

1 Article

2

Quantile Regression with Telematics Information to 3 Assess the Risk of Driving Above the Posted Speed 4 Limit

5 **Ana M. Pérez-Marín¹, Montserrat Guillen^{1,*}, Manuela Alcañiz¹ and Lluís Bermúdez²**6 ¹ Dept. Econometrics, Riskcenter-IREA, Universitat de Barcelona, Av. Diagonal, 690, 08034 Barcelona, Spain;
7 amperez@ub.edu (A.M.P.-M.); malcaniz@ub.edu (M.A.)8 ² Dept. Matemàtica Econòmica, Financera i Actuarial, Universitat de Barcelona, Av. Diagonal, 690, 08034
9 Barcelona, Spain; lbermudez@ub.edu

10 * Correspondence: mguillen@ub.edu; Tel.: +34-93-403-7039

11 **Abstract:** We analyze real telematics information for a sample of drivers with usage-based
12 insurance policies. We examine the statistical distribution of distance driven above the posted
13 speed limit – which presents a strong positive asymmetry – using quantile regression models. We
14 find that, at different percentile levels, the distance driven at speeds above the posted limit depends
15 on total distance driven and, more generally, on such factors as the percentages of urban and
16 nighttime driving and on the driver's gender. However, the impact of these covariates differs
17 according to the percentile level. We stress the importance of understanding telematics
18 information, which should not be limited to simply characterizing average drivers, but can be
19 useful for signaling dangerous driving by predicting quantiles associated with specific driver
20 characteristics. We conclude that the risk of driving long distances above the speed limit is
21 heterogeneous and, moreover, we show that prevention campaigns should target primarily male,
22 non-urban drivers, especially if they present a high percentage of nighttime driving.23 **Keywords:** telematics; motor insurance; speed control; accident prevention

24

25

1. Objective

26 Every kilometer driven above the posted speed limit increases the risk of accident. This is the
27 hazard to which the driver, the passengers in the vehicle and those in vehicles on the same stretch of
28 road expose themselves. The main objective of this paper is to analyze, in a real case telematics data
29 set, the distribution of the distance traveled at speeds above posted limits and to show that it is
30 dependent on the total distance driven and other factors that include the percentages of urban and
31 nighttime driving and the driver's gender. If we only model the mathematical expectation, i.e. the
32 average distance driven at speeds above the posted limits, significant relationships are likely to be
33 found with a number of telematics covariates. However, here, we consider quantile regression to
34 determine whether the impact of certain factors might differ depending on the percentile being
35 analyzed.36 When quantile regression slopes differ depending on the level, the risk of driving above the
37 posted speed limit is not homogeneous across all drivers, begging the question as to how this risk
38 might be predicted or measured. Thus, in this paper, we also seek to show how specific driver
39 characteristics can help predict a driver's expected ranking, that is, not in relation to the whole
40 population, but to similar drivers.41 The rest of this paper is organized as follows. In section 2, we present the background to this
42 study. In section 3, the theory of quantile regression modelling and the data set used in this study are
43 presented. In section 4, the results are discussed and, finally, in section 5, we outline the conclusions
44 that can be drawn.

45 **2. Background**

46 There is much evidence in the literature pointing to the relationship between elevated vehicle
47 speeds and the risk of collision (see Ossianer and Cummings, 2002, and Vermon et al., 2004, among
48 others). Likewise, the effectiveness of speed cameras in the reduction of road traffic collisions and
49 related casualties has been extensively demonstrated (see Pilkington and Kinra, 2005, and Wilson et
50 al., 2007, among others), which would seem to confirm that high speeds increase the risk of collision.
51 Speeding, moreover, has been shown to be directly related to the severity of accidents (see, among
52 others, Dissanayake and Lu, 2002, and Jun et al., 2007, 2011), while Yu and Abdel-Aty (2014) report
53 that marked variations in speed prior to a crash increase the likelihood of severe accidents.

54 Not all drivers present the same tendency to exceed the posted speed limit. More specifically,
55 evidence of gender differences in driving patterns has been reported in many articles (see Ayuso et
56 al., 2014, 2016a, and 2016b). It has been shown that, compared to women, men present riskier driving
57 behavior, driving more kilometers per day, during the night and at speeds above the limit. All these
58 factors have been shown to be related to a greater number of accidents (Gao et al. 2019, Gao and
59 Wüthrich, 2019 and Guillen et al. 2019). For example, Paefgen et al. (2014) found that the risk of
60 accident is higher at nightfall, during the weekends on urban roads and at low-range (0-30 km/h) or
61 high-range speeds (90-120 km/h).

