 + A4)
)
, Γ4

24 = 1
2D
(

AA2 − 2BB2
)
,

Γ1
33 = 1

2D
(

B(A2 − A4)− AA1
)
, Γ2

33 = 1
2D
(

A(2B3 − A2) + B(A1 − A3)
)
,

Γ3
33 = 1

2D
(

AA3 − B(4B3 − A2 − A4)
)
, Γ4

33 = 1
2D
(

A(2B3 − A4)− B(A1 + A3)
)
,

Γ1
34 = 1

2D
(

B(A3 + B2 − B4)− A(B1 + B3)
)
, Γ2

34 = 1
2D
(

A(B4 − B2) + B(B3 + B1 − B4)
)
,

Γ3
34 = 1

2D
(

AB4 − B(A3 − B2 + B4)
)
, Γ4

34 = 1
2D
(

AA3 − B(B1 + B3 + B4)
)
,

Γ1
44 = 1

2D
(

B(A2 + A4)− A(2B4 + A1)
)
, Γ2

44 = 1
2D
(

B(A1 + A3)− AA2
)
,

Γ3
44 = 1

2D
(

A(2B4 − A3) + B(A2 − A4)
)
, Γ4

44 = 1
2D
(

AA4 − B(4B4 + A1 − A3)
)
.

(53)

We apply (53) in (52) and obtain the conditions (49).105

Vice versa. Let (49) hold true. We put equalities (49) into (53) and find (52). Hence (1) and (52)106

imply (51). Consequently, from (1), (50) and (51) we get (23).107
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Theorem 10. The manifold (M, g, J) is Kähler if and only if the equalities (49) are valid.108

Proof. Having in mind (1), we get that the components of the structure J = S2 on (M, g, J) are given
by the skew-circulant matrix

(Jk
j ) =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 . (54)

Therefore, from (46), (54) and
∇i Jt

j = ∂i Jt
j + Γt

ik Jk
j − Γk

ij J
t
k

it follows
Γt

ik Jk
j = Γk

ij J
t
k. (55)

Together with (54), (55) yields

Γ1
11 = Γ3

13 = −Γ1
33, Γ4

14 = Γ4
23 = Γ2

12 = −Γ2
34, Γ3

22 = −Γ1
24 = −Γ3

44,
Γ2

11 = Γ4
13 = −Γ2

33, Γ1
14 = Γ1

23 = −Γ3
12 = Γ3

34, Γ4
22 = −Γ2

24 = −Γ4
44,

Γ3
11 = −Γ1

13 = −Γ3
33, Γ2

14 = Γ2
23 = −Γ4

12 = Γ4
34, Γ1

22 = Γ3
24 = −Γ1

44,
Γ4

11 = −Γ2
13 = −Γ4

33, Γ3
14 = Γ3

23 = Γ1
12 = −Γ1

34, Γ2
22 = Γ4

24 = −Γ2
44.

(56)

We apply (53) in (56) and obtain conditions (49).109

Vice versa. From (49) it follows (23). Obviously (23) implies (46).110

Bearing in mind Theorem 9 and Theorem 10 we state the following111

Corollary 3. The structure S of (M, g, S) is parallel with respect to∇ if and only if the structure J of (M, g, J)112

is parallel with respect to ∇.113

7. Lie groups as 4-dimensional Riemannian manifolds with skew-circulant structures114

Let G be a 4-dimensional real connected Lie group and g be its Lie algebra with a basis
{x1, x2, x3, x4}. We introduce a structure S and left invariant metric g as follows

Sx1 = x2, Sx2 = x3, Sx3 = x4, Sx4 = −x1, (57)

g(xi, xj) =

{
0, i 6= j;
1, i = j.

(58)

Obviously (2) and (3) are valid. Therefore (G, g, S) is a Riemannian manifold of the considered type.115

For the manifold (G, g, S) we suppose that S is an Abelian structure, i.e.

[xi, xj] = [Sxi, Sxj]. (59)

According to (57), (59) and the Jacobi identity for the commutators [xi, xj] we obtain

[x1, x2] = [x1, x4] =[x2, x3] = [x3, x4] = λ1x1 + λ2x2 + λ3x3 + λ4x4,

[x1, x3] = [x2, x4] =(λ2 − λ4)x1 + (λ1 + λ3)x2 + (λ2 + λ4)x3 + (λ3 − λ1)x4, (60)

where λi ∈ R.116

It is easy to see that a manifold (G, g, S) with a Lie algebra g, determined by (60), has an Abelian117

structure S.118
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a Lie algebra g determined by (60). Then (G, g, S) satisfies the119 Theorem 11. Let (G, g, S) be a manifold with 
identity (23).120

Proof. The well-known Koszul formula implies

2g(∇xi xj, xk) = g([xi, xj], xk) + g([xk, xi], xj) + g([xk, xj], xi),

and having in mind (58) and (60), we get

∇x1 x1 = −λ1(x2 + x4) + (λ4 − λ2)x3, ∇x1 x2 = λ1(x1 − x3) + (λ4 − λ2)x4,
∇x1 x3 = λ1(x2 − x4) + (λ2 − λ4)x1, ∇x1 x4 = λ1(x1 + x3) + (λ2 − λ4)x2,
∇x2 x1 = −λ2(x2 + x4)− (λ1 + λ3)x3, ∇x2 x2 = λ2(x1 − x3)− (λ1 + λ3)x4,
∇x2 x3 = λ2(x2 − x4) + (λ1 + λ3)x1, ∇x2 x4 = λ2(x1 + x3) + (λ1 + λ3)x2,
∇x3 x1 = −λ3(x2 + x4)− (λ2 + λ4)x3, ∇x3 x2 = λ3(x1 − x3)− (λ2 + λ4)x4,
∇x3 x3 = λ3(x2 − x4) + (λ2 + λ4)x1, ∇x3 x4 = λ3(x1 + x3) + (λ2 + λ4)x2,
∇x4 x1 = −λ4(x2 + x4) + (λ1 − λ3)x3, ∇x4 x2 = λ4(x1 − x3) + (λ1 − λ3)x4,
∇x4 x3 = λ4(x2 − x4) + (λ3 − λ1)x1, ∇x4 x4 = λ4(x1 + x3) + (λ3 − λ1)x2.

