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Abstract: We analyze real telematics information for a sample of drivers with usage-based 11 

insurance policies. We examine the statistical distribution of distance driven above the posted 12 
speed limit – which presents a strong positive asymmetry – using quantile regression models. We 13 
find that, at different percentile levels, the distance driven at speeds above the posted limit depends 14 
on total distance driven and, more generally, on such factors as the percentages of urban and 15 
nighttime driving and on the driver’s gender. However, the impact of these covariates differs 16 
according to the percentile level. We stress the importance of understanding telematics 17 
information, which should not be limited to simply characterizing average drivers, but can be 18 
useful for signaling dangerous driving by predicting quantiles associated with specific driver 19 
characteristics. We conclude that the risk of driving long distances above the speed limit is 20 
heterogeneous and, moreover, we show that prevention campaigns should target primarily male, 21 
non-urban drivers, especially if they present a high percentage of nighttime driving. 22 

Keywords: telematics; motor insurance; speed control; accident prevention 23 

 24 

1. Objective 25 

Every kilometer driven above the posted speed limit increases the risk of accident. This is the 26 
hazard to which the driver, the passengers in the vehicle and those in vehicles on the same stretch of 27 
road expose themselves. The main objective of this paper is to analyze, in a real case telematics data 28 
set, the distribution of the distance traveled at speeds above posted limits and to show that it is 29 
dependent on the total distance driven and other factors that include the percentages of urban and 30 
nighttime driving and the driver’s gender. If we only model the mathematical expectation, i.e. the 31 
average distance driven at speeds above the posted limits, significant relationships are likely to be 32 
found with a number of telematics covariates. However, here, we consider quantile regression to 33 
determine whether the impact of certain factors might differ depending on the percentile being 34 
analyzed.  35 

When quantile regression slopes differ depending on the level, the risk of driving above the 36 
posted speed limit is not homogeneous across all drivers, begging the question as to how this risk 37 
might be predicted or measured. Thus, in this paper, we also seek to show how specific driver 38 
characteristics can help predict a driver’s expected ranking, that is, not in relation to the whole 39 
population, but to similar drivers. 40 

The rest of this paper is organized as follows. In section 2, we present the background to this 41 
study. In section 3, the theory of quantile regression modelling and the data set used in this study are 42 
presented. In section 4, the results are discussed and, finally, in section 5, we outline the conclusions 43 
that can be drawn. 44 
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2. Background 45 

There is much evidence in the literature pointing to the relationship between elevated vehicle 46 
speeds and the risk of collision (see Ossiander and Cummings, 2002, and Vermon et al., 2004, among 47 
others). Likewise, the effectiveness of speed cameras in the reduction of road traffic collisions and 48 
related casualties has been extensively demonstrated (see Pilkington and Kinra, 2005, and Wilson et 49 
al., 2007, among others), which would seem to confirm that high speeds increase the risk of collision. 50 
Speeding, moreover, has been shown to be directly related to the severity of accidents (see, among 51 
others, Dissanayake and Lu, 2002, and Jun et al., 2007, 2011), while Yu and Abdel-Aty (2014) report 52 
that marked variations in speed prior to a crash increase the likelihood of severe accidents.  53 

Not all drivers present the same tendency to exceed the posted speed limit. More specifically, 54 
evidence of gender differences in driving patterns has been reported in many articles (see Ayuso et 55 
al., 2014, 2016a, and 2016b). It has been shown that, compared to women, men present riskier driving 56 
behavior, driving more kilometers per day, during the night and at speeds above the limit. All these 57 
factors have been shown to be related to a greater number of accidents (Gao et al. 2019, Gao and 58 
Wüthrich, 2019 and Guillen et al. 2019). For example, Paefgen et al. (2014) found that the risk of 59 
accident is higher at nightfall, during the weekends on urban roads and at low-range (0-30 km/h) or 60 
high-range speeds (90-120 km/h).  61 