62 Speed control has recently come under investigation in connection with advanced driver
63 assistance systems (ADAS) and semi-autonomous vehicles. Pérez-Marín and Guillen (2019), for
64 example, analyzed the contribution of telematics information and usage-based insurance (UBI)
65 research in identifying the effect of driving patterns – above all, speeding – on the risk of accident.
66 The authors used a predictive model of the number of claims in a portfolio of insureds as their
67 starting point for addressing risk quantification in relation to vehicles exceeding the speed limit.
68 They concluded that if excess speeds could be eliminated, the expected number of accident claims
69 could be reduced by half, in the average conditions prevailing in their real UBI dataset. Pérez-Marín
70 et al. (2019) show that young drivers tend to reduce posted speed limit violations after an accident.

71 It has also been demonstrated that both the mean speed and the coefficient of variation of speed
72 are relevant risk factors (Taylor et al., 2002). Moreover, interest has been expressed in the percentile
73 assessment of the speed distribution, as opposed to just the mean. In this regard, Hewson (2008)
74 claims that controlling the 85th percentile speed is common when designing road safety
75 interventions. The same author also examined the role of quantile regression for modelling this
76 percentile and specifically demonstrated its potential benefits when evaluating whether or not an
77 intervention is able to significantly modify the 85th percentile speed.

78 Hewson (2008) based his analysis on a data set of observations on approximately 100 vehicle
79 speeds at each of 14 pairs of sites recorded before, right after and some time after the intervention
80 (the installation of warning signs, in this instance). However, here, we apply quantile regression to
81 an analysis of the effects of telematics information on a range of percentiles of the distance travelled
82 at speeds above the limit, rather than to the speed measured at one specific moment in time.

83 We should stress that the objective of our paper is not the same as Hewson's (2008), inasmuch
84 as we do not seek to evaluate a particular safety intervention. Our aim is to understand conditional
85 quantiles of distance traveled, possibly at different moments, rather than an instant speed
86 measurement. To do so, our analysis is based on real telematics information from a sample of drivers
87 covered by a UBI policy. This means that, in addition to speed, we analyze other telematics
88 variables, such as the location and time of driving and the total distance travelled by each driver in
89 the sample.

90
91 **3. Methods**92 *3.1. Quantile regression*

93 Our quantile regression model follows the same notation as that used in Hewson (2008). Thus,
 94 in the classical multiple linear regression model, the response y is modeled as

95
$$y_i = x_i^T \beta + \epsilon_i$$

96 where $x_i = (1, x_{i1}, \dots, x_{ip})$, in which p is the number of explanatory variables, β is the vector of
 97 coefficients such that $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ and ϵ is the random term with distribution $N(0, \sigma^2)$. When
 98 we model the conditional mean response, the Gaussian likelihood function is given by

99
$$L(\beta) \propto \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - x_i^T \beta)^2 \right\}.$$

100 The least squares estimation of β is obtained by maximizing $L(\beta)$ over β .

101 As we aim to estimate a conditional quantile function $100\alpha\%$, rather than a conditional mean,
 102 we need to use a quantile regression model (see Koenker and Hallock, 2001, and Yu et al., 2003,
 103 among others). The objective function to be minimized in this case equals

104
$$L_\alpha(\beta) \propto \exp \left\{ -\sum_{i=1}^n \rho_\alpha(y_i - x_i^T \beta) \right\},$$

105 where the expression contains an asymmetric loss function ρ_α . To explain just what this asymmetric
 106 loss function is, we need to introduce some notation. We consider that the $100\alpha\%$ quantile of the
 107 residual ϵ is the $100\alpha\%$ largest value (that is, it has $100\alpha\%$ of values smaller than it and $100(1-\alpha)\%$ of
 108 values larger than it). Quantile regression, therefore, involves finding estimates $\hat{\beta}$ where $100\alpha\%$ of
 109 the residuals are below zero, and $100(1-\alpha)\%$ are above zero. We use an indicator function I_A on the
 110 set A , as

111
$$I_A(\delta) = \begin{cases} 1 & \delta \in A \\ 0 & \delta \notin A \end{cases}$$

112 The loss function ρ_α can then be defined as follows:

113
$$\rho_\alpha(\delta) = \alpha \epsilon I_{(-\infty, 0]}(\delta) - (1 - \alpha) \epsilon I_{[0, \infty)}(\delta) \quad (1)$$

114 for any value of α between 0 and 1. Finding the values of $\hat{\beta}$ that maximize the likelihood of the
 115 quantile regression model is the same as finding the values of $\hat{\beta}$ that minimize this loss function
 116 (see Hewson, 2008). Equation (1) can be minimized by using linear programming techniques. The
 117 function qr of the quantreg R package (Koenker et al., 2018) can be used to fit a quantile regression
 118 model.

