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1Department of Mathematics, University of Education,
Township, Lahore-54590, Pakistan.
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In this paper, we are interested in a model of exact asymptotically flat charged hairy black holes
in the background of dilaton potential. We study the weak gravitational lensing in the spacetime of
hairy black hole in Einstein-Maxwell theory with a non-minimally coupled dilaton and its non-trivial
potential. In doing so, we use the optical geometry of the flat charged hairy black hole for some
range of parameter γ. For this purpose, by using Gauss-Bonnet theorem, we obtain the deflection
angle of photon in a spherically symmetric and asymptotically flat spacetime. Moreover, we also in-
vestigate the impact of plasma medium on weak gravitational lensing by asymptotically flat charged
hairy black hole with a dilaton potential. Our analytically analyses show the effect of the hair on the
deflection angle in weak field limits.

PACS numbers: 04.70.Dy; 04.70.Bw; 11.25.-w
Keywords: relativity and gravitation; classical black hole; deflection angle; Gauss-Bonnet; non-linear electrody-
namics.

I. INTRODUCTION

At the darkest points in the universe, their boundaries perilous and invisible, space warps. The singularity consti-
tutes the centre of a black hole and is hidden by the object’s surface, the event horizon. A black hole is a location in
space that possesses so much gravity, nothing can escape its pull, even light. It is said that fact is sometimes stranger
than fiction, and nowhere is this more true than in the case of black holes. Since the first image of a black hole by
Event Horizon Telescope [1], physicist now try to take even sharper images so that Einstein’s theory of general rela-
tivity can be tested and also see the properties of the black holes [2–10] because there are many theoretically obtained
black hole solutions with different properties.

In this paper, we try to understand the effect of the hair on deflection angle by asymptotically flat black holes in
Einstein-Maxwell-dilaton (EMD) theory, where is derived from a string theory at low energy limits [11]. The EMD
black holes have a scalar hair, in addition to mass, rotation and charge so that they offers an fascinating theoretical
black hole models to check experimentally in black hole experiments, and investigate possible differences between
Einstein gravity and modified gravity theories [11–13].

Further, let us now briefly review the GBT which connects the topologically surfaces. First, using Euler charac-
teristic χ and a Riemannian metric g, one can choose the subset oriented surface domain as (D, χ, g) to find the
Gaussian curvature K. Then the Gauss-Bonnet theorem is defined as follow [14]∫∫

D
KdS +

∮
∂D

κdt + ∑
i

θi = 2πχ (D) (1)

where κ is the geodesic curvature for ∂D : {t} → D and θi is the exterior angle with ith vertex. Following this
approach, global symmetric lenses are considered to be Riemannian metric manifolds, which are geodesic spatial
light rays. In optical geometry, we calculate the Gaussian optical curvature K to find the asymptotic bending angle
which can be calculated as follows [14]:

α̂ = −
∫ ∫

D∞
KdS. (2)
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Note that this equation is an exact result for the deflection angle. In this equation, we integrate over an infinite
region of the surface D∞ which is bounded by the light ray. By assumtion, one can use the above relation only for
asymptotically Euclidian optical metrics. Therefore it will be interesting to see the form of the deflection angle in the
case of non-asymptotically Euclidian metrics. This method has been applied in various papers for different types of
spacetimes [15–43].

This paper is organized as follows: In section 2, we review some basic concepts about asymptotically flat hairy BH.
In section 3, we compute the Gaussian optical curvature for deflection angle and calculate the deflection angle by
using GBT for γ = 1 also find the deflection angle in a plasma medium. In section 4, we calculate the deflection angle
for γ =

√
3 also find the deflection angle in a plasma medium. The last section comprises of concluding remarks

and results obtained from graphical analysis.

II. ASYMPTOTICALLY FLAT BLACK HOLES IN EINSTEIN-MAXWELL-DILATON THEORY

In this section, we briefly review the asymptotically flat hairy BH in EMD theory in the background of dilaton
potential. We consider the following action of Einstein-Maxwell-dilaton theory [11, 12]:

I[gµν, Aµ, φ] =
1
2k

∫
M

d4x
√
−g[R− eγϕF2 − 1

2
(∂ϕ)2 −V(ϕ)], (3)

where

F2 = FµνFµν, (∂ϕ)2 = ∂µ ϕ∂µ ϕ, (4)

V(ϕ) is the dilaton potential, and c = GN = 4πε0 = 1 by using the convention k = 8π. The equations of motion for
gauge field, dilaton and metric are following:

