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Abstract: The spatial formation of coherent random laser modes in strongly scattering disordered
random media is a central feature in the understanding of the physics of random lasers. We derive a
quantum field theoretical method for random lasing in disordered samples of complex amplifying
Mie resonators which is able to provide self-consistently and free of any fit p arameter the full

set of transport characteristics at and above the laser phase transition. The coherence length and
the correlation volume respectively is derived as an experimentally measurable scale of the phase
transition at the laser threshold. We find that the process ofstimulated e mission in extended

disordered arrangements of active Mie resonators is ultimately connected to time-reversal symmetric
multiple scattering in the sense of photonic transport while the diffusion coefficient is finite. A power
law is found for the random laser mode diameters in stationary state with increasing pump intensity.

Keywords: multiple scattering; random laser; quantum field theory; Mie resonance

0. Introduction

The research for random lasers is an emerging research field [1-11], which recently is extended
to highly flexible [12] and unconventional materials and setups [13,14]. If these systems can be
operated spectrally and spatially well controlled they are featuring the future as large area coherent
light sources ahead of all state of the art LEDs. Theoretically many different models from statistical
physics [15-22], classical field theoretical methods [23-27], quantum dynamical [28-30] and quantum
field theoretical approaches [31-34] for embedded disordered ensembles of laser active scatterers
[35,36] are investigated. The random laser setup consists of a multiple scattering medium which
can be also passive Mie scatterers infiltrated by laser active dye [37] and dye infiltrated disordered
waveguides [38]. Random lasers are operated in absence of any external feedback or mirror system,
thus it is of principal importance that a high contrast of the refractive index between scatterer and
background is given in order to enhance multiple scattering and thus photonic transport and as a
result the accumulation of a high number of photons in the sample. A scheme of a possible setup
for monodisperse solid state Mie scatterers is found in Fig.( 1(a)). Monodisperse Mie spheres can
become in certain configurations extremely sensible systems, especially when the scatterers are large
compared to the transport wavelength. In this regime the Mie spheres support the occurrence of
intensity fluctuations. We chose a system of monodisperse scatterers for this article in order to
check systematically whether the signature of the independent single Mie scatterer in the transport
characteristics of the non-pumped and non-inverted microscopic system will persist in the stationary
state of lasing. We develop a quantum field theoretical approach of photonic transport based on the
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(a) Sketch of a disordered semi-conductor random laser slab, that is open in z—direction. Photonic transport
processes (red) and their time reversal (green) interfere while they feature multiple scattering procedures with
complex active Mie resonators. The Mie resonance [43] is a so called whispering gallery resonance at the inner
surface of the independent Mie scatterer. We use for this work monodisperse Mie spheres.

(b) 4-level laser rate equation scheme. Straight lines represent the electronic procedures, the green line represents
the excitation due to the pump field, 3, represents the decay from level n3 to the upper laser level 1, ¥sp
represents spontaneous emission procedures and as its compeditor 7p; leads to stimulated emission procedure.
hiw, which eventually represents coherent laser radiation due to stimulated emission.
(c) Schematic representation of the Bethe-Salpeter equation, compare Eq. (6). ® is the intensity field in the sample,
’y%, is the irreducible vertex.
(d) The irreducible vertex includes all orders of maximally crossed diagrams (Cooperon) which represent all
quantum-coherent interference contributions in presence of disorder.

Figure 1

Bethe-Salpeter equation, see Fig.( 1(c)), that incorporates all orders of interference effects by means of
the Cooperon, the maximally crossed Feynman diagram [39], see Fig.( 1(d)). Energy conservation
laws are implemented by means of a generalized Ward identity [40]. We couple this framework to the
microscopic laser rate equations for quantum cascades, see Fig.( 1(b)), that ensure particle conservation
on the microscopic level.

In three dimensional random lasers of finite and possibly large extent theoretical frameworks
often come along with tremendous computational efforts. Our approach is one theoretical possibility to
deal with dense ensembles of strongly scattering resonators efficiently, either in the case of independent
scatterers or in the case of photonic glasses. We derive in the following a self-consistent frame which
provides systematic results free of any fit parameter that are directly measurable in random laser
experiments.