119 *3.2. The data*

120 The data set comprises a sample of 9,614 drivers with UBI coverage, which targets drivers
 121 between the ages of 18 and 35, for the whole of 2010. The variables are presented in Table 1. Age is
 122 the age of the driver at the beginning of 2010. We also have information on gender (Gender), total
 123 number of kilometers (km) driven during 2010 (Km) and its natural logarithm (Lnkm). Note that we
 124 considered the natural logarithm of Km, Lnkm, as it has been shown that distance travelled has a
 125 nonlinear effect on the risk of an accident (see Boucher et al., 2013). We also have information on the
 126 number of kilometers driven at speeds above the posted limit (Tolerkm, which is the dependent
 127 variable), percentage of km driven on urban roads (Porc_vurba) and, finally, percentage of
 128 kilometers driven at night (Porc_nocturn). All the drivers had UBI coverage throughout the whole of
 129 2010 and all the telematics variables refer to this year.

130 **Table 1.** Variable description.

Variable	Description
----------	-------------

Tolerkm	Number of kilometers driven at speeds above the posted limit during 2010.
Km	Total number of kilometers driven during 2010.
Lnkm	Logarithm of the total number of kilometers driven during 2010.
Porc_vurba	% of kilometers driven on urban roads during 2010.
Porc_nocturn	% of kilometers driven at night (between midnight and 6 am.) during 2010.
Age	Age of the driver at the beginning of 2010.
Gender	1 = Male, 0 = Female

131

132

Table 2. Descriptive statistics.

Variable	Min	1st Qu	Median	Mean	3rd Qu	Max	St. Dev.	Skewness
Tolerkm	0.00	282.40	689.20	1,398.20	1,701.60	23,500.20	1,995.37	3.64
Km	0.69	7,530.56	11,697.82	13,063.71	17,337.00	57,756.98	7,715.80	1.08
Lnkm	-0.37	8.93	9.37	9.27	9.76	10.96	0.75	-1.87
Porc_vurba	0.00	15.60	23.39	26.29	34.32	100.00	14.18	1.03
Porc_nocturn	0.00	2.48	5.31	7.02	9.84	78.56	6.13	1.67
Age	18.11	22.66	24.63	24.78	26.88	35.00	2.82	0.11

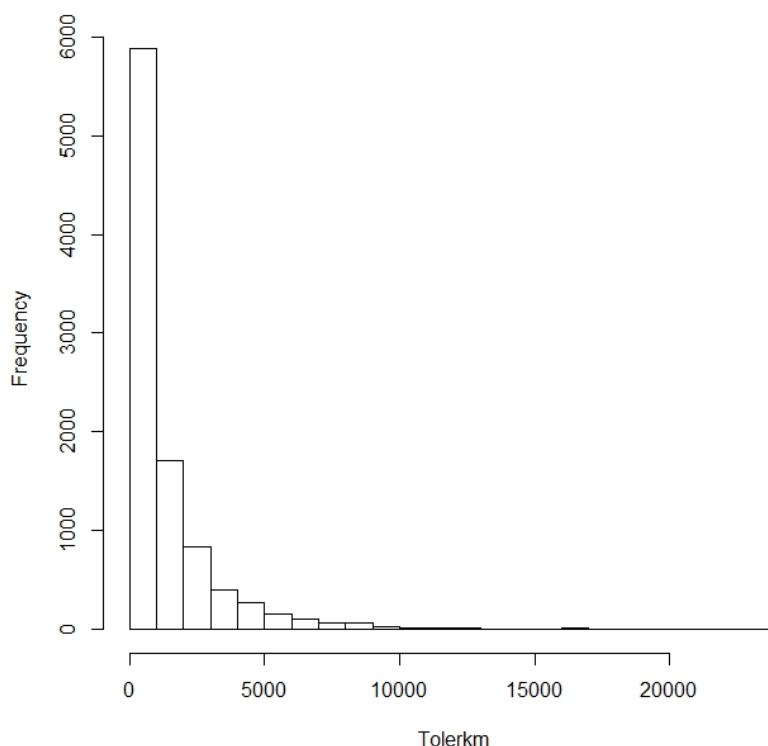
133

134 The gender distribution of the sample is 49% women and 51% men. Table 2 shows that the
 135 average age of drivers in the sample is 24.78 years. The average number of kilometers travelled
 136 during the year was 13,063.71 (standard deviation of 7,715.80). We also observe that on average
 137 drivers travel 26.29% of kilometers on urban roads and 7.02% of kilometers at night. The mean of
 138 kilometers travelled at speeds above the limit (Tolerkm, dependent variable) is 1,398.20, while its
 139 median is 689.20. Tolerkm has positive asymmetry (skewness coefficient equals 3.64); the
 140 distribution has a long tail as can be observed in Figure 1. The rest of the variables also present some
 141 degree of skewness, but not as high as Tolerkm.