Rµν −
1
2

gµνR = Tϕ
µν + TEM (5)

∂µ(
√
−geγϕFµν) = 0 (6)

1√−g
∂µ(
√
−ggµν∂ν ϕ) =

dV(ϕ)

dϕ
+ γeγφF2 (7)

where the stress tensors of matter fields are defined as

Tϕ
µν ≡

1
2

∂µφ∂ν ϕ− 1
2

gµν[
1
2
(∂φ)2 + V(φ)], (8)

TEM
µν ≡ 2eγϕ(FµαFα

ν −
1
4

gµνF2). (9)

For exact regular hairy BH solutions, for a general scalar potential there is a new method in a number of papers
[13], by using a specific ansatz. For flat spacetime, we should apply the similar special ansatz for the metric and
dilaton. For the sake of simplicity, we are going to focus on two particular cases for which the exponent coefficient
of the dilaton coupling with the gauge field takes the values γ = 1 and γ =

√
3, but for more general solution there

exist a literature [12].

III. WEAK DEFLECTION ANGLE OF CALCULATION OF PHOTON LENSING FOR γ = 1 BY GAUSS-BONNET
THEOREM

For this solution we consider the following scalar field potential:

V(ϕ) = 2α(2ϕ + ϕ cosh ϕ− 3 sinh ϕ), (10)

here α is an arbitrary parameter. For γ = 1 the static hairy BH metric and gauge field, yields that:

ds2 = Ω(x)
[
− f (x)dt2 +

η2dx2

x2 f (x)
+ dΣ2

]
(11)

F =
1
2

Fµνdxµ ∧ dxν =
qe−φ

x
dt ∧ dx
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where η and q are defined as independent parameters of the solution and correspond to the mass and charge of this
BH. dΣ2 = dθ2 + sin2 θdφ2 is spherical line element, and the coordinate x is restricted to be positive, x ∈ [0, ∞). We
can suppose that η > 0. One can use the conformal factor as follows:

Ω(x) =
x

η2(x− 1)2 (12)

and then check that the equations of motion are satisfied for the following spacetime metric function:

f (x) = α

[
x2 − 1

2x
− ln(x)

]
+

η2(x− 1)2

x

[
1− 2q2(x− 1)

x

]
. (13)

It is appropriate to first find the black hole optical metric by imposing the null condition ds2 = 0, and solving the
space-time metric for dt and also set the metric into equatorial plane with θ = π

2 , which yield as:

dt2 =
η2

x2 f (x)2 dx2 +
1

f (x)
dϕ2. (14)

The optical geometry is in two dimensions, and is obtained for thermodynamically stable asymptotically flat hairy
BH with a dilaton potential as follows [14]. By using Gauss-Bonnet theorem, initially we find the Gaussian curvature
K of the optical spacetime, as

K =
RicciScalar

2
(15)

K ≈ −η2x− η2

x
+ 1/4

η2

x2 + 3/2 η2 + 1/4 x2η2 − 1/2 xα ln (x)− 1/2
α ln (x)

x
+ 1/4 α x2 − 1/4

α

x2 − x2η2q2

+5 η2q2x− 11
η2q2

x2 + 16
η2q2

x
+ 3

η2q2

x3 − 12 η2q2 + 5
α q2

x
− 3/2

α q2

x3

−4
α q2 ln (x)

x2 + 3
α q2 ln (x)

x
+ xα ln (x) q2 − 3 α q2 − 1/2 x2α q2 + 1/2 xα q2 − 1/2

α q2

x2 (16)

For multiple images, we use the global theory (Gauss-Bonnet theorem) to relate with the local feature of the space-
time such that Gaussian optical curvature.

The above equation will be apply to calculate the deflection angle by taking a non singular domain SR outside
of the light ray (along with boundaries ∂SR = γg ∪ CR) with Euler characteristic χ(SR), Gaussian curvature K ,
geodesic curvature k and exterior jump angles αi = (αO, αS) at vertices.∫ ∫

SR

K dS +
∮

∂SR

kdt + ∑
j

αj = 2πχ(SR), (17)

at weak limit approximation (ρ→ ∞), αO + αS → π. Then GBT becomes∫ ∫
SR

K dS +
∮

Cr
kdt =ρ→∞

∫ ∫
S∞

kdS +
∫ π+Θ

0
dϕ = π. (18)

Now, by geodesic property, the geodesic curvature vanishes k(γg) = 0, and we get

k(CR) = |∇ĊrĊr
|, (19)

with Cr := ρ(ϕ) = r =constant. Then GBT reduces

lim
R→∞

∫ π+Θ

0

[
kg

dσ

dϕ

]
|CR dϕ = π − lim

R→∞

∫ ∫
SR

K dS. (20)

Now, for radial distance

k(CR)dt = dϕ. (21)
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Therefore,

lim
R→∞

kg
dσ

dϕ
|CR = 1. (22)

In the weak field regions, the light ray follows a straight line approximation, so that we can use the condition of
r = b/ sin ϕ at zero order.