(61)

From (57), (61) and the formula (∇xi S)xj = ∇xi Sxj − S∇xi xj we get (∇xi S)xj = 0, i.e. (23) is valid.121

Further, using (19), (20), (58), (60) and (61) we calculate the following components of the curvature
tensor R:

R1313 = R2424 = R1324 =2R1212 = 2R1414 = 2R2323 = 2R3434 = 2R1223 = 2R1214

= 2R1434 = 2R1234 = 2R2334 = 2R2314 = 2(λ2
1 + λ2

2 + λ2
3 + λ2

4),

R1213 = R1224 = R1413 =R2414 = R2423 = R2313 = R1334 = R2434

= 2(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4).

(62)

The rest of the nonzero components are obtained from the properties

Rijks = Rksij, Rijks = −Rjiks = −Rijsk.

From (58), (62) and the formula (21) we get the components of the Ricci tensor ρ:

ρ11 = ρ22 = ρ33 = ρ44 = −4(λ2
1 + λ2

2 + λ2
3 + λ2

4),

ρ12 = ρ23 = ρ34 = −4(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4), (63)

ρ13 = ρ24 = 0, ρ14 = −ρ12.

Now, using (6) and (58), we find the components of g̃ and the components of its inverse. They are
as follows:

g̃11 = g̃22 = g̃33 = g̃44 = 0, g̃12 = g̃23 = g̃34 = −g̃14 = 1, g̃13 = g̃24 = 0,
g̃11 = g̃22 = g̃33 = g̃44 = 0, g̃12 = g̃23 = g̃34 = −g̃14 = 1

2 , g̃13 = g̃24 = 0.

Then, applying (58), (63) in (22), we get the values of the scalar curvatures τ and τ∗ as follows:

τ = −16(λ2
1 + λ2

2 + λ2
3 + λ2

4), τ∗ = −16(λ1λ2 + λ2λ3 + λ3λ4 − λ1λ4). (64)

Consequently, the equalities (58), (63) and (64) imply (33), i.e. (G, g, S) is an almost Einstein manifold.122

Further, using (39), (58) and (62), for the sectional curvatures of the basic 2-planes we find

k(x2, x4) = k(x1, x3) = 2(λ2
1 + λ2

2 + λ2
3 + λ2

4),

k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = λ2
1 + λ2

2 + λ2
3 + λ2

4.
(65)
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Therefore, we arrive at the following123

Theorem 12. Let (G, g, S) be a manifold with a Lie algebra g determined by (60). Then124

(i) The nonzero components of the curvature tensor R are (62);125

(ii) The components of the Ricci tensor ρ are (63);126

(iii) The scalar curvatures τ and τ∗ are (64). The manifold is almost Einstein;127

(iv) The sectional curvatures of the basic 2-planes are (65).128

Bearing in mind Corollary 1 and the second equality of (64) we construct two examples of Einstein129

manifolds (G, g, S).130

Proposition 7. Let (G, g, S) be a manifold with a Lie algebra g determined by

[x1, x2] = [x1, x4] =[x2, x3] = [x3, x4] = λ1x1 + λ1x3 + λ4x4,

[x1, x3] = [x2, x4] =− λ4x1 + 2λ1x2 + λ4x3.

Then131

(i) The nonzero components of the Ricci tensor ρ are

ρ11 = ρ22 = ρ33 = ρ44 = −4(2λ2
1 + λ2

4);

(ii) The manifold is Einstein and the scalar curvatures τ and τ∗ are

τ = −16(2λ2
1 + λ2

4), τ∗ = 0;

(iii) The sectional curvatures of the basic 2-planes are

k(x2, x4) = k(x1, x3) = 2(2λ2
1 + λ2

4), k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = 2λ2
1 + λ2

4.

Proof. This example we get by substituting λ3 = λ1 and λ2 = 0 into each of the equalities (60), (63),132

(64) and (65).133

Proposition 8. Let (G, g, S) be a manifold with a Lie algebra g determined by

[x1, x2] = [x1, x4] =[x2, x3] = [x3, x4] = (λ2 + λ4)x1 + λ2x2 + (λ4 − λ2)x3 + λ4x4,

[x1, x3] = [x2, x4] =(λ2 − λ4)x1 + 2λ4x2 + (λ2 + λ4)x3 − 2λ2x4.

Then134

(i) The nonzero components of the Ricci tensor ρ are

ρ11 = ρ22 = ρ33 = ρ44 = −12(λ2
2 + λ2

4);

(ii) The manifold is Einstein and the scalar curvatures τ and τ∗ are

τ = −48(λ2
2 + λ2

4), τ∗ = 0;

(iii) The sectional curvatures of the basic 2-planes are

k(x2, x4) = k(x1, x3) = 6(λ2
2 + λ2

4), k(x1, x2) = k(x1, x4) = k(x2, x3) = k(x3, x4) = 3(λ2
2 + λ2

4).

Proof. We put λ1 = λ2 + λ4 and λ3 = λ4 − λ2 into each of the equalities (60), (63), (64) and (65).135
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