142 4. Results

143 We fitted a multiple linear regression model to the variable Tolerkm, although we consider it
 144 unsuitable insofar as the dependent variable is highly asymmetric. The variable Km was included in
 145 the model as its natural logarithm (variable Lnkm), as it produced a better fit. Parameter estimates
 146 are shown in Table 3. The R-squared goodness-of-fit statistic equals 0.26.

147 All the explanatory variables have a significant effect except for Age, which is attributable to the
 148 fact that UBI policies were sold primarily to young drivers and, so, the age range in the sample is not
 149 wide. Lnkm and Porc_nocturn present positive parameter estimates, indicating that increases in the
 150 total number of kilometers driven and in the percentage of km driven at night contribute to increase
 151 the expected number of kilometers driven at speeds above the posted limits. Porc_vurba, in contrast,
 152 has the opposite effect, the higher the percentage of kilometers driven on urban roads, the lower the
 153 expected number of kilometers driven at speeds above the posted limit. Finally, gender (indicating
 154 males) has a positive parameter estimate, meaning that, on average, men drive more kilometers at
 155 speeds above the posted limit than women.



156

157

Figure 1. Histogram of the distance travelled at speeds above the limits.

158

Table 3. Parameter estimates of the linear regression model.

	Parameter estimate (p-value)
Intercept	-8082.506 (<0.0001)
Lnkm	1064.506 (<0.0001)
Porc_vurba	-21.868 (<0.0001)
Porc_nocturn	7.536 (0.0101)
Age	-1.131 (0.8565)
Gender	328.009 (<0.0001)

159

160

To fulfil the objectives identified in the first section and, at the same time, to address the strong positive asymmetry, a grid of quantile regressions with different percentiles were fitted to the data. The results of the quantile regression models are presented in Table 4. Each column shows the parameter estimates of the quantile regression at the following percentiles: 50th, 75th, 90th, 95th, 97.5th and 99th. In general, significant parameter estimates are the same as those found in the multiple linear regression model shown in Table 3. However, the results in Table 4 show that the covariates have different marginal effects on conditional quantiles depending on the estimated percentile. These changes in the parameters depending on the quantile level at which the model is specified are clearly illustrated in Figure 2 and are discussed in detail below.

161

162

163

164

165

166

167

168

169

Table 4. Parameter estimates of the quantile regression model for different percentiles.