1. Quantum-Field Theory for Photonic Transport

We develop in this article a self-consistent quantum field theory for random lasing of ensembles
of active Mie resonators. The results are spatial characteristics of the phase transition to random lasing,
they classify the threshold to stationary state lasing. The theory includes multiple scattering effects of
photons in complex random arrangements which may be classified in incoherent contributions that are
expressed in quantum field theory e.g. as ladder diagrams, the Diffuson, and coherent contributions,
that are expressed in terms of maximally crossed diagrams, the Cooperon. Methodologically the
Bethe-Salpeter equation, see Fig.( 1(c)), is a most reasonable self-consistent frame, where the so called
memory kernel M as part of the irreducible vertex 7 bares the expansion in orders of maximally
crossed diagrams, Fig.(1(d)). All light-matter interactions are represented within the irreducible vertex,
e.g. the interaction of the electromagnetic field and its time reversal as well as the light intensity
with a complex Mie resonator as a scatter [40]. Samples of a large number of active Mie resonators
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can be considered, which may act as independent scatterers or as glasses, i.e. as an accumulation of
agglomerates with an intrinsic correlation respectively. In what follows we derive this theory for
the case of monodisperse independent active Mie scatterers, where pronounced dips were found
theoretically and experimentally in the results for the transport characteristics, e.g. the scattering mean
free path [, [34].

1.1. Nonlinear Response

The underlying electrodynamics for transport in non-linear media is described basically by the
wave equation for Kerr-Media

AE— =5 = ——. (1)

where the polarizability P(E) may be decomposed in linear and non-linear part P(E) = ey(e — 1)E +
Py The electric displacement inside a medium is written as B(E ) = eo€E + Pyy. Kerr media are )((2)
or higher order processes in their dependency to the electrical field E.

P = eox(l)ﬁ + eox(z)ﬁ "E+.. (2)

1.2. Bethe-Salpeter Equation for Photonic Transport in Samples of Disordered Active Mie Resonators

We consider the propagating photonic intensity, see Fig. (1(c)), as the field field correlator ® which
is derived selfconsistently by the Bethe-Salpeter equation. The propagating electromagnetic wave in
disordered random media is described by the single-particle Green’s function Eq.(3) that solves the
non-linear wave equation, Eq.(1).

1
Cw — _ 3
P wrer - Pz ¥

The scatterers are embedded in a background matrix, with the dielectric function €, e.g. in air. The
granularity of the random medium is implemented in the form of a spatially dependent potential of the
permittivity e;(7). As a result of our theoretical framework we derive the laser gain self-consistently
and space-resolved. The order of non-linearity is a matter of the numerical self-consistency as the
independent complex semiconductor scatterers, are well described by the T-matrix [40] for spherical
Mie resonators for matter of a self-consistent complex refractive index.

We use a model of independent Mie scatterers Fig.(1(b)) here in order to derive the self-energy
contribution X% for extended photo-active particles in Eq. (3). The Mie scattering coefficients of n-th
order are known from the literature [43] to have the following form

(4)

b~ Fa(my)¥(y) —m¥(y)¥, (my)
! o (my)E5(y) = mn(y)¥ (my).

In this notation m = Z—Z is the relative refractive index between the scatterer and the background

matrix, y = ZH"T”S is the size parameter depending on the scatterers’ radius g as well as the transport
wavelength A. ¥, §,, are Riccati-Bessel functions. The refractive index n;(®) obtains a higher-order
non-linearity as consequence of the self-consistency with respect to ®, Ime;(®). The independent
scatterer approach works very well in dense random media of filling of 35% — 55%. Positional


https://doi.org/10.20944/preprints201906.0078.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2019 d0i:10.20944/preprints201906.0078.v1

40f 15

dependent enhancement effects due to the high filling fraction are effectively mapped on the dynamics
of ns(P) of the single scatterer in non-linear response, and we use the Mie scattering solution in far
field approximation.

