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Abstract 

In the present work, a novel and the robust computational investigation is carried out to estimate 

solubility of different acids in supercritical carbon dioxide. Four different algorithms such as radial 

basis function artificial neural network, Multi-layer Perceptron (MLP) artificial neural network 

(ANN), Least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference 

system (ANFIS) are developed to predict the solubility of different acids in carbon dioxide based 

on the temperature, pressure, hydrogen number, carbon number, molecular weight, and acid 

dissociation constant of acid. In the purpose of best evaluation of proposed models, different 

graphical and statistical analyses and also a novel sensitivity analysis are carried out. The present 

study proposed the great manners for best acid solubility estimation in supercritical carbon 

dioxide, which can be helpful for engineers and chemists to predict operational conditions in 

industries.  

 

Keywords: Supercritical carbon dioxide, machine learning modeling, acid, artificial intelligence, 

solubility, artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), 

Least-squares support-vector machine (LSSVM), Multi-layer Perceptron (MLP), engineering 

applications of artificial intelligence  
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1 Introduction  

In the recent years, supercritical fluid has become one of the interests of chemical engineers and 

chemists as a novel and extensive applicable technology. The synthesis and generating of 

nanomaterials and extraction process of different materials are the popular applications of 

supercritical fluids (Inomata, Honma et al. 1999, Stassi, Bettini et al. 2000, Ohde, Hunt et al. 2001, 

Celso, Triolo et al. 2002, Üzer, Akman et al. 2006, Munshi and Bhaduri 2009, Nahar and Sarker 

2012, Zhang, Heinonen et al. 2014, Knez, Cör et al. 2017, Zhao, Zhang et al. 2017, Belghait, Si-

Moussa et al. 2018, Daryasafar, Daryasafar et al. 2018, Gao, Abdi-khanghah et al. 2018). One of 

the supercritical fluids which have wide applications in the extraction of various metals from solid 

and liquid phases is carbon dioxide (Erkey 2000, Sunarso and Ismadji 2009, Lin, Liu et al. 2014). 

Due to non-flammability, nontoxicity, low cost, and critical points (304.2 K and 7.38 MPa) of 

carbon dioxide, the supercritical carbon dioxide becomes one of the interesting and applicable 

supercritical fluids in industries (Ghaziaskar and Nikravesh 2003, Bovard, Abdi et al. 2017). The 

viscosity and density of supercritical carbon dioxide are known as two important transport 

properties of the fluids which are affected by pressure and temperature. Another dominant thermos 

physical property of supercritical carbon dioxide is solubility of different materials in supercritical 

carbon dioxide which is a function of various factors such as polarity, molecular weight, pressure, 

temperature, and vapor pressure (Huang, Chiew et al. 2005, Ghaziaskar and Kaboudvand 2008). 

One types of the materials which have a solubility in supercritical carbon dioxide are acids, the 

nanofluoropentanoic acid which is known as one type of perfluorocarboxylic acids, has extensive 

applications in the production of paints additives, polymers, foams, and stain repellents but 

because of their high ability instability they are harmful to environment (Richter and Dibble 1983, 

Moody and Field 1999, Hintzer, Löhr et al. 2004, Fei and Olsen 2011, Hubbard, Guo et al. 2012, 

Dartiguelongue, Leybros et al. 2016, Hintzer, Juergens et al. 2016). Adrien Dartiguelongue and 

coworkers studied solubility of perfluoropentanoic acid in supercritical carbon dioxide in the wide 

range of temperature and pressure and also proposed some density based models to predict 

solubility in terms of density of supercritical fluids (Dartiguelongue, Leybros et al. 2016). Gurdial 

et al. constructed dynamic setup to study solubility of o-, m- and p-hydroxybenzoic acid in the 

supercritical carbon dioxide in the wide range pressure of 80-205 mbar and temperature range of 

308.15-328.15 K and correlated the measured solubility as a function of density (Gurdial and 