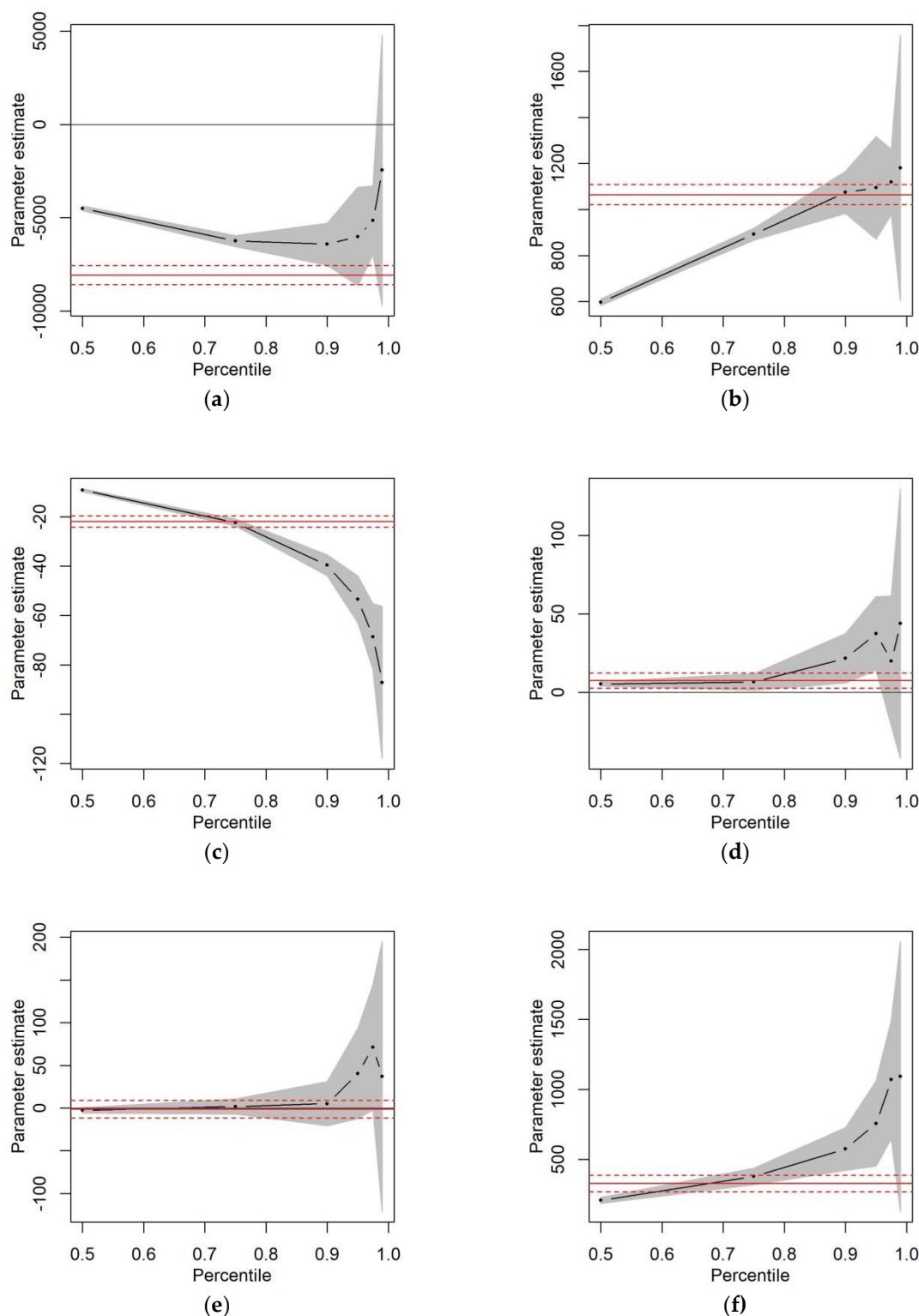
	50th percentile (p-value)	75th percentile (p-value)	90th percentile (p-value)	95th percentile (p-value)	97.5th percentile (p-value)	99th percentile (p-value)
Intercept	-4496.53 (<0.0001)	-6250.34 (<0.0001)	-6418.11 (<0.0001)	-6009.63 (<0.001)	-5137.24 (<0.0001)	-2451.17 0.5780
Lnkm	597.60 (<0.0001)	892.80 (<0.0001)	1074.66 (<0.0001)	1094.57 (<0.0001)	1119.94 (<0.0001)	1180.21 (<0.001)
Porc_vurba	-9.19 (<0.0001)	-22.26 (<0.0001)	-39.59 (<0.0001)	-53.44 (<0.0001)	-68.58 (<0.0001)	-87.12 (<0.0001)
Porc_nocturn	5.41 (<0.0001)	6.71 (0.0363)	21.76 (0.0226)	37.49 (0.0086)	20.01 (0.4266)	43.86 (0.4014)
Age	-2.56 (0.1632)	1.84 (0.7298)	5.16 (0.7419)	40.29 (0.2086)	71.28 (0.1094)	36.87 (0.7009)
Gender	206.76 (<0.0001)	377.94 (<0.0001)	574.08 (<0.0001)	755.87 (<0.0001)	1070.06 (<0.0001)	1091.38 (0.0624)

170

171 First, Table 4 shows that the percentage of kilometers driven at night presents a highly
 172 significant effect when we estimate the 50th percentile and that it remains significant – at the 5% level
 173 – but with a larger p-value, when we estimate the 75th 90th and 95th percentiles. Likewise, the effect of
 174 gender is positive and significant at the 5% significance level for all quantiles, except for the 99th
 175 percentile. In the case of the 99th percentile, only Lnkm and Porc_vurba present a significant effect,
 176 while the rest of the parameters are no longer significant at the 5% level, including the model
 177 intercept. The lack of significance may be explained by the wider confidence intervals at a 5% level
 178 of significance observed in Figure 2 for the 99th percentile.

179 Second, Table 4 and Figure 2 also show that the magnitude of the marginal effects of variables
 180 with significant parameters in the models differs depending on the level of the estimated quantile.
 181 Specifically, the marginal effect of Lnkm increases as the level of the estimated quantile increases
 182 (being equal to 597.6 and 1180.2 for the 50th and 99th percentiles, respectively). The same pattern,
 183 albeit less pronounced, is observed for the marginal effect of Porc_nocturn, which increases as the
 184 level of the estimated quantile increases (being equal to 5.41 and 37.49 for the 50th and 95th
 185 percentiles, respectively). In the case of Porc_vurba, the marginal effect is always negative, but in
 186 absolute terms it is increasing with the level of the estimated quantile (being equal to -9.19 and -87.12
 187 for the 50th and 99th percentiles, respectively). Finally, the marginal effect of gender is always positive
 188 and is increasing with the level of the estimated quantile (being equal to 206.76 and 1070.06 for the
 189 50th and 97.5th, respectively).