Speed control has recently come under investigation in connection with advanced driver 62 
assistance systems (ADAS) and semi-autonomous vehicles. Pérez-Marín and Guillen (2019), for 63 
example, analyzed the contribution of telematics information and usage-based insurance (UBI) 64 
research in identifying the effect of driving patterns – above all, speeding – on the risk of accident. 65 
The authors used a predictive model of the number of claims in a portfolio of insureds as their 66 
starting point for addressing risk quantification in relation to vehicles exceeding the speed limit. 67 
They concluded that if excess speeds could be eliminated, the expected number of accident claims 68 
could be reduced by half, in the average conditions prevailing in their real UBI dataset. Pérez-Marín 69 
et al. (2019) show that young drivers tend to reduce posted speed limit violations after an accident. 70 

It has also been demonstrated that both the mean speed and the coefficient of variation of speed 71 
are relevant risk factors (Taylor et al., 2002). Moreover, interest has been expressed in the percentile 72 
assessment of the speed distribution, as opposed to just the mean. In this regard, Hewson (2008) 73 
claims that controlling the 85th percentile speed is common when designing road safety 74 
interventions. The same author also examined the role of quantile regression for modelling this 75 
percentile and specifically demonstrated its potential benefits when evaluating whether or not an 76 
intervention is able to significantly modify the 85th percentile speed.  77 

Hewson (2008) based his analysis on a data set of observations on approximately 100 vehicle 78 
speeds at each of 14 pairs of sites recorded before, right after and some time after the intervention 79 
(the installation of warning signs, in this instance). However, here, we apply quantile regression to 80 
an analysis of the effects of telematics information on a range of percentiles of the distance travelled 81 
at speeds above the limit, rather than to the speed measured at one specific moment in time.  82 

We should stress that the objective of our paper is not the same as Hewson’s (2008), inasmuch 83 
as we do not seek to evaluate a particular safety intervention. Our aim is to understand conditional 84 
quantiles of distance traveled, possibly at different moments, rather than an instant speed 85 
measurement. To do so, our analysis is based on real telematics information from a sample of drivers 86 
covered by a UBI policy. This means that, in addition to speed, we analyze other telematics 87 
variables, such as the location and time of driving and the total distance travelled by each driver in 88 
the sample. 89 

 90 
3. Methods 91 

3.1.  Quantile regression 92 
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Our quantile regression model follows the same notation as that used in Hewson (2008). Thus, 93 
in the classical multiple linear regression model, the response y is modeled as 94 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜖𝑖 95 

where 𝑥𝑖 = (1, 𝑥𝑖1 , … , 𝑥𝑖𝑝), in which p is the number of explanatory variables, β is the vector of 96 

coefficients such that 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝) and ϵ is the random term with distribution N(0,σ2). When 97 

we model the conditional mean response, the Gaussian likelihood function is given by  98 

𝐿(𝛽) ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
∑ (𝑦𝑖 − 𝑥𝑖

𝑇𝛽)
2𝑛

𝑖=1 }. 99 

The least squares estimation of β is obtained by maximizing L(β) over β. 100 
As we aim to estimate a conditional quantile function 100α%, rather than a conditional mean, 101 

we need to use a quantile regression model (see Koenker and Hallock, 2001, and Yu et al., 2003, 102 
among others). The objective function to be minimized in this case equals  103 

𝐿𝛼(𝛽) ∝ 𝑒𝑥𝑝{− ∑ 𝜌𝛼(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)𝑛

𝑖=1 }, 104 

where the expression contains an asymmetric loss function 𝜌𝛼. To explain just what this asymmetric 105 
loss function is, we need to introduce some notation. We consider that the 100α% quantile of the 106 
residual ϵ is the 100α% largest value (that is, it has 100α% of values smaller than it and 100(1-α)% of 107 
values larger than it). Quantile regression, therefore, involves finding estimates 𝛽̂ where 100α% of 108 
the residuals are below zero, and 100(1-α)% are above zero. We use an indicator function 𝐼𝐴 on the 109 
set A, as 110 