Foster 1991). Kumoro measured the solubility of 2R,3β-dihydroxyurs-12-en-28-oic acid which is 

called Corosolic acid dynamically in a different range of pressure 8 to 30 MPa and five different 

temperatures of 308.15, 313.15, 323.15, and 333.15 K. Kumoro used various density based models 

to correlate the experimental data (Kumoro 2011). 
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Sahihi et al. measured the solubility of Maleic acid in supercritical carbon dioxide by utilization 

of static experimental setup. The measured data belongs to Maleic acid in pressure range of 7 to 

300 bar and temperature of 348.15 K (Sahihi, Ghaziaskar et al. 2010). Ghaziaskar and coworkers 

used a continuous flow set up to study solubility of tracetin, diacentin and acetic acid in 

supercritical carbon dioxide in the pressure range of 70 to 180 bar and various temperature of 313, 

333 and 348 K and they also compared the obtained solubilities for different acids (Ghaziaskar, 

Afsari et al. 2017). Helena Sovova adjusted the Adachi-Lu equation based on the solubility of 

Ribes nigrum (blackcurrant) and Vitis vinifera (grape-vine) in supercritical carbon dioxide. They 

concluded the Adachi-Lu equation has enough accuracy in forecasting solubility of triglycerides 

in carbon dioxide (Sovova, Zarevucka et al. 2001). 

The issue of prediction of various acids solubility in supercritical carbon dioxide and phase 

equilibrium investigation of supercritical carbon dioxide and different materials are the important 

topics in chemical engineering research. According to the hardships of experimental studies such 

as special tools and procedure which are needed, in the present work, the mathematical 

investigation is considered as a great solution for these problems (Anitescu, Atroshchenko et al. 

2019, Guo, Zhuang et al. 2019, Rabczuk, Ren et al. 2019, Zarei, Razavi et al. 2019). In this paper 

four different algorithms, Radial basis function artificial neural network (RBF-ANN), Multi-layer 

Perceptron artificial neural network (MLP-ANN), Least squares support vector machine 

(LSSVM) and Adaptive neuro-fuzzy inference system (ANFIS) are developed to predict the 

solubility of different types of acid in supercritical carbon dioxide based on the various parameters 

such as structure of acid, pressure and temperature. 

 

2 Methodology 

         2.1 Experimental Data Gathering 

The dominant purpose of present paper is development of accurate and simple models to forecast 

solubility of different acids in supercritical carbon dioxide. Due to this, the required actual data 

for training and testing phases of models were assembled from the reliable source existed in 

literature (Gurdial and Foster 1991, Sovova, Zarevucka et al. 2001, Sparks, Hernandez et al. 2007, 

Tian, Jin et al. 2007, Sparks, Estévez et al. 2008, Kumoro 2011, Dartiguelongue, Leybros et al. 

2016). This collection of data contains the 188 acid solubility data points in terms of pressure, 

temperature, acid dissociation constant, molecular weight, number of carbon and hydrogen of acid. 

The details of data collection are reported in Tab. S1 and Tab. S2. This details include acid name, 

acid dissociation constant, pressure and temperature ranges and number of utilized data points for 

each acid. Also, for clarification of this experimental dataset, the structure, linear formula and 
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molecular weight of utilized acids are presented in Tab. S3. These acids include 

Perfluoropentanoic acid, o-Hydroxybenzoic Acid, Corosolic Acid, Maleic Acid, Ferulic Acid, 

Azelaic Acid, p-aminobanzoic acid and Nonanioc acid. 

 

2.2 Artificial neural networks 

Artificial neural networks have amazing similarities to the performance and structure of neuron 

units in the brain system (Smith 1993, Baş and Boyacı 2007). These computational blocks 

construct different types of layer such as input, output and hidden layers. In the layers, there are 

transfer functions or activation function which organize the process of training in the algorithm. 