Θ = − lim
R→∞

∫ π

0

∫ R

b/ sin ϕ
K dS, (23)

where

KdS ≈ 1/4
η2

x2 + 1/4
α

x2 −
η2q2

x2 − 1/2
α q2

x2 . (24)

After simplification, we find the deflection angle of photon for asymptotically flat hairy BH in leading order terms
as

α̃ ' −1/2
η2

b
− 1/2

α

b
+ 2

η2q2

b
+

α q2

b
(25)

Therefore, we can say that GBT provides a globally as well as topologically effect, this method is very useful for
quantitative tool and can be apply in any asymptotically flat metrics.

A. Photon lensing in a plasma medium

In this section, we analyze the effect of plasma medium on the photon lensing by asymptotically hairy black hole.
The refractive index for hairy black hole is as follows [15],

n(x) =

√
1− ω2

e
ω2

∞

(
x f (x)

η2(x− 1)2

)
, (26)

then, the corresponding optical metric yields that

dσ̃2 = gopt
jk dxjdxk =

n2(x)
f (x)

(
η2

x2 f (x)
dx2 + dϕ2

)
. (27)

The determinant of above optical metric is:

detgopt
xϕ =

x f (x)ω4
e − 2η2ω2

∞ω2
e (x− 1)2

η2ω4
∞x f (x)2(x− 1)4 (28)

where the metric function is given as

f (x) = α

[
x2 − 1

2x
− ln(x)

]
+

η2(x− 1)2

x

[
1− 2q2(x− 1)

x

]
(29)

Now, we have

dσ̃

dϕ
= n(x)

(
α2x2

f (x)

)1/2

, (30)

hence we get differently which goes to α:

lim
x→∞

kg
dσ̃

dϕ
|CR = 1. (31)

Peer-reviewed version available at Phys. Rev. D 2019; doi:10.1103/PhysRevD.100.044052

https://doi.org/10.1103/PhysRevD.100.044052


5

We use straight line approximation r = b/ sin ϕ, for the limit x → ∞, then GBT stated as

lim
x→∞

∫ π+Θ

0

[
kg

dσ̃

dϕ

]
|CR dϕ = π − lim

x→∞

∫ π

0

∫ x

b/ sin ϕ
K dS, (32)

where

K dS = −3/2
ωe

2η2q2

x2ω∞2 − 3/2
ωe

2α q2

x2ω∞2 + 1/4
ωe

2η2

x2ω∞2 + 3/8
ω∞

2α

x2ω∞2 + 1/4
α

x2 + 1/4
η2

x2 − 1/2
α q2

x2 −
η2q2

x2 . (33)

Note that we only consider the first order terms. After simplification, we obtain the deflection angle in weak field
limits as follows:

α̃ ' 3
ωe

2η2q2

bω∞2 + 2
η2q2

b
+ 3

ωe
2α q2

bω∞2 +
α q2

b
− 1/2

ωe
2η2

bω∞2 − 1/2
η2

b
− 3/4

ωe
2α

bω∞2 − 1/2
α

b
(34)

The above results shows that the photon rays are moving in a medium of homogeneous plasma.

IV. NEW ASYMPTOTICALLY FLAT BLACK HOLES IN EINSTEIN-MAXWELL-DILATON THEORY

In this section, we analyzed the exact asymptotically flat charged hairy BH’s in the background of dilaton potential.
There exist a literature related to this BH recently discussed by Astefanesei et al. [12]. We are interested in a action
of of Einstein-Maxwell-dilaton theory (κ = 8πGN):

I[gµν, Aµ, φ] =
1

2κ

∫
d4x
√
−g
[

R− 1
4

eγφF2 − 1
2

∂µφ∂µφ−V(φ)

]
(35)

where the gauge coupling and potential are functions of the dilaton. The corresponding equations of motion are