𝐼𝐴(𝛿) = {
1 δ ∊ 𝐴
0 𝛿 ∉ 𝐴

   111 

The loss function 𝜌𝛼 can then be defined as follows: 112 

𝜌𝛼(𝛿) = α 𝜖 𝐼(−∞,0](𝛿) − (1 − 𝛼) 𝜖 𝐼[0,∞)(𝛿)                          (1) 113 

for any value of α between 0 and 1. Finding the values of 𝛽̂ that maximize the likelihood of the 114 
quantile regression model is the same as finding the values of 𝛽̂ that minimize this loss function 115 
(see Hewson, 2008). Equation (1) can be minimized by using linear programming techniques. The 116 
function qr of the quantreg R package (Koenker et al., 2018) can be used to fit a quantile regression 117 
model. 118 

3.2.  The data 119 

The data set comprises a sample of 9,614 drivers with UBI coverage, which targets drivers 120 
between the ages of 18 and 35, for the whole of 2010. The variables are presented in Table 1. Age is 121 
the age of the driver at the beginning of 2010. We also have information on gender (Gender), total 122 
number of kilometers (km) driven during 2010 (Km) and its natural logarithm (Lnkm). Note that we 123 
considered the natural logarithm of Km, Lnkm, as it has been shown that distance travelled has a 124 
nonlinear effect on the risk of an accident (see Boucher et al., 2013). We also have information on the 125 
number of kilometers driven at speeds above the posted limit (Tolerkm, which is the dependent 126 
variable), percentage of km driven on urban roads (Porc_vurba) and, finally, percentage of 127 
kilometers driven at night (Porc_nocturn). All the drivers had UBI coverage throughout the whole of 128 
2010 and all the telematics variables refer to this year. 129 

Table 1. Variable description. 130 

Variable Description 
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Tolerkm Number of kilometers driven at speeds above the posted limit during 2010. 

Km 

Lnkm 

Total number of kilometers driven during 2010. 

Logarithm of the total number of kilometers driven during 2010. 

Porc_vurba % of kilometers driven on urban roads during 2010. 

Porc_nocturn % of kilometers driven at night (between midnight and 6 am.) during 2010. 

Age Age of the driver at the beginning of 2010. 

Gender 1 = Male, 0 = Female 

 131 

Table 2. Descriptive statistics. 132 

Variable 
Min 1st Qu Median Mean 3rd Qu Max St. 

Dev. 

Skewness 

Tolerkm 0.00    282.40   689.20   1,398.20   1,701.60  23,500.20 1,995.37 3.64 

Km 

Lnkm 

0.69 

-0.37   

7,530.56  

8.93 

11,697.82  

9.37 

13,063.71 

9.27  

17,337.00 

9.76  

57,756.98 

10.96 

7,715.80 

0.75 

1.08 

-1.87 

Porc vurba 0.00    15.60    23.39    26.29    34.32   100.00 14.18 1.03 

Porc_nocturn 0.00  2.48    5.31    7.02    9.84   78.56 6.13 1.67 

Age 18.11    22.66    24.63    24.78    26.88    35.00 2.82 0.11 

 133 
The gender distribution of the sample is 49% women and 51% men. Table 2 shows that the 134 

average age of drivers in the sample is 24.78 years. The average number of kilometers travelled 135 
during the year was 13,063.71 (standard deviation of 7,715.80). We also observe that on average 136 
drivers travel 26.29% of kilometers on urban roads and 7.02% of kilometers at night. The mean of 137 
kilometers travelled at speeds above the limit (Tolerkm, dependent variable) is 1,398.20, while its 138 
median is 689.20. Tolerkm has positive asymmetry (skewness coefficient equals 3.64); the 139 
distribution has a long tail as can be observed in Figure 1. The rest of the variables also present some 140 
degree of skewness, but not as high as Tolerkm. 141 