Each neuron has specific weight and bias values which control the optimization process. Artificial 

neural network has ability of tracing a nonlinear form relationship between input and output 

parameters. Due to this ability, artificial neural networks have widespread application in different 

industries and sciences. 

Artificial neural networks can be classified in different forms such as a recurrent neural network 

(RNN), radial basis function and multilayer perceptron (Movagharnejad, Mehdizadeh et al. 2011, 

Abdi-Khanghah, Bemani et al. 2018, Zamen, Baghban et al. 2019). In the present work, the MLP 

and RBF network are utilized. 

 

2.3 Least squares support vector machine 

Vapnik organized support vector machine based on statistical learning theory (Vapnik 1998). This 

computational intelligence can be used for regression and classification purposes. However, there 

are many advantages to this method but there is a hardship in its computational procedure because 

of quadratic programming. The least squares SVM (LSSVM) is proposed as a novel type of SVM 

to solve this problem. This novel approach organized linear equations for computation and 

optimization (Cortes and Vapnik 1995, Suykens and Vandewalle 1999, Suykens, Vandewalle et 

al. 2001, Zamen, Baghban et al. 2019). 

By considering a dataset of (xi,yi)n, the LSSVM regression prediction is utilized to estimate a 

function, where xi and yi are known as input and target parameters and n represent the number of 

data which utilized in training phase(Wang, Zhang et al. 2005). The linear regression is formulated 

such as following: 

𝑦 = 𝜔𝑇φ(x) + b                                                                                                                       Eq. 

(1)  

Where φ(x) denotes a nonlinear function that has different forms such as polynomial, linear, 

sigmoid and radial basis functions. Also, ω and b denote the weights and determined constant 
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coefficient in training process. A new optimization problem can be defined based on LSSVM 

approach (Baghban, Bahadori et al. 2016, Baghban, Namvarrechi et al. 2016, Ahmadi, Baghban 

et al. 2019): 

𝑚𝑖𝑛

𝜔,𝑏,𝑒
𝐽 (𝜔, 𝑒) =

1

2
𝜔𝑇𝜔 +

1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1                                                                                         Eq. 

(2) 

Which is related to the below constraints: 

𝑦𝑘 = 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘                    k=1,2,…,N                                                                    Eq. 

(3) 

The Lagrangian equation is constructed to solve the optimization problem: 

L(ω, b, e, α) = 𝐽 (𝜔, 𝑒) − ∑ 𝛼𝑘{𝜔𝑇𝜑(𝑥𝑘)𝑁
𝑘=1 + 𝑏 + 𝑒𝑘 − 𝑦𝑘}                                                 Eq. 

(4)                      

Where ϒ and ek are known as regularization parameter and regression error. The αk represent the 

support value. To solve the above problem, the above equation is differentiated with respect to the 

different parameters: 

𝜕𝐿(ω,b,e,α)

𝜕𝜔
= 0 → 𝜔 = ∑ 𝛼𝑘

𝑁
𝑘=1 𝜑(𝑥𝑘)                                                                                     Eq. (5) 

𝜕𝐿(ω,b,e,α)

𝜕𝑏
= 0 → ∑ 𝛼𝑘

𝑁
𝑘=1 = 0                                                                                                 Eq. (6) 

𝜕𝐿(ω,b,e,α)

𝜕𝑒𝑘
= 0 → 𝛼𝑘 = 𝛾𝑒𝑘,     k=1,2,…,N                                                                               Eq. 