The Green’s function, Eq. (3), for ¥, solves the wave equation Eq.(1) and builds up the intensity
field in the sample in the form of the field field correlator CID (Q Q). The four point correlator

(0,0) = (CF |, ()G (@) ©)

is thus expressed in terms of retarded and advanced Green’s function GR/4 denoting the field
and its time-reversal. We utilize the transformation of coordinates in center-of-motion (3, ) and
relative (75, w) momenta and frequencies [34] Ei —k+ Q/ 2 and w+ = w £ )/2. Considering the slab
geometry to be extended within the (x, y)-plane and finite in z-direction, the full Fourier transform as
indicated for infinite samples [31] is replaced by a partial Fourier transform following the argument of
the separation of the scales for the field ¥ and the intensity ®. ¥ is characterized by the wavelength A,
whereas the change of the light intensity @ is characterized by the transport mean free path ¢, which is
one of the central characteristics that we derive in due course of the paper. In (x, y)-plane the standard
Fourier transform is used, in the limited z-direction we Fourier-transform the relative coordinate but
the center-of-motion coordinate Z remains to be in real space. The separation of scales allows for the
physical incorporation of loss at the samples boundaries at the level of the transport theory. The break
of the T-symmetry, the break of the time reversal invariance of the multiple scattering procedures, is
incorporated in a macrocanonical sense [45] on the level of the integration of the real space coordinate
Z. We apply these arguments to the equation of motion for the intensity correlation, known as the
Bethe-Salpeter equation, see Fig.(1(c)),

R A 3k
D = GG 1+/( 3'7q>ee] (6)

and we obtain the Boltzmann or kinetic equation for transport Eq.(8). We introduce here
the following abbreviations in consistency with previous work, AL = X4 (w_) — ZR(w; ), O =
24 (w-) + ZR(w; ), and equivalent expressions for AG%“’: and DGE The term ", (Z,Z ", Qll’ Q)
represents the irreducible vertex, which is physically interpreted here as the coherent light matter
interaction in disordered granular non-linear systems. The Ward identity is derived in the generalized
form for the scattering of photons in non-conserving media. Absorption or gain yield an additional
contribution, and a form of the Ward-Takahashi identity for photons in complex matter [40-42] is
derived. Effectively the additional contribution is not negligible and thus present in the theoretical
results of the transport characteristics of the self-consistent framework. It renormalizes the also energy
transport velocity [31,34,40]. The solution to Eq.(6), is derived as the energy density response ®.¢ in
the form of a diffusion pole, Eq.(7)

N

Pee =07 iDQZ +iDg 2 @)
[2Re (ep) QY — ZkH QH +2ik,07 + A — Agw ]dﬁ‘f’% (Z,Z’,QH,Q) 8)
dsk” " I A
— AGSR—F') + ZAG/ 22" Q) )@Y, -, (2",2,3),Q)
Z//
B 1 &k oK L )
M(Q) - f(dsk ( Q)( ) /(27T)3/(27T)3 (Zk'Q)AGk'Ykk/(Zk 'Q)(AGk/) )
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We define the correlation length ¢ in dependency to the energy density ®e. itself
$2(Z) D(Q=0;Z2)Pee(Q)=02Q=0)
The full diffusion coefficient D(Q) = 0; Z) is derived as
D(Q) = DY — T*D(Q)M(Q) (11)

where the bare diffusion Dy = iz;icc’f J (dsk (k- Q)2AG is complemented by the contributions

originating from the active medium as the scatterers D; = g?’eAeT Dy or the background D), =
%(wr)erb Dy. Thus the diffusion coefficient without memory effects reads D" = Dy + D + Dy,. The
term —12D(Q)M(Q) contains the memory kernel M(Q), Eq.(9), including the Cooperon contribution
and consequentially all interferences. Dy equals Dy where the imaginary part AG replaced by the real
part 1JG. The renormalized density of states N, is derived as follows

wW?AGy(G, Q)

. (12)
g/ [1+ A(w)]

We further use the notation and the abbreviations of [34]. A(w) = BeAe + iredqAc(Q) with A =

Re A Im A
2[ueRe G, +ReX,] and Be = %

and (), where the momentum integrated form of AG is AGy = f &k AG?,J (Q,0,Z) and Ae = €5 — ¢y,