4. Results 142 

We fitted a multiple linear regression model to the variable Tolerkm, although we consider it 143 
unsuitable insofar as the dependent variable is highly asymmetric. The variable Km was included in 144 
the model as its natural logarithm (variable Lnkm), as it produced a better fit. Parameter estimates 145 
are shown in Table 3. The R-squared goodness-of-fit statistic equals 0.26. 146 

All the explanatory variables have a significant effect except for Age, which is attributable to the 147 
fact that UBI policies were sold primarily to young drivers and, so, the age range in the sample is not 148 
wide. Lnkm and Porc_nocturn present positive parameter estimates, indicating that increases in the 149 
total number of kilometers driven and in the percentage of km driven at night contribute to increase 150 
the expected number of kilometers driven at speeds above the posted limits. Porc_vurba, in contrast, 151 
has the opposite effect, the higher the percentage of kilometers driven on urban roads, the lower the 152 
expected number of kilometers driven at speeds above the posted limit. Finally, gender (indicating 153 
males) has a positive parameter estimate, meaning that, on average, men drive more kilometers at 154 
speeds above the posted limit than women. 155 
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 156 

Figure 1. Histogram of the distance travelled at speeds above the limits. 157 

Table 3. Parameter estimates of the linear regression model. 158 

 

Parameter 

estimate 

(p-value) 

Intercept -8082.506 

(<0.0001) 

Lnkm 1064.506 

(<0.0001) 

Porc_vurba -21.868 

(<0.0001) 

Porc_nocturn 7.536 

(0.0101) 

Age -1.131 

(0.8565) 

Gender 328.009 

(<0.0001) 

 159 
To fulfil the objectives identified in the first section and, at the same time, to address the strong 160 

positive asymmetry, a grid of quantile regressions with different percentiles were fitted to the data. 161 
The results of the quantile regression models are presented in Table 4. Each column shows the 162 
parameter estimates of the quantile regression at the following percentiles: 50th, 75th, 90th, 95th, 163 
97.5th and 99th. In general, significant parameter estimates are the same as those found in the 164 
multiple linear regression model shown in Table 3. However, the results in Table 4 show that the 165 
covariates have different marginal effects on conditional quantiles depending on the estimated 166 
percentile. These changes in the parameters depending on the quantile level at which the model is 167 
specified are clearly illustrated in Figure 2 and are discussed in detail below. 168 
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Table 4. Parameter estimates of the quantile regression model for different percentiles. 169 

 

50th  

percentile 

(p-value) 

75th 

percentile 

(p-value) 

90th  

percentile 

(p-value) 

95th 

percentile 

(p-value) 

97.5th 

percentile 

(p-value) 

99th 

percentile 

(p-value) 

Intercept -4496.53 

(<0.0001) 

-6250.34 

(<0.0001) 

-6418.11 

(<0.0001) 

-6009.63 

(<0.001) 

-5137.24 

(<0.0001) 

-2451.17 

0.5780 

Lnkm 597.60 

(<0.0001) 

892.80 

(<0.0001) 

1074.66 

(<0.0001) 

1094.57 

(<0.0001) 

1119.94 

(<0.0001) 

1180.21 

(<0.001) 

Porc_vurba -9.19 

(<0.0001) 

-22.26 

(<0.0001) 

-39.59 

(<0.0001) 

-53.44 

(<0.0001) 

-68.58 

(<0.0001) 

-87.12 

(<0.0001) 

Porc_nocturn 5.41 

(<0.0001) 

6.71 

(0.0363) 

21.76 

(0.0226) 

37.49 

(0.0086) 

20.01 

(0.4266) 

43.86 

(0.4014) 

Age -2.56 

(0.1632) 

1.84 

(0.7298) 

5.16 

(0.7419) 

40.29 

(0.2086) 

71.28 

(0.1094) 

36.87 

(0.7009) 