∇µ

(
eγφFµν

)
= 0 (36)

1√−g
∂µ

(√
−ggµν∂νφ

)
− ∂V

∂φ
− 1

4
γeγφF2 = 0 (37)

Rµν −
1
2

gµνR =
1
2

[
Tφ

µν + TEM
µν

]
(38)

where Tφ
µν and TEM

µν are the stress tensors of the matter fields and represented as follows

Tφ
µν = ∂µφ∂νφ− gµν

[
1
2
(∂φ)2 + V(φ)

]
, TEM

µν = eγφ

(
FµαF·αν −

1
4

gµνF2
)

(39)

Now, we consider only asymptotically flat solutions. To implement this condition, we require

lim
x→1

Ω(x) f (x) = 1 (40)

on this account, we fix f0 to obtain [12]

f (x) =
η2

ν

(
x2 +

2x2−ν

ν− 2
− ν

ν− 2

)
+ f1

(
xν+2

ν + 2
− x2 +

x2−ν

2− ν
+

ν2

ν2 − 4

)
+

Q2η2

(1− p)ν2

(
x3−p+ν

3− p + ν
+

x3−p−ν

3− p− ν
− 2

x3−p

3− p
− 2ν2

(3− p) (3− p + ν) (3− p− ν)

)
+

P2η4

(1 + p)ν2

(
x3+p+ν

3 + p + ν
+

x3+p−ν

3 + p− ν
− 2

x3+p

3 + p
− 2ν2

(3 + p) (3 + p + ν) (3 + p− ν)

)
(41)
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A. Solutions with a non-trivial dilaton potential (γ = 1)

For this solution we consider the following scalar field potential [12]:

Ω(x) =
x

η2 (x− 1)2 , φ(x) = ln(x) (42)

ds2 = Ω(x)
[
− f (x)dt2 +

η2dx2

x2 f (x)
+ dθ2 + sin2 θdϕ2

]
(43)

Here we study only the γ = 1 case, which is smoothly connected with a solution of N = 4 supergravity which
gives the solutions of metric function as follows:

A =
Q
x

dt + P cos θdϕ (44)

V(φ) = α [2φ + φ cosh(φ)− 3 sinh(φ)] (45)

f (x) =
η2(x− 1)2

x
+

[
x
4
− 1

4x
− 1

2
ln(x)

]
α +

η2(x− 1)3

2x

(
η2P2 − x−1Q2

)
(46)

Note that the dilaton field is vanishing at the boundary, x = 1 and also the dilaton potential is vanishing when α = 0.
At the boundary x = 1, one can find a asymptotically flat spacetime. After make a change of coordinates using:

Ω(x) = r2 + O(r−4), (47)

which is given for, the x < 1 black holes, by

x = 1− 1
ηr

+
1

2η2r2 −
1

8η3r3 +
1

27η5r5 (48)

The spacetime metric becomes asymptotically flat [12]

gtt = Ω(x) f (x) = 1−
α + 6η2 (η2P2 −Q2)

12η3r
+ O(r−2) (49)

g−1
rr =

x2 f (x)
η2Ω(x)

(
dr
dx

)2
= 1−

α + 6η2 (η2P2 −Q2)
12η3r

+ O(r−2). (50)

It is noted that the scalar field potential is regular everywhere, except at the spacetime singularities.

V. DEFLECTION ANGLE OF PHOTONS BY ASYMPTOTICALLY FLAT HAIRY BLACK HOLES IN
EINSTEIN-MAXWELL-DILATON THEORY

Initially we find the Gaussian curvature K of the optical spacetime, as

K =
RicciScalar

2
, (51)

and

K =

(
−6 η4 p2 + 6 Q2η2 − α

) (
−6 η4 p2 + 6 Q2η2 + 16 η3r− α

)
192 η6r4 . (52)
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In weak field limits,

K = − α

12η3r3
+

α2

192 η6r4 +

(
−8 η3r + α

)
p2

16η2r4
−
(
−8 η3r + α

)
Q2

16η4r4
+O(Q3, p3). (53)

For multiple images, we use the global theory (Gauss-Bonnet theorem) to relate with the local feature of the space-
time such that Gaussian optical curvature.

In the weak field regions, the light ray follows a straight line approximation, so that we can use the condition of
r = b/ sin φ at zero order.