190 It is interesting to compare the results of the quantile regression for the 75th and 95th percentiles.
 191 Thus, the model intercept is quite similar in both models. A comparison of the marginal effect of
 192 Lnkm shows that a one-unit increase in Lnkm (equivalent to multiplying Km by 2.718), increases
 193 892.80 km the 75th percentile of the number of kilometers driven at speeds above the posted limit,
 194 while the 95th percentile increases 1094.57 km, ceteris paribus. In the case of Porc_vurba, increasing
 195 the percentage of kilometers driven in urban areas by one percentage unit reduces 22.26 km the 75th
 196 percentile of the number of kilometers driven at speeds above the posted limit, and 53.44 km the 95th
 197 percentile, ceteris paribus. On the other hand, being a man increases 377.94 km the 75th percentile of
 198 the number of kilometers driven at speeds above the posted limit and 755.87 km the 95th percentile,
 199 ceteris paribus. Finally, increasing the percentage of kilometers driven at night by one percentage
 200 unit increases 6.71 km the 75th percentile of the number of kilometers driven at speeds above the
 201 limit and 37.49 km the 95th percentile, ceteris paribus.



202

203
204
205

Figure 2. Parameter estimates at different levels of the quantile. Confidence intervals at a 5% level of significance. The horizontal red line represents the corresponding parameter estimate in a classical linear regression model. (a) Intercept; (b) lnkm; (c) porc_vurba; (d) porc_nocturn; (e) age; (f) gender.

206
207
208

Finally, Table 5 illustrates how the model can be implemented for predictive purposes. Let us consider three drivers with different characteristics, each of whom has driven exactly 600 km above the posted speed limit. Compared to the general population, and without conditioning on specific

209 characteristics, these three drivers present a distance driven at excess speeds below the median
 210 (689.20 km) and, as such, can be considered relatively safe drivers. However, the key is to calculate
 211 the percentile risk level of the response variable given the specific characteristics of each driver.
 212 Indeed, it seems obvious that a distance of 600 km driven above the posted speed limit does not
 213 denote the same level of risk for an urban driver (who probably does a lot of driving in congested
 214 areas), as it does for a driver who drives largely outside the city limits. Most notably, the risk
 215 depends on the total distance driven. If we use the grid of different percentiles (Table 4) to make our
 216 predictions, it can be seen that for a distance of 600 km driven above the speed limit, driver 1 lies at
 217 the 50th percentile, indicative of median risk. In contrast, driver 2 lies at the 75th percentile and, so,
 218 has a higher risk score when taking his driving characteristics into account. And, finally, driver 3 lies
 219 at the 90th percentile, indicative of a very high risk.

220 **Table 5.** Estimates of the conditional percentiles for drivers with different characteristics, each of
 221 whom has driven 600 km above the posted speed limit.

	Driver 1	Driver 2	Driver 3
Km	12,000	8,000	5,500
Porc_vurba	80	75	80
Porc_noctur	14	11	10.5
Age	25	25	25
Gender	1	1	1
Estimated conditional percentile ¹	50 th	75 th	90 th

222 ¹ The estimated conditional percentile is found by locating the quantile level that produces a response equal to
 223 600 km, given the exogenous characteristics (total kilometers driven, percent urban driving, percent nighttime
 224 driving, age and gender) in the three example columns.

225 5. Conclusions

226 We have shown that the distribution of the distance driven above the posted speed limit is not
 227 homogeneous with respect to certain driver characteristics. As such, quantile regression is an
 228 interesting tool for analyzing risk when telematics information is available. On the assumption that
 229 quantiles of distance driven above the speed limit represent a valuable risk measure, our model
 230 allows us to identify the factors associated with higher quantile values and, therefore, with risky
 231 drivers. This information is valuable in terms of providing preventive early warnings.

232 We also find that the impact of each additional kilometer driven is much greater in higher
 233 quantiles than in lower quantiles. Note that we specify a log-linear relationship between total
 234 distance driven and distance driven above the posted speed limits, which means there is a
 235 decreasing marginal effect on the latter as total distance increases.

236 One limitation of our analysis is that the degree to which drivers exceeded the posted limit was
 237 not recorded by the telematics equipment; thus, we are unable to examine the magnitude of the
 238 speed violation.

239 We believe that UBI will soon develop into a scheme that can improve aspects of both service
 240 and protection in the sector. As insurance services are reinvented, risk scores and the identification
 241 of potential niches of drivers with risky patterns provide a new way of keeping drivers better
 242 informed and of promoting safe driving. Models such as those presented in this paper should enable
 243 insurers to design predictive models of driver risk and fix personalized indicators. In the application
 244 presented here, it could be argued that excess speed is the only feature a driver can modify, given
 245 that all other factors, including age, gender, total distance driven, and percentages of nighttime and
 246 urban driving, are dictated by external circumstances such as distance from home to work place, and
 247 by personal or professional obligations. This means the quantile regression model would predict the
 248 total distance driven above the posted speed limit percentile, given that particular set of external
 249 circumstances and, thus, it would allow the percentile risk score of the driver to be calculated by
 250 controlling for those circumstances and not for the whole population of drivers. Estimating a

251 driver's rank with regard to distance driven above the posted speed limit is personalized
252 information that should constitute interesting feedback for policy holders. Indeed, safety measures
253 and even telematics-based insurance should segment the population of drivers accordingly. Given
254 that speed is the primary cause of severe accidents, these results should translate into lower
255 insurance premiums for those who present a lower risk. In other words, if quantile-based behavior is
256 considered rather than mathematical expectations of accident severity, the calculation of the
257 premium to be paid should be improved. However, we leave questions as to how this rank might be
258 converted into an insurance price and how information of a driver's behavior might impact careful
259 driving for further research.