(2m)
% and the abbreviations 7. = Im Ae/Re Ae and g( = 4‘5’ Re €y, as well as gc(g) — ZC%J Imey,

are introduced.
The energy transport velocity is derived as vp =

9, is the differential resulting from the expansion in Q

Ue =

c

—L__ whereas cp = Re
(@) Cswd
bT=0 2

[
cpReey 1+A equals

the phase velocity, each one is self-consistently derived. A detailed discussion of the time scale T is
found in ref.[34]. By solving the renormalized diffusion equation Eq.(13)

iDE2 = —iDx 2 — ¢4 (a§q>€€(Q,Q)) +o. (13)

coupled with the energy density to the 4-level laser rate equations, see Section 1.3, the coefficients
c1 and ¢, are self-consistently derived, and we arrive the spatial distribution of energy density:

0? 1 D

- m €€ D —X qDee + ASE. (14)

The term for nonlinear self-consistent microscopic random laser gain 7,17, incorporates the

influence of the boundary renormalized length scale X ;,72; is the transition rate from laser level 2 to
level 1, n; is the electronic occupation number of level 2. This yields the inversion condition

D
] = Y2112 (15)

d

in stationary state. x, is the length scale implicated by dissipation in the bulk alone. The modification
of the boundary, Eq.(13), specifies the relation between lasing emission and amplified spontaneous
contributions (ASE), Eq.(14).
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1.3. Coupling to the Four Level Laser Rate Equations for Quantum Cascades

The lasing dynamics in our theoretical framework is included by a four-level laser rate equation
system, which is well known from quantum cascade lasers [35,36,44]

Moo MLyl (e-M),, 17)
Nt = No+ N;i+ Ny + N3, (20)

All transition times T; here are given as the inverse of the transition rates v;, see for details
Fig. (1(b)), ¥ = 1/7;. The numbers represent the laser levels. yp; = 1/ is the stimulated
emission, yp is the pump rate, sp represents spontaneous emission, 7y, represents nonradiative
decay. While we included nonradiative decay in previous work [36] for polydisperse ZnO powders,
they are neglected in this work here. The numbers N; represent the level occupation and their
resummation Njo; ensures energy as well as particle conservation. The numbers 5, and 1), represent
the photon numbers due to spontaneous emission and due to lasing. The coupling to the transport
theory is given the stimulated decay procedures, i.e. by Eq.( 18), which is connected to Eq.( 15). In
due course of this article the transition rate 7y, is associated with -y as a measure of the pump strength P.

2. Results and Discussion

2.1. The Coherence Volume of D=3 Dimensional Random Lasers

We find a full set of self-consistent scales, e.g. the diffusion coefficient D, the scattering mean
free path I;, the transport mean free path or coherence length ¢, the energy transport velocity vg, the
phase velocity ¢y, the energy and intensity dependent LDOS N, as well as the laser thresholds and the
random laser gain in stationary state from the solution of the Bethe-Salpeter equation and the intensity
correlator including interference effects ®e.

As the main solution from the generalized diffusion equation, Eq. (13), we derive the coherence
length ¢ in a 3-dimensional setup with one finite dimension z. The finite system is characterized by lossy
boundaries, otherwise we neglect losses for our considerations here in order to derive a systematic
presentation of the random lasing phase transition. The translation invariance is consequentially
broken in the z direction. We present in Fig.(2) results for one specific set of a possible random laser
sample under three different excitation regimes with respect to the microscopic bulk matter properties
of the scatterer’s material, sub-threshold excitation with respect to bulk, excitation at the bulk threshold
and excitation above the bulk threshold.