α̃ = − lim
R→∞

∫ π

0

∫ R

b/ sin ϕ
K dS. (54)

Now by using Eq. (18), the deflection angle of photon by exact asymptotically flat charged hairy black hole with a
dilaton potential in weak field limit is found as:

α̃ =
3 Q2 p2π

32 b2 +
η p2

b
− Q2

bη
+

π Q2α

64 b2η4 +
α

6bη3 +O(Q3, p3). (55)

A. Deflection angle of photons in plasma medium by asymptotically flat hairy black holes in Einstein-Maxwell-dilaton
theory

In this section, we analyze the effect of plasma medium on the photon lensing by asymptotically hairy black hole.
The refractive index for hairy black hole is as follows [15],

n(x) =

√
1− ωe2

ω∞2

(
x f (x)

η2(x− 1)2

)
, (56)

then, the corresponding optical metric yields that

dσ̃2 = gopt
jk dxjdxk =

n2(x)
f (x)

(
η2

x2 f (x)
dx2 + dϕ2

)
. (57)

The determinant of above optical metric is:

detgopt
xϕ =

x f (x)ωe
4 − 2η2ω∞

2ωe
2(x− 1)2

η2ω∞4x f (x)2(x− 1)4 . (58)

Now, by using Eq. 17 and 29, in weak field limit the Gaussian optical curvature stated as follows:

K = −
ω∞

2 (ωe
2 − 2 ω∞

2)Q2

4r3η (ωe2 −ω∞2)
2 +

ω∞
2 (3 Q2ωe

2ω∞
2 + 3 Q2ω∞

4 + 2 η rωe
4 − 6 η rωe

2ω∞
2 + 4 η rω∞

4) p2

8r4 (ωe2 −ω∞2)
3

+
α (Ψ)ω∞

2

48η4r5 (ωe2 −ω∞2)
4 , (59)

where

Ψ = 9 Q2η p2ωe
4ω∞

2 + 9 Q2η p2ωe
2ω∞

4 − 3 η2 p2rωe
4ω∞

2 + 3 η2 p2rω∞
6 + 3 Q2rωe

4ω∞
2 − 3 Q2rω∞

6 + 2 η r2ωe
6

−8 η r2ωe
4ω∞

2 + 10 η r2ωe
2ω∞

4 − 4 η r2ω∞
6.(60)

Now, we have

dσ̃

dϕ
= n(x)

(
α2x2

f (x)

)1/2

, (61)

hence we get differently which goes to α:

lim
x→∞

kg
dσ̃

dϕ
|CR = α. (62)
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We use straight line approximation r = b/ sin ϕ, for the limit x → ∞, then GBT stated as

lim
x→∞

∫ π+α̃

0

[
kg

dσ̃

dϕ

]
|CR dϕ = π − lim

x→∞

∫ π

0

∫ x

b/ sin ϕ
K dS. (63)

After simplification, we obtain

α̃ =
21 π Q2 p2ωe

2

64 ω∞2b2 +
3 Q2 p2π

32 b2 +
η p2ωe

2

ω∞2b
+

η p2

b
− 7 π α p2ωe

2

128 ω∞2b2η2 −
π α p2

64 b2η2 −
Q2ωe

2

ω∞2bη

− Q2

bη
+

7 π Q2α ωe
2

128 ω∞2η4b2 +
π Q2α

64 b2η4 + 1/6
α ωe

2

ω∞2η3b
+ 1/6

α

bη3 (64)

The proposed deflection angle shows that the photon rays are moving in a medium of homogeneous plasma.

VI. CONCLUSION

In this paper, we obtain the deflection angle of photon to the spherically symmetric and asymptotically flat space-
time of hairy BH with Einstein-Maxwell-dilaton system in weak field limit. To this end, we set the photon rays on the
equatorial plane in the black hole spacetime. For this purpose, we have used the GBT and obtain the deflection angle
of photon by integrating a domain outside the impact parameter. Moreover, we also found the deflection angle of
photon by asymptotically flat hairy BH in plasma medium. We examined that the proposed deflection angle shows
that gravitational lensing can be affected from the hair of the black hole and it is a global effect as well as a valuable
tool to study the nature of singularities of black holes.
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[23] A. Övgün, K. Jusufi and I. Sakalli, “Exact traversable wormhole solution in bumblebee gravity,” Phys. Rev. D 99, no. 2, 024042

(2019).
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[39] A. Övgün, I. Sakalli and J. Saavedra, “Weak gravitational lensing by Kerr-MOG Black Hole and Gauss-Bonnet theorem,”

arXiv:1806.06453 [gr-qc].
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