(7) 

𝜕𝐿(ω,b,e,α)

𝜕𝛼𝑘
= 0 → 𝑦𝑘 = 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘       k=1,2,…,N                                                    Eq. (8) 

Karush– Kuhn–Trucker matrix can be obtained by elimination of ω and e (Cortes and Vapnik 

1995, Baylar, Hanbay et al. 2009, Mehdizadeh and Movagharnejad 2011): 

[
0 1𝑣

𝑇

1𝑣 𝛺 + 𝛾−1𝐼
] [𝑏

𝛼
] = [

0
𝑦

]                                                                                                      Eq. (9) 

where 𝑦 = [𝑦1 … 𝑦𝑁]𝑇, 𝛼 = [𝛼1 … 𝛼𝑁]𝑇, 1𝑁 = [1 … 1]𝑇, and I represents the identity matrix. 𝛀kl 

is 𝜑(𝑥𝑘)𝑇𝜑(𝑥𝑙) = 𝐾(𝑥𝑘 , 𝑥𝑙). K(xk,xl) is known as kernel function which can be in different forms 

of linear, polynomial and radial basis function forms(Gunn 1998). The estimating function form 

of LSSVM algorithm can be expressed as following formulation(Muller, Mika et al. 2001, 

Rostami, Baghban et al. 2019): 

𝑦(𝑥) = ∑ 𝛼𝑘
𝑁
𝑘=1 𝐾(𝑥, 𝑥𝑘) + 𝑏                                                                                                Eq. (10) 
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2.4 Adaptive neuro-fuzzy inference system (ANFIS) 

Adaptive neuro-fuzzy inference system which is called ANFIS algorithm, in brief, has five 

different layers. The aforementioned approach was developed by Jang and Sun(Jang, Sun et al. 

1997). The hybrid learning approach and back propagation are known as fundamentals of training 

of conventional ANFIS algorithm. The ANFIS algorithm was born base on fuzzy logic and neural 

network advantages and also the different evolutionary methods such as Imperialist Competitive 

Algorithm (ICA), Particle Swarm Optimization (PSO) and Genetic algorithm (GA) can be used to 

reach the optimal structure of ANFIS algorithm(Afshar, Gholami et al. 2014, Khosravi, Nunes et 

al. 2018, Razavi, Sabaghmoghadam et al. 2019). The ANFIS structure is demonstrated in Fig. 1. 

As shown there are two input variables and one output. 

 

 

Figure 1: Typical construction of ANFIS approach 

 

In the first layer, the linguistic terms are built based on input data. The Gaussian membership 

function is applied to organize these linguistic terms. The Gaussian function can be shown as 

following formulation (Ahangari, Moeinossadat et al. 2015, Bahadori, Baghban et al. 2016): 

𝑂𝑖
1 = 𝛽(𝑋) = 𝑒𝑥𝑝

(−
1

2
 
(𝑋−𝑍)2

𝜎2 )
                                                                                                  Eq. (11) 

Where Z and σ denote the Gaussian parameters. 

The next layer, shown as Π multiplies the incoming signals and contains the weighted terms which 

are related to rules: 

𝑂𝑖
2 = 𝑊𝑖 = 𝛽𝐴𝑖(𝑋). 𝛽𝐵𝑖(𝑋)                                                                                                    Eq. (12) 

The third layer the shown as NN, it averages of determined weights are evaluated such as the 

following formulation: 
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𝑂𝑖
3 =

𝑊𝑖

∑ 𝑊𝑖
                                                                                                                               Eq. (13) 

Then in the next layer, the average weight values are multiplied to the related function such as 

below: 

𝑂𝑖
4 = 𝑊𝑖

̅̅ ̅𝑓𝑖 = 𝑊𝑖
̅̅ ̅(𝑚𝑖𝑋1 + 𝑛𝑖 𝑋2 + 𝑟𝑖)                                                                                     Eq. (14) 

Where, m, n, and r represent the resulting indexes.  

At last, the fifth layer consists of the summation of previous layer outputs: 

𝑂𝑖
5 = 𝑌 = ∑ 𝑊𝑖

̅̅ ̅𝑓𝑖𝑖 = 𝑊1
̅̅ ̅̅ 𝑓1 + 𝑊2

̅̅ ̅̅ 𝑓2 =
∑ 𝑊𝑖𝑓𝑖

∑ 𝑊𝑖
                                                                           Eq. 