We show results for an arrangement of diamond nano resonators of refractive index n = 2.4 with
the radius of the single scatterer rscqy = 423.0 nm in a slab geometry of 50 % filling and the extent of
807scat = 33.84 um in z-direction whereas it is infinite in-plane. The sample is equally lossy on either
of the boundaries. We assume spatially homogeneous pumping of the sample and we show the results
for the excitation strengths P = 0.2971, P = 0.57971, P = 1.0y21 and P = 9.0 1, where 7, is the
rate for stimulated emission at the lasing transition of the bulk matter alone. We thus focus on four
possible regimes of the bulk reference and we check, whether the same classification still holds for the
disordered arrangements where we believe that multiple scattering between otherwise independent
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active nano resonators will be the leading order effect in solid state random laser samples of a high
filling fraction.
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Figure 2. Coherence volume as the solution from Eq.(10) within a D=3 dimensional random laser slab
of monodisperse Mie scatterers. The scatterers’ radius is rscqs = 423.0 nm, the particles refractive index
isn = 2.4, the real part of permittivity is Re €5ct = 5.76, which is comparable to diamond (C). The
transport wavelength for this result is chosen as A = 385 nm, the samples filling fraction is chosen
as 50% volume filling. The sample is of finite size in the z-direction, its extension in z-direction is
d = 807scar = 33.84 um. The strongly scattering medium is thus open, and the translation invariance
is broken in the z-direction, whereas the sample is infinite in the x-y plane. We show results for the
excitation rates of P = 0.2, (red), 0.5,1 (blue), 1.0yp; (green), 9.0 21 (yellow) in units of the
stimulated emission rate 1], see. Fig (1(b)). The stationary state coherence volume for each value of
the excitation power assumes in stationary state the form of a three dimensional extended disk, which
is symmetrical in plane of the slab. The radii of the disk for each excitation power is noted in the figure.
The disk is a spatial measure for the random laser threshold of the specific random laser arrangement.
At the samples boundaries, the coherence length assumes a finite value which depends on the pump
strength. It shall be noted that in cases for P < 1.0y, the external excitation strength is smaller than
the threshold value for bulk matter. Thus in this regime the multiple scattering procedures between
Mie resonators are the dominating physical concept for the lasing transition of the random scatterer
arrangement.

As a result we find that large scale systems can be driven with subcritical excitation strengths up
to the laser transition. Here we show the case for P = 0.277; ... P = 0.52;1. The pump power is
definitely far below the microscopic laser threshold and thus subcritical. For P = 0.2 y»; we obtain
a symmetrically to the z-axis shaped coherence volume with a radius in the samples’ center, Z = 0,
of { = 103.212 um, see Fig.(2). Thus the coherence volume has an extent in the samples center
of 2.¢ = 206.424 ym. By increasing the pump rate to P = 0.577; the coherence length reduces
quantitatively to ¢ = 92.343 ym. At the threshold value of the bulk material P = 1.0;; we find
the qualitatively the same behavior, however the quantity is reduced again to { = 80.201 um. By
increasing the pump power to P = 0.5 7»; we find the coherence length of § = 37.90 um. The length
scale ¢ is a direct measure of the random laser mode in stationary state under specific conditions. It is
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(a) Scattering mean free path [ in the laser active system at threshold
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(a) Indepth dependent scattering mean free path I; = A/ ()] for details see [34], in dependency to the

excitation strength P. Parameters are identical to those of Fig.( 2). We find an indepth dependent renormalization
of Is which is increased with a rising excitation strength P. Both quantities, the mean free path [s and the diffusion
coefficient D(Q) = 0;Z), Fig.( 3(b)) , are self-consistently derived and thus show quantitatively a different
behavior at the samples boundaries Z = +0.5d, than at Z = 0. At the open boundaries both characteristics
Is and D(Q = 0; Z) are increased. This behavior comes however along with the huge but inverse effect in the
characteristics of the coherence volume, compare Fig.( 2).

(b) Indepth dependent diffusion coefficient D(Q} = 0;Z) as a material characteristics of the random laser
arrangement at the laser threshold, in the stationary state. Parameters are identical to Fig.( 2) and Fig.( 3(a)). In the
excitation regime P < 1.0, a moderate but existing dependency with respect to the external excitation and
the position in-depth is found. In the regime for excitation above the microscopic laser threshold P < 9.0 y,; we
find an increasing deviation of the value of the diffusion coefficient D at the samples boundary of more 7 % as
compared to the transport wavelength. This deviation is only correlated to the absolute excitation power and to
the open boundaries of the sample where 85 % of all reemitted photons shall be lost whereas indepth of the sample
all photons are multiply scattering. Both results of /s and of D, which is finite, are signatures for the absence of
Anderson localization [46].
Figure 3
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also a measure of the Cooperon contribution, which is the perfect interference of a photon and
its time reversal in multiple scattering procedures that acts as the stimulation process in a random
laser. The coherence volume is thus a measure of the correlation of multiple scattering events between
otherwise independent scatterers. At the samples boundaries the coherence length ¢ becomes always
finite. The coherence length ¢ is derived in the stationary state, which means that it is the quantitative
length scale which is the measure for the systems random laser threshold. We find no crossover of
these length scales ¢ for several pump rates anywhere in the sample.