260 **Author Contributions:** Conceptualization, M. Alcañiz and L. Bermúdez; methodology, M. Guillen and A.M.
261 Pérez-Marín.; software, Ana M. Pérez-Marín and M. Alcañiz; validation, M. Alcañiz; formal analysis, Ana M.
262 Pérez-Marín; investigation, M. Guillen; resources, M. Guillen; data curation, L. Bermúdez; writing—original
263 draft preparation, Ana M. Pérez-Marín and L. Bermúdez; writing—review and editing, L. Bermúdez;
264 visualization, Pérez-Marín; supervision, M. Guillen; project administration, M. Guillen; funding acquisition, M.
265 Guillen.

266 **Funding:** Support from the Spanish Ministry and ERDF grant ECO2016-76203-C2-2-P is gratefully acknowledged. MG
267 gratefully acknowledges financial support from ICREA under the ICREA Academia programme.

268 **Conflicts of Interest:** The authors declare no conflict of interest.

269 **References**

270 (Ayuso et al., 2014) Ayuso, Mercedes, Guillen, Montserrat, and Pérez-Marín, Ana Maria. 2014. Time and
271 distance to first accident and driving patterns of young drivers with pay-as-you-drive insurance. *Accident
272 Analysis and Prevention* 73: 125–31. DOI: <https://doi.org/10.1016/j.aap.2014.08.017>.

273 (Ayuso et al., 2016a) Ayuso, Mercedes, Guillen, Montserrat, and Pérez-Marín, Ana Maria. 2016a. Telematics and
274 gender discrimination: some usage-based evidence on whether men's risk of accident differs from
275 women's. *Risks* 4:2: 10. DOI: <https://doi.org/10.3390/risks4020010>.

276 (Ayuso et al., 2016b) Ayuso, Mercedes, Guillen, Montserrat, and Pérez-Marín, Ana Maria. 2016b. Using GPS
277 data to analyse the distance travelled to the first accident at fault in pay-as-you-drive insurance.
278 *Transportation Research Part C Emerging Technologies* 68: 160–7. DOI: <https://doi.org/10.1016/j.trc.2016.04.004>.

279 (Boucher et al., 2013) Boucher, Jean-Philippe, Pérez-Marín, Ana Maria, and Santolino, Miguel. 2013.
280 Pay-as-you-drive insurance: the effect of the kilometers on the risk of accident. *Anales del Instituto de
281 Actuarios Españoles, 3ª Época* 19: 135–54.

282 (Dissanayake and Lu, 2002) Dissanayake, Susanda, and Lu, Jian John. 2002. Factors influential in making an
283 injury severity difference to older drivers involved in fixed object-passenger car crashes. *Accident Analysis
284 and Prevention* 34: 5: 609–18. DOI: [https://doi.org/10.1016/S0001-4575\(01\)00060-4](https://doi.org/10.1016/S0001-4575(01)00060-4).

285 (Gao et al., 2019) Gao, Guangyuan, Meng, Shengwang, and Wüthrich, Mario V. 2019. Claims frequency
286 modeling using telematics car driving data. *Scandinavian Actuarial Journal* 2019: 2: 143–62. DOI:
287 <https://doi.org/10.1080/03461238.2018.1523068>.

288 (Gao and Wüthrich, 2019) Gao, Guangyuan, and Wüthrich, Mario V. 2019. Convolutional neural network
289 classification of telematics car driving data. *Risks* 7: 1: 6. DOI: <https://doi.org/10.3390/risks7010006>.

290 (Guillen et al., 2019) Guillen, Montserrat, Nielsen, Jens Perch, Ayuso, Mercedes, and Pérez-Marín, Ana Maria.
291 2019. The use of telematics devices to improve automobile insurance rates. *Risk Analysis*, 39: 3: 662–72. DOI:
292 <https://doi.org/10.1111/risa.13172>.

293 (Hewson, 2008) Hewson, Paul James, 2008. Quantile regression provides a fuller analysis of speed data. *Accident
294 Analysis and Prevention* 40: 502–10. DOI: [10.1016/j.aap.2007.08.007](https://doi.org/10.1016/j.aap.2007.08.007).