(15) 

2.5 Particle swarm optimization (PSO) 

The combination of random probability distribution approach and generation of the population 

constructed the particle swarm optimization algorithm. Eberhart et al. introduced the PSO 

algorithm that comes from the social behavior of birds and developed it to solve nonlinear function 

optimization problems (Kennedy 2010). This strategy has special similarities with other 

optimization approach such as genetic algorithm which is constructed base on random solution 

population. Each particle can be known as a probable solution of problem. A random population 

of particle created in search space to relate in optimum system. Pbest is known as the best solution 

which can obtained from this strategy for a particle. Also gbest represents the global best solution 

determined by swarm. The particle move in the space by time iterations and the next iteration 

velocity is determined by using gbest , Pbest and current velocity (Eberhart and Kennedy 1995). The 

P'th particle can be determined as follow: 

𝑋𝑝𝑑
𝑖𝑡𝑒𝑟+1 = 𝑋𝑝𝑑

𝑖𝑡𝑒𝑟 + 𝑉𝑝𝑑
𝑖𝑡𝑒𝑟+1                                                                                                              Eq. 

(16) 

The particle velocity is updated by the following expression: 

𝑣𝑖𝑑(𝑡 + 1) = 𝑤𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡,𝑖𝑑(𝑡) − 𝑋𝑖𝑖𝑑(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡,𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))                      Eq. 

(17) 

w, c, and r are inertia weight, learning rate and random number respectively (Haratipour, Baghban 

et al. 2017). 

 

3 Results and discussion  

In the present study, the determined structure of MLP-ANN algorithm utilizes log-sigmoid and 

linear activation functions the hidden and output layers respectively. By utilization of trial and 

error, the optimum number of neurons in hidden layers is determined as 7 to reach the best 
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structure of MLP-ANN algorithm. The performance of Levenberg Marquardt training of MLP-

ANN algorithm based on the mean square error is shown in Fig. 2. 

 

 

Figure 2: Trained MLP-ANN model by Levenberg Marquardt algorithm 

 

 In the RBF-ANN algorithm, the radial basis function (RBF) is utilized for hidden layers. 

According to information in the literature, the hidden layer neurons for RBF-ANN can be 

supposed one-tenth of training data points. The training process of RBF-ANN algorithm base on 

MSE has been reported in Fig. 3.  
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Figure 3: Trained RBF-ANN approach by Levenberg Marquardt algorithm 

 

 In this work, particle swarm optimization approach is applied to train the best structure of ANFIS 

algorithm. Fig. 4 demonstrates the gained root mean squared error (RMSE) of estimated and 

experimental acid solubility values in training step.  
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Figure 4: Performance of trained ANFIS model 

 

The optimum structure of ANFIS can be recognized by the RMSE value of 0.003 after 1000 of 

iteration steps. Trained membership functions of proposed ANFIS model are also shown in Fig. 5 

for each cluster.  
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Figure 5: Trained membership function parameters 

 

Figure 6: Schematic demonstration of trained LSSVM algorithm 
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The RBF kernel function due to its high degree of performance is utilized to construct the LSSVM 

algorithm. The LSSVM algorithm has two tuning parameters, σ2 and ϒ which are determined by 

utilizing PSO algorithm. The schematic demonstration of LSSVM algorithm is depicted in Fig. 6. 

The details of predicting models are summarized in Tab. 1. These details can be helpful in 

development of models for prediction of acid solubility in carbon dioxide. 