2.2. Scattering Mean Free Path and Diffusion Coefficient at the Random Laser Threshold

We show in Fig.( 3(a)) the result for the scattering mean free path /5 that is computed within the
self-consistent framework in dependency to the pump strength P and the position inside the sample.
We find a significant qualitative difference to the same length scale in the non-pumped regime. The
length scale I at the random laser threshold, thus in stationary state, is increased at the samples lossy
boundaries. This effect relies here exclusively on the incorporation of a loss rate at the boundaries,
whereas the samples filling is 50 % volume filling everywhere in the slab. We find that the increase of
ls is qualitatively not directly inverse to the behavior of the coherence or correlation length ¢, however
it depends on the strength of the excitation power. This is intuitively clear, since with an increasing
excitation power of the pump the refractive index of the single active Mie resonator is changing. The
sample is homogeneously pumped, all parameters are equal to the case of Fig. ( 2). We also find a
significant quantitative difference of the scattering mean free path I; at the laser threshold, which is for
P = 9.0 at the boundaries, [; = 1460.0 nm and in the center of the slab, at Z = 0,l; = 1432.0 nm.
Thus I; under stationary state lasing conditions is increased for our parameter set here by a factor of
4.7 to a factor of 4.87 compared to the measure /s in the non-pumped system, whereas its quality in
terms of the derived formula is exactly the same, compare ref. [34].

Our results for I;, Fig.(3(a)), and D, Fig.(3(b)), are as such remarkable, since they provide some
insight on the physical consequence of the pumping of complex active disordered media with respect
to their localization characteristics. The measure for localization is always the self-consistent diffusion
coefficient D, that we show as a result for the same parameters as I;, Fig.(3(a)),and ¢, Fig. ( 2), in
Fig.(3(b)). The diffusion coefficient shows qualitatively the same behavior as [; in stationary state. It
assumes quantitatively a finite value which is depending on the position and on the pump strength.
We thus conclude that random lasers at the stationary state undergo the lasing transition, which is
however neither correlated nor equal to the phase transition of Anderson localization.

2.3. Material-Dependency of the Mie Characteristics in Multiple Scattering Random Lasers

We know from the results for the scattering mean free path Is for photonic transport in the weak
excitation regime that a crossover of ; is expected for various Mie resonators of a differing refractive
index n and thus a differing permittivity €sq4t. The result for the scattering mean free path calculation
[34] shows smooth but pronounced dips when the Mie resonance condition for the single scatterer
is approached and finally met. This Mie resonance condition is depending on the refractive index of
the scatterer, it’s position will thus shift in the energy spectrum for various materials and identical
scatterer parameter otherwise. Under an ideal choice of parameters an almost perfect point symmetry
with respect to their crossover for the scattering mean free path Is for two different refractive indices is
possible.

Here we refer to the literature, refs. [1,2], where the gain mechanism in solid state random lasing
is vividly discussed with a focus on two possible mechanisms, microscopic gain and gain due to
artificial but randomly formed laser cavities in the sense of a build up of correlated chains of single
scatterers. Whereas for the case of microscopic gain the properties of the single Mie scatterer should
change with respect to the resulting change of the refractive index, in the case of artificial but randomly
formed laser cavities the properties of the single scatterer should remain rather unchanged.
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(a) Crossover of the coherence length ¢ for various refractive indices
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(b) Coherence length ¢ compared to the scattering mean free path /; below threshold
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(a) The crossover of the coherence length ¢ for two materials n = 2.4 (C) and n = 2.0041 (ZnO) is displayed for
the transport wavelengths A = 580.0 nm and A = 620.0 nm indepth dependent of the random laser sample. The
system parameters apart from the refractive index n and the transport wavelength A are in either case identical, the
scatterers radius is rscss = 423.0 nm. The samples finite extent in z-direction is of 80 rsc4¢, the excitation strength
P = 1.0, is moderate. A principal crossover behavior of the length scale ¢ is derived. We also find for the
refractive index n = 2.4 a crossover of the coherence lengths ¢ near the sample’s boundaries for A = 580.0 nm
and A = 620.0 nm in the stationary state.