Gender 206.76 

(<0.0001) 

377.94 

(<0.0001) 

574.08 

(<0.0001) 

755.87 

(<0.0001) 

1070.06 

(<0.0001) 

1091.38 

(0.0624) 

 170 
First, Table 4 shows that the percentage of kilometers driven at night presents a highly 171 

significant effect when we estimate the 50th percentile and that it remains significant – at the 5% level 172 
– but with a larger p-value, when we estimate the 75th 90th and 95th percentiles. Likewise, the effect of 173 
gender is positive and significant at the 5% significance level for all quantiles, except for the 99th 174 
percentile. In the case of the 99th percentile, only Lnkm and Porc_vurba present a significant effect, 175 
while the rest of the parameters are no longer significant at the 5% level, including the model 176 
intercept. The lack of significance may be explained by the wider confidence intervals at a 5% level 177 
of significance observed in Figure 2 for the 99th percentile. 178 

Second, Table 4 and Figure 2 also show that the magnitude of the marginal effects of variables 179 
with significant parameters in the models differs depending on the level of the estimated quantile. 180 
Specifically, the marginal effect of Lnkm increases as the level of the estimated quantile increases 181 
(being equal to 597.6 and 1180.2 for the 50th and 99th percentiles, respectively). The same pattern, 182 
albeit less pronounced, is observed for the marginal effect of Porc_nocturn, which increases as the 183 
level of the estimated quantile increases (being equal to 5.41 and 37.49 for the 50 th and 95th 184 
percentiles, respectively). In the case of Porc_vurba, the marginal effect is always negative, but in 185 
absolute terms it is increasing with the level of the estimated quantile (being equal to -9.19 and -87.12 186 
for the 50th and 99th percentiles, respectively). Finally, the marginal effect of gender is always positive 187 
and is increasing with the level of the estimated quantile (being equal to 206.76 and 1070.06 for the 188 
50th and 97.5th, respectively).   189 

It is interesting to compare the results of the quantile regression for the 75th and 95th percentiles. 190 
Thus, the model intercept is quite similar in both models. A comparison of the marginal effect of 191 
Lnkm shows that a one-unit increase in Lnkm (equivalent to multiplying Km by 2.718), increases 192 
892.80 km the 75th percentile of the number of kilometers driven at speeds above the posted limit, 193 
while the 95th percentile increases 1094.57 km, ceteris paribus. In the case of Porc_vurba, increasing 194 
the percentage of kilometers driven in urban areas by one percentage unit reduces 22.26 km the 75th 195 
percentile of the number of kilometers driven at speeds above the posted limit, and 53.44 km the 95th 196 
percentile, ceteris paribus. On the other hand, being a man increases 377.94 km the 75th percentile of 197 
the number of kilometers driven at speeds above the posted limit and 755.87 km the 95th percentile, 198 
ceteris paribus. Finally, increasing the percentage of kilometers driven at night by one percentage 199 
unit increases 6.71 km the 75th percentile of the number of kilometers driven at speeds above the 200 
limit and 37.49 km the 95th percentile, ceteris paribus. 201 
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(f) 

 202 

Figure 2. Parameter estimates at different levels of the quantile. Confidence intervals at a 5% level of 203 
significance. The horizontal red line represents the corresponding parameter estimate in a classical 204 
linear regression model. (a) Intercept; (b) lnkm; (c) porc_vurba; (d) porc_nocturn; (e) age; (f) gender. 205 