 

Table 1: Details of proposed models 

Type comment/val

ue 

Type comment/val

ue 

LSSVM ANFIS 

Kernel function RBF Membership function Gaussian 

σ
2 0.80321 No. of membership function 

parameters 

112 

ϒ 12893.2264 No. of clusters 8 

Number of data utilized 

for training 

141 Number of data utilized for 

training 

141 

Number of data utilized 

for testing 

47 Number of data utilized for 

testing 

47 

Population size 85 Population size 50 

Iteration 1000 Iteration 1000 

C1 1 C1 1 

C2 2 C2 2 
 

MLP-ANN RBF-ANN 

No. input neuron layer 6 No. input neuron layer 6 

No. hidden neuron layer 8 No. hidden neuron layer 50 

No. output neuron layer 1 No. output neuron layer 1 

Hidden layer activation 

function 

Sigmoid Hidden layer activation 

function 

RBF 

output layer activation 

function 

linear output layer activation function linear 

Number of data utilized 

for training 

141 Number of data utilized for 

training 

141 
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Number of data utilized 

for testing 

47 Number of data utilized for 

testing 

47 

Number of max iteration 1500 Number of max iteration 50 

 

 

In order to show the performance of proposed models in prediction of solubility of different acids, 

regression plots of RBF-ANN, MLP-ANN, ANFIS and LSSVM algorithms are depicted in Fig. 7 

to compare the determined and actual solubility values. Based on these plots, the surprising fits 

for the predicting algorithms are obtained. Also, the predicted acid solubility data for proposed 

models are demonstrated along with the corresponding actual acid solubility values in Fig. S1. It 

can be observed that the model's output solubility values have excellent agreement with actual 

solubility values. Another graphical evaluation method is demonstration of relative error between 

predicted and experimental acid solubility in supercritical carbon dioxide. Fig. S2 shows the 

percentage of absolute error for the different predicting algorithm. The percentages of absolute 

error place under 1.5 percent for all developed algorithms, which expresses the acceptable degree 

of accuracy in prediction of acid solubility. 
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Train: y = 1.005x + 1E-05, R² = 0.9993

Test: y = 0.9903x - 2E-05, R² = 0.9982
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Figure 7: Regression plots obtained for different models 
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Furthermore, in order to clarify the performance of predicting algorithms, the statistical analysis 

is required so the coefficients of determination (R2), average absolute deviation (AAD), Mean 

squared errors (MSEs) and Standard deviations (STDs) are determined such as following:  

R2 = 1 −
∑ (Xi

actual−Xi
predicted

)2N
i=1

∑ (Xi
actual−Xactual)2N

i=1

                                                                                             Eq. 

(18) 

𝐴𝐴𝐷 =  
1

𝑁
∑ |𝑋𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
− 𝑋𝑖

𝑎𝑐𝑡𝑢𝑎𝑙|𝑁
𝑖=1                                                                                      Eq.(19) 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑋𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑁

𝑖=1                                                                                   Eq. 

(20) 

𝑆𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = (
1

𝑁−1
∑ (𝑒𝑟𝑟𝑜𝑟 − 𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1 )0.5                                                                           Eq. 

(21) 

The R2, AD, MSE and STD values of different algorithms are summarized in Tab. 2. According 

to these results, the LSSVM model has the greatest ability in forecasting acid solubility. The 

determined R2 values for LSSVM is equal to 0.998 and 0.999 in train and test set, respectively. 

Furthermore it's RMSE, MSE and AAD parameters are 0.000527, 2.77875E-07, and 0.0179, 

respectively. According to these analyses LSSVM algorithm is known as the best predictor for 

prediction of solubility of different acids. 

 

Table 2: Statistical analyses of models 

Model Set  MSE RMSE R
2
 STD AAD (%) 

LSSVM Train 5.72159E-07 0.000756 0.998 0.0007 0.0269 

Test 1.7978E-07 0.000424 0.999 0.0004 0.0149 

Total 2.77875E-07 0.000527 0.999 0.0005 0.0179 

ANFIS Train 5.79633E-06 0.002408 0.975 0.0022 0.1093 

Test 1.00976E-05 0.003178 0.965 0.0027 0.1677 

Total 9.02227E-06 0.003004 0.967 0.0026 0.1531 

MLP-ANN Train 3.23782E-06 0.001799 0.987 0.0017 0.0756 

Test 1.44839E-06 0.001203 0.995 0.0010 0.0600 

Total 1.89575E-06 0.001377 0.993 0.0012 0.0639 

RBF-ANN Train 2.33037E-06 0.001527 0.986 0.0013 0.0827 

Test 1.61993E-06 0.001273 0.995 0.0010 0.0779 

Total 1.79754E-06 0.001341 0.993 0.0011 0.0791 
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In addition to previous statistical indexes, there is another statistical approach to evaluate the 