(b) The crossover of the coherence length ¢ in the samples center, Z = 0, parameters are identical to Fig. 4(a).
Intuitively a crossover behavior of ¢ is expected from the investigation of the scattering mean free path I; for
disordered arrangements of Mie scatterers below the laser threshold [31,34]. Due to our results for I; at the
stationary state, see Fig.( 3(a)) we check here the comparison to /5 in the weakly pumped case. At the spectral
region between A = 580.0nm and A = 620.0nm we can confirm the crossover, which means that the Mie
characteristics persist as a leading order effect under these specific conditions also while the system undergoes the
lasing transition.
Figure 4
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This discussion for sure will be finally decided by novel experiments, which check the spatial
extent of random laser modes in stationary state systematically by varying the geometric properties of
the laser sample. So far we can deduce from our results, that in solid state random lasers gain due
to artificial but randomly formed laser cavities is not the leading order gain mechanism, since the
refractive index is obviously changed and the scattering mean free path in stationary state is increased
in comparison to the same system under weak excitation, compare Section 2.2. We check this behavior
theoretically in order to propose possible experiments which may be feasible to address the issue, and
one of them is to compare the measurable result of the coherence volume to the crossover behavior
of the scattering mean free path for the same but only weakly exciteted, so non-pumped, system in a
frequency range where we know the crossover of /5 in the weakly excited case is very pronounced. For
the system paremeters 75, = 423.0 nm, the samples extent in z-direction of d = 807 = 33.84 um,
a filling fraction of 50 % and the refractive indices of n = 2.4 (C) and n = 2.0041 (ZnO) such a clear
crossover of [s is found at A = 600.0 nm, compare Fig. (4(b)). We show in Fig. ( 4(a)) the in-depth
dependency of the correlation length ¢ for both systems under moderate pumping P = 1.0 1. The
pump wavelength as well as the transport wavelength are chosen as A = 580.0nm and A = 620.0 nm.
We find two qualitatively different crossover situations. First we find an obvious crossover of ¢ for
n = 2.4 and the transport wavelength A = 580.0 nm in the outer selvedge of the sample is found,
which is the outer 10 % of the samples extent on either open side. Second we find a qualitative
change of the coherence length § when we exchange the passive refractive index from n = 2.0041
ton = 2.4. For the parameters A = 580.0nm and n = 2.0041 the coherence length ¢ all over the
samples depth obtains almost the same characteristics and the same value as ¢ for the case of n = 2.4
and A = 620.0 nm. The direct counterparts, ¢ for the parameter set of n = 2.0041, A = 620.0nm,
and on the other hand for the set of n = 2.4 and A = 580.0 nm show a significant difference of about
40 %. This crossover becomes more obvious, when we plot the coherence lengths ¢, as single marked
points, in comparison to the scattering mean free path Is for the weakly excited regime, marked as
the solid and the dashed line in Fig. ( 4(b)). Whereas the absolute value of I; is rather symmetric
for the refractive indices n = 2.0041 and n = 2.4 in the spectral positions of A = 580.0 nm, and of
A = 620.0 nm, to their crossover at A = 600.0 nm, the coherence length by contrast shows a crossover
as well, but the almost perfect point symmetry behavior of the scattering mean free path in the weakly
excited case is not present in the crossover behavior of { in stationary state. The crossover of ¢ is also
not confirmed for any crossover point of /s for weakly excited Mie resonators in the spectrum.

2.4. Power Law Behavior of the Correlation Length Scale in Stationary State

We have investigated the coherence length ¢ with increasing pump power for various refractive
indices and various samples extents. In Fig. ( 5) we show the coherence length ¢ for the scatterers
arrangements of rsc;; = 423.0 nm, filling fraction of 50 % and the samples extents of d = 407scqt =
16.92umand d = 807scqr = 33.84 ym. We show samples forn = 2.4 (C),n = 2.3(ZnO)andn = 3.22
(TiOy). The excitation wavelength is A = 385.0 nm, results are displayed for pump powers from 0.2 5,
up to 9.09,1. We display the dependency of & with 1/+/P and we find a characteristic power law
behavior for increasing pump power P which has been found in comparable experiments of random
lasers by Cao et al.[2]. We find also a specific crossover behavior for the coherence length ¢ for the
samples of n = 2.4 (C) and n = 3.22 (TiO,) whereas the power law behavior is confirmed in either
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sample. The coherence length ¢ for TiO, assumes values of up to { = 150.0 pm, thus the coherence
volume has an extent in this case of up to ¢ = 300.0 um in stationary state.