Finally, Table 5 illustrates how the model can be implemented for predictive purposes. Let us 206 
consider three drivers with different characteristics, each of whom has driven exactly 600 km above 207 
the posted speed limit. Compared to the general population, and without conditioning on specific 208 
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characteristics, these three drivers present a distance driven at excess speeds below the median 209 
(689.20 km) and, as such, can be considered relatively safe drivers. However, the key is to calculate 210 
the percentile risk level of the response variable given the specific characteristics of each driver. 211 
Indeed, it seems obvious that a distance of 600 km driven above the posted speed limit does not 212 
denote the same level of risk for an urban driver (who probably does a lot of driving in congested 213 
areas), as it does for a driver who drives largely outside the city limits. Most notably, the risk 214 
depends on the total distance driven. If we use the grid of different percentiles (Table 4) to make our 215 
predictions, it can be seen that for a distance of 600 km driven above the speed limit, driver 1 lies at 216 
the 50th percentile, indicative of median risk. In contrast, driver 2 lies at the 75th percentile and, so, 217 
has a higher risk score when taking his driving characteristics into account. And, finally, driver 3 lies 218 
at the 90th percentile, indicative of a very high risk. 219 

Table 5. Estimates of the conditional percentiles for drivers with different characteristics, each of 220 
whom has driven 600 km above the posted speed limit. 221 

 Driver 1 Driver 2 Driver 3 

Km 12,000 8,000 5,500 

Porc_vurba 80 75 80 

Porc_noctur 14 11 10.5 

Age 25 25 25 

Gender 1 1 1 

Estimated conditional percentile 1 50th  75th  90th  
1 The estimated conditional percentile is found by locating the quantile level that produces a response equal to 222 
600 km, given the exogenous characteristics (total kilometers driven, percent urban driving, percent nighttime 223 

driving, age and gender) in the three example columns. 224 

5. Conclusions 225 

We have shown that the distribution of the distance driven above the posted speed limit is not 226 
homogeneous with respect to certain driver characteristics. As such, quantile regression is an 227 
interesting tool for analyzing risk when telematics information is available. On the assumption that 228 
quantiles of distance driven above the speed limit represent a valuable risk measure, our model 229 
allows us to identify the factors associated with higher quantile values and, therefore, with risky 230 
drivers. This information is valuable in terms of providing preventive early warnings.  231 

We also find that the impact of each additional kilometer driven is much greater in higher 232 
quantiles than in lower quantiles. Note that we specify a log-linear relationship between total 233 
distance driven and distance driven above the posted speed limits, which means there is a 234 
decreasing marginal effect on the latter as total distance increases. 235 

One limitation of our analysis is that the degree to which drivers exceeded the posted limit was 236 
not recorded by the telematics equipment; thus, we are unable to examine the magnitude of the 237 
speed violation. 238 

We believe that UBI will soon develop into a scheme that can improve aspects of both service 239 
and protection in the sector. As insurance services are reinvented, risk scores and the identification 240 
of potential niches of drivers with risky patterns provide a new way of keeping drivers better 241 
informed and of promoting safe driving. Models such as those presented in this paper should enable 242 
insurers to design predictive models of driver risk and fix personalized indicators. In the application 243 
presented here, it could be argued that excess speed is the only feature a driver can modify, given 244 
that all other factors, including age, gender, total distance driven, and percentages of nighttime and 245 
urban driving, are dictated by external circumstances such as distance from home to work place, and 246 
by personal or professional obligations. This means the quantile regression model would predict the 247 
total distance driven above the posted speed limit percentile, given that particular set of external 248 
circumstances and, thus, it would allow the percentile risk score of the driver to be calculated by 249 
controlling for those circumstances and not for the whole population of drivers. Estimating a 250 
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driver’s rank with regard to distance driven above the posted speed limit is personalized 251 
information that should constitute interesting feedback for policy holders. Indeed, safety measures 252 
and even telematics-based insurance should segment the population of drivers accordingly. Given 253 
that speed is the primary cause of severe accidents, these results should translate into lower 254 
insurance premiums for those who present a lower risk. In other words, if quantile-based behavior is 255 
considered rather than mathematical expectations of accident severity, the calculation of the 256 
premium to be paid should be improved. However, we leave questions as to how this rank might be 257 
converted into an insurance price and how information of a driver’s behavior might impact careful 258 
driving for further research. 259 
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