reliability and accuracy of predicting algorithm, which called Leverage method. The mentioned 

approach consists of some statistical concepts such as model residuals, Hat matrix, and Williams 

plot which are used for detection of suspected and outlier data. There is more description of 

Leverage method in the literature (Rousseeuw and Leroy 2005).In this method, the residuals are 

estimated and inputs are utilized to build a matrix called Hat matrix such as follow:  

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇                                                                                                                  Eq. (22) 

Where X is the m×n matrix which n and m are the numbers of model parameters and samples 

respectively. 

Fig. 8 illustrates the William plot for the proposed models. As shown in this figure, the most of 

data points are in the range of leverage limit of residuals for -3 to 3. The leverage limit is 

formulated such as following:  

𝐻∗ = 3(𝑛 + 1)/𝑚                                                                                                                  Eq. (23) 
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Figure 8: Absolute deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-

ANN 

 

Another method to investigate the validity of the models is a parametric analysis of solubility. To 

this end, the Relevancy index is introduced to investigate the impact of inputs on acid solubility. 

The Relevancy index is determined such as following (Zarei, Razavi et al. 2019): 
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𝑟 =
∑ (𝑛

𝑖=1 𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )(𝑌𝑖−�̅�)

√∑ (𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )2 ∑ (𝑌𝑖−𝑌)̅̅ ̅2𝑛
𝑖=1

𝑛
𝑖=1

                                                                                                  Eq. 

(24) 

where 𝑌𝑖, �̅� , 𝑋𝑘,𝑖 and 𝑋𝑘
̅̅̅̅  are the ‘i’ th output, output average, kth of input and average of input. 

The Relevancy index absolute value represent the effectiveness of the parameters on acid 

solubility. As shown in Fig. 9, the molecular weight of acid has the most Relevancy factor between 

different input parameters so this parameter is known as the most effective parameters on acid 

solubility in supercritical carbon dioxide. Moreover, acid dissociation constant has the least effect 

on acid solubility. This figure illustrates that as number of carbon and hydrogen of acid, molecular 

weight and pressure increase, acid solubility in carbon dioxide increases. On the other hand, 

increasing acid dissociation constant and temperature caused drop in solubility of acid in carbon 

dioxide.    

 

 

Figure 9: Sensitivity analysis of investigated variables 

 

4 Conclusions 

In this paper, we have applied RBF-ANN, MLP-ANN, ANFIS-PSO and LSSVM algorithms to 

determine the different acids solubility values in supercritical carbon dioxide in terms of pressure, 
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temperature, and different acid structure based on a reliable databank which gathered from the 

literature. These predicting approaches can forecast acid solubility in the wide range of operating 

conditions. To prove the aforementioned acclaim, different statistical and graphical evaluations 

have been performed in the previous section. According to the obtained results from comparisons, 

the LSSVM model has the best performance respect to the others and ANFIS algorithm has the 

least of accuracy in this prediction. Also, the results of sensitivity analysis identify the molecular 

weight of the acid parameter is the most effective factor in solubility of acids in supercritical 

carbon dioxide. Based on these comprehensive investigations this manuscript has great potential 

and ability to help the researchers in their future works. 
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Nomenclature 

 

 