o—oC n=24 d=80r__ r  =423nmA =385nm
200 : . scat ~ scat

—o T102 n=322 d=80 Lo T = 423 nm A =385 nm
o—7n0 n=23 d=40r _r =423nmA =385nm

o scat ~ scat

o—oC n=24 d=40r r _ =423nmA =385nm

scat ~ scat
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I | I |
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Figure 5. Self-consistent coherence length ¢ of the random laser system in the finite size slab
arrangement with a filling fraction of 50 % for four different setups. We show ¢ at the samples
center Z = 0 for various extents of the slab with it’s dependency to the excitation power. Parameters
ared = 407scr and d = 80 7scat, Tscat = 423.0 nm. Results are shown for identical scatterers’ radii of
ZnO (zinkoxide, n = 2.3), of C (diamond, n = 2.4) and of TiO; (titania, n = 3.22) Mie scatterers without
any amplifying or absorbing background, €, = 1.0. With increasing excitation power P a transition to
a power law behavior of & with 1/+/P is found in either of the setups (see blue straight line). At the
transport wavelength A = 385.0 nm we find that the Mie characteristics is still a leading order effect
in stationary state lasing. We find for the scatterers radius rs¢s = 423.0 nm and A = 385.0 nm for C,
n = 2.4, and titania, n = 3.22, a significant difference in ¢ which cannot be explained by bulk effects.
We attribute it to enhanced multiple scattering for the diamond Mie resonators with these parameters.

3. Conclusion

We have presented in this article a quantum field theoretical approach for three dimensional solid
state random lasers comprised of active complex Mie resonators. Thus we have implemented the Ward
identity for non-conserving media. The systems are open at the boundaries. As result we derived
the coherence volume of random lasers as the spatial characteristics of the random laser threshold
in the stationary state. This includes the spatially dependency of the self-consistent laser gain. We
conclude from our results that the random laser of densely packed strongly scattering random media
is significantly depending on multiple scattering processes in the sense that stationary state lasing
can be reached already for subcritical pump intensities, far below what is known as the microscopic
laser threshold of the bulk material. This characteristics is also enhanced by Mie characteristics of the
active single scatterer. We have also presented the results for the diffusion coefficient and the scattering
mean-free path which have been derived by the self-consistent framework and which are thus also
spatially dependent. We find a significant deviation of the scattering mean free path in the lasing regime
in stationary state from /5 the weakly excited case. This deviation is confirmed in the characteristics of
the diffusion coefficient which is finite and spatially dependent. We compared the qualitative behavior
of the coherence length of the stationary state random laser to the qualitative behavior of the scattering
mean free path of photons in the same but non-pumped and thus non-inverted setup. We find that the
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coherence length in stationary state qualitatively follows the material dependent spectral crossover
behavior of the scattering mean free path of disordered samples of weakly excited Mie resonators and
otherwise identical parameters in the case of very pronounced Mie characteristics in weakly excited
systems. We also compared the coherence length in stationary state for identical scatterers of various
materials, diamond (C), zinkoxide (ZnO) and titania (TiO,), for increasing pump strength as well as for
varying samples thicknesses. We find in all our results a power law behavior of the coherence length
with respect to the pump intensity. We conclude from our theory, that for the understanding of the
physics of random lasers of multiple scattering ensembles the concept of the localization length which
is a fundamental characteristics for mesoscopic transport of light in random media is conceptionally
not sufficient, since it does not provide knowledge about the effect of self-consistent gain including
the microscopic electronic subsystem. The length scale of the coherence or correlation length and the
coherence or correlation volume respectively are more comprehensive scales for laser active random
media and they characterize the laser modes and the laser threshold behavior. We investigated in this
work arrangements of independent monodisperse Mie resonators. It will be subject of future work to
investigate the influence of gain and absorption with respect to sub- and hyper-diffusion systems and
with respect to laser samples of quasi-ordered clusters and meta glasses.
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