295 (Jun et al., 2007) Jun, Jungwook, Ogle, Jennifer, and Guensler, Randall. 2007. Relationships between crash
296 involvement and temporal-spatial driving behavior activity patterns: use of data for vehicles with global
297 positioning systems. *Transportation Research Record* 2019: 246–55.

298 (Jun et al., 2011) Jun, Jungwook, Guensler, Randall, and Ogle, Jennifer. 2011. Differences in observed speed
299 patterns between crash-involved and crash-not-involved drivers: application of in-vehicle monitoring
300 technology. *Transportation Research Part C Emerging Technologies* 19: 4: 569–78. DOI:
301 <https://doi.org/10.1016/j.trc.2010.09.005>.

302 (Koenker and Hallock, 2001) Koenker, Roger, and Hallock, Kevin. 2001. Quantile regression. *Journal of Economic*
303 *Perspectives* 15: 143–56. DOI: 10.1257/jep.15.4.143.

304 (Koenker et al., 2018) Koenker, Roger, Portnoy, Stephen, Ng, Pin Tian, Zeisleis, Achim, Grosjean, Philip, and
305 Ripley, Brian D. 2018. Package ‘quantreg’. R Package Version 5.38, <https://cran.r-project.org/web/packages/quantreg/quantreg.pdf>.

306 (Ossiander and Cummings, 2002) Ossiander, Eric M., and Cummings, Peter. 2002. Freeway speed limits and
307 traffic fatalities in Washington State. *Accident Analysis and Prevention* 34: 13–8. DOI:
308 [https://doi.org/10.1016/S0001-4575\(00\)00098-1](https://doi.org/10.1016/S0001-4575(00)00098-1).

309 (Paefgen et al., 2014) Paefgen, Johannes, Staake, Thorsten, and Fleisch, Elgar. 2014. Multivariate exposure
310 modeling of accident risk: insights from pay-as-you-drive insurance data. *Transportation Research Part A*
311 *Policy and Practice* 61: 27–40. DOI: <https://doi.org/10.1016/j.tra.2013.11.010>.

312 (Pérez-Marín et al., 2019) Pérez-Marín, Ana María, Ayuso, Mercedes, and Guillen, Montserrat. 2019. Do young
313 insured drivers slow down after suffering an accident?. *Transportation Research Part F: Traffic Psychology and*
314 *Behaviour* 62: 690–99. DOI: <https://doi.org/10.1016/j.trf.2019.02.021>.

315 (Pérez-Marín and Guillen, 2019) Pérez-Marín, Ana María, and Guillen, Montserrat. 2019. Semi-autonomous
316 vehicles: Usage-based data evidences of what could be expected from eliminating speed limit violations.
317 *Accident Analysis and Prevention* 123: 99–106. DOI: <https://doi.org/10.1016/j.aap.2018.11.005>.

318 (Pilkington and Kinra, 2005) Pilkington, Paul, and Kinra, Sanjay. 2005. Effectiveness of speed cameras in
319 preventing road traffic collisions and related casualties: systematic review. *BMJ* 330: 7487: 331–334. DOI:
320 <https://doi.org/10.1136/bmj.38324.646574.AE>.

321 (Taylor et al., 2002) Taylor, M., Baruya, A., and Kennedy, J. 2002. The Relationship between speed and accidents
322 on rural single-carriageway roads. *TRL Report TRL511*. TRL.

323 (Vernon et al., 2004) Vernon, Donald, Cook, Lawrence J., Peterson, Katherine J., and Dean, J. Michael. 2004.
324 Effect of the repeal of the national maximum speed limit law on occurrence of crashes, injury crashes, and
325 fatal crashes on Utah highways. *Accident Analysis and Prevention* 36: 223–9. DOI:
326 [https://doi.org/10.1016/S0001-4575\(02\)00151-3](https://doi.org/10.1016/S0001-4575(02)00151-3).

327 (Wilson et al., 2006) Wilson Cecilia, Willis Charlene, Hendrikz Joan K., and Bellamy Nicholas. 2006. Speed
328 enforcement detection devices for preventing road traffic injuries. *Cochrane Database of Systematic Reviews*
329 Issue 2. Art. No.: CD004607, doi:10.1002/14651858.CD004607.pub2.

330 (Yu and Abdel-Aty, 2014) Yu, Rongjie, and Abdel-Aty, Mohamed. 2014. Using hierarchical Bayesian binary
331 probit models to analyze crash injury severity on high speed facilities with real-time traffic data. *Accident*
332 *Analysis and Prevention* 62: 161–7. DOI: <https://doi.org/10.1016/j.aap.2013.08.009>.

333 (Yu et al., 2003) Yu, Keming, Lu, Zudi, and Stander, Julian. 2003. Quantile regression: applications and current
334 research areas. *Journal of the Royal Statistical Society D* 52: 331–50.

335