ANFIS Adaptive neuro-fuzzy inference system 

LSSVM Least squares support vector machine 

RBF-ANN Radial basis function artificial neural network 

MLP-ANN Multi-layer Perceptron artificial neural 

network 

PSO Particle swarm optimization 

φ(x) nonlinear function 

ω             weight    

b                bias 

ϒ           regularization parameter 

ek     support value 

K kernel function 

Z Gaussian parameter 

σ Gaussian parameter 

m One of the resulting index of ANFIS 

n One of the resulting index of ANFIS 

r One of the resulting index of ANFIS 

W inertia weight 

c learning rate 

R
2
 coefficient of determination 

AAD average absolute deviation 

MSE Mean squared error 

STD Standard deviation 

H Hat matrix 

H
*
 The leverage limit 
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Supplementary content 

 

Table S1. Experimental data which are used in this study 

Acid name Pressure  Temperatur

e (K) 

Acid 

dissociation 

constant 

(PKa) 

solubility 

(mol/mol) 

No of 

data 

points 

References 

Perfluoropentanoi

c acid 

10-26.2 314-334 0.52 0.0134-0.0298 17 (Dartiguelon

gue, Leybros 
et al. 2016) 

o-Hydroxybenzoic 

Acid 

8.11-

20.26 

308.15-

328.15 

4.06 0.000007-

0.000624 

49 (Gurdial and 

Foster 1991) 

Corosolic Acid 8.0-30 308.15-

333.15 

4.7 3.28*10-11 -  

0.071 

40 (Kumoro 

2011) 

Maleic Acid 7.0-30 318.15-

348.15 

1.83 0.000013-

0.0005917 

21 (Sahihi, 

Ghaziaskar et 

al. 2010) 

Ferulic Acid 12.0-28 301.15-
333.15 

4.38 0.00000155-
0.0000118 

18 (Sovova, 
Zarevucka et 

al. 2001) 

Azelaic Acid 10.0-30 313.15-

333.15 

4.84 0.00000042-

0.00001012 

14 (Sparks, 

Hernandez et 

al. 2007) 

Nonanoic  Acid 10.0-30 313.15-

333.15 

4.96 0.00013-

0.00782 

14 (Sparks, 

Estévez et al. 

2008) 

p-aminobanzoic 

acid 

8.0-21 308-328.0 4.78 0.000001302-

0.000006452 

15 (Tian, Jin et 

al. 2007) 

     Total=

188 

 

 

 

Table S2. Average of experimental data which are used in this study 

Acid name Pressure (Mpa) Temprature (K) solublity(mol/mol) 

Perfluoropentanoic acid 17.37058824 324 0.022118 

o-Hydroxybenzoic Acid 13.84040816 316.6193878 0.000238 

Corosolic Acid 18.2 319.4 0.029932 

Maleic Acid 16.42857143 333.15 0.000173 

Ferulic Acid 19.83333333 319.4833333 5.37E-06 

Azelaic Acid 20 323.15 3.92E-06 

Nonanoic (Pelargonic) Acid 20 323.15 0.006548 

p-aminobanzoic acid 14 318 3.82E-06 
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Table S3. Details of acids which are utilized in this investigation. 

Acid name  structure Empirical Formula or 

linear formula 

Molecular weight 

gr/mole 

Perfluoropentanoic 

acid 

 

CF3(CF2)3COOH 264.05 

o-Hydroxybenzoic 

Acid 

 

 HOC6H4CO2H 

 

138.12 

Corosolic Acid 

 

 

C30H48O4  472.70 

Maleic Acid 

 

 

HO2CCH=CHCO2H  
 

116.07 

Ferulic Acid 

 

 

 HOC6H3(OCH3)CH=CHCO

2H 

194.18 

Azelaic Acid 

 

 

HO2C(CH2)7CO2H 188.22 
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Nonanoic (Sparks, 

Estévez et al. 2008) 

Acid 

 

CH3(CH2)7COOH 158.24 

p-aminobanzoic acid 

 

C₇H₇NO₂ 137.14 
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Figure S1: Experimental and predicted solubility of CO2 by the proposed models 
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Figure S2: Absolut deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-

ANN 
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