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Abstract

In the present work, a novel and the robust computational investigation is carried out to estimate
solubility of different acids in supercritical carbon dioxide. Four different algorithms such as radial
basis function artificial neural network, Multi-layer Perceptron artificial neural network, Least
squares support vector machine and adaptive neuro-fuzzy inference system are developed to
predict the solubility of different acids in carbon dioxide based on the temperature, pressure,
hydrogen number, carbon number, molecular weight, and acid dissociation constant of acid. In the
purpose of best evaluation of proposed models, different graphical and statistical analyses and also
a novel sensitivity analysis are carried out. The present study proposed the great manners for best
acid solubility estimation in supercritical carbon dioxide, which can be helpful for engineers and
chemists to predict operational conditions in industries.
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1. Introduction

In the recent years, supercritical fluid has become one of the interests of chemical engineers and
chemists as a novel and extensive applicable technology. The synthesis and generating of
nanomaterials and extraction process of different materials are the popular applications of
supercritical fluids [1-13]. One of the supercritical fluids which have wide applications in the
extraction of various metals from solid and liquid phases [14-16]. Due to non-flammability,
nontoxicity, low cost and critical points (304.2 K and 7.38 MPa) of carbon dioxide, the
supercritical carbon dioxide becomes one the interesting and applicable supercritical fluids in
industries[17, 18]. The viscosity and density of supercritical carbon dioxide are known as two
important transport properties of the fluids which are affected by pressure and temperature.
Another dominant thermos physical property of supercritical carbon dioxide is solubility of
different materials in supercritical carbon dioxide which is a function of various factors such as

polarity, molecular weight, pressure, temperature and vapor pressure[19, 20].

One types of the materials which have a solubility in supercritical carbon dioxide are acids, the
nanofluoropentanoic acid which is known as one type of perfluorocarboxylic acids, has extensive
applications in the production of paints additives, polymers, foams and stain repellents but because
of their high ability instability they are harmful to environment[21-27]. Adrien Dartiguelongue
and coworkers studied solubility of perfluoropentanoic acid in supercritical carbon dioxide in the
wide range of temperature and pressure and also proposed some density based models to predict
solubility in terms of density of supercritical fluids [22]. Gurdial et al. constructed dynamic setup
to study solubility of o-, m- and p-hydroxybenzoic acid in the supercritical carbon dioxide in the
wide range pressure of 80-205 mbar and temperature range of 35-55 C and correlated the measured

solubility as a function of density[28]. Kumoro measured the solubility of 2R,3B-dihydroxyurs-
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12-en-28-oic acid which is called Corosolic acid dynamically in a different range of pressure 8 to
30 MPa and five different temperatures of 308.15, 313.15, 323.15 and 333.15 K. Kumoro used

various density based models to correlate the experimental data[29].

Sahihi et al. measured the solubility of Maleic acid in supercritical carbon dioxide by utilization
of static experimental setup. The measured data belongs to Maleic acid in pressure range of 7 to
30 MPa and temperature of 348.15 K[30]. Ghaziaskar and coworkers used a continuous flow set
up to study solubility of tracetin, diacentin and acetic acid in supercritical carbon dioxide in the
pressure range of 70 to 180 bar and various temperature of 313, 333 and 348 K and they also
compared the obtained solubilities for different acids[31]. Helena Sovova adjusted the Adachi-Lu
equation based on the solubility of Ribes nigrum (blackcurrant) and Vitis vinifera (grape-vine) in
supercritical carbon dioxide. They concluded the Adachi-Lu equation has enough accuracy in

forecasting solubility of triglycerides in carbon dioxide[32].

The issue of prediction of various acids solubility in supercritical carbon dioxide and phase
equilibrium investigation of supercritical carbon dioxide and different materials are the important
topics in chemical engineering research. According to the hardships of experimental studies such
as special tools and procedure which are needed, in the present work, the mathematical
investigation is considered as a great solution for these problems. In this paper four different
algorithms, Radial basis function artificial neural network (RBF-ANN), Multi-layer Perceptron
artificial neural network (MLP-ANN), Least squares support vector machine (LSSVM) and
Adaptive neuro-fuzzy inference system (ANFIS) are developed to predict the solubility of different
types of acid in supercritical carbon dioxide based on the various parameters such as structure of

acid, pressure and temperature.
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2. Methodology

2.1. Experimental Data Gathering

The dominant purpose of present paper is development of accurate and simple models to forecast
solubility of different acids in supercritical carbon dioxide. Due to this, the required actual data for
training and testing phases of models were assembled from the reliable source existed in literature
[22, 28, 29, 32-35]. This collection of data contains the 180 acid solubility data points in terms of
pressure, temperature and different acid structure. The details of data collection are reported in
Table S1. Also, for clarification of this experimental dataset, the structure, linear formula and

molecular weight of utilized acids are presented in Table S2.

Table S1. Experimental data which are used in this study

Acid name Pressure Temperature Acid solubility No of References
(K) dissociation  (mol/mol) data
constant points
(PKa)
Perfluoropentanoic 10-26.2  314-334 0.52 0.0134-0.0298 17 (Dartiguelongue
acid et al., 2016)
o-Hydroxybenzoic  8.11- 308.15- 4.06 0.000007- 49 (Gurdial  and
Acid 20.26 328.15 0.000624 Foster, 1991)
Corosolic Acid 8.0-30 308.15- 4.7 3.28*101! - 40 (Kumoro, 2011)
333.15 0.071
Maleic Acid 7.0-30 318.15- 1.83 0.000013- 21 (Sahihi et al.,
348.15 0.0005917 2010)
Ferulic Acid 12.0-28  301.15- 4.38 0.00000155- 18 (Sovova et al.,

333.15 0.0000118 2001)
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Azelaic Acid 10.0-30  313.15- 4.84 0.00000042- 14 (Sparks et al.,
333.15 0.00001012 2007)
Nonanoic Acid 10.0-30  313.15- 4.96 0.00013- 14 (Sparks et al.,
333.15 0.00782 2008)
p-aminobanzoic 8.0-21 308-328.0 478 0.000001302- 15 (Tian et al,
acid 0.000006452 2007)
Total=188

Table S2. Details of acids which are utilized in this investigation.

Acid name structure Empirical Formula or linear Molecular
formula weight
gr/mole
Perfluoropentanoic CF3(CF2);COOH 264.05
p E FEF O 3(CF2)s
acid
F OH
F FF F
o-Hydroxybenzoic O OH HOCsH4CO2H 138.12
Acid

Corosolic Acid C30H4804 472.70
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2.2. Artificial neural network

Artificial neural networks have amazing similarities to the performance and structure of neuron

units in the brain system[36, 37]. These computational blocks construct different types of layer

such as input, output and hidden layers. In the layers, there are transfer functions or activation
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function which organize the process of training in the algorithm. Each neuron has specific weight
and bias values which control the optimization process. Artificial neural network has ability of
tracing a nonlinear form relationship between input and output parameters. Due to this ability,

artificial neural networks have widespread application in different industries and sciences [38-44].

Artificial neural networks can be classified in different forms such as a recurrent neural network
(RNN), radial basis function and multilayer perceptron [45, 46]. In the present work, the MLP and

RBF network are utilized.
2.3. Least squares support vector machine

Vapnik organized support vector machine based on statistical learning theory[47]. This
computational intelligence can be used for regression and classification purposes. However, there
are many advantages to this method but there is a hardship in its computational procedure because
of quadratic programming. The least squares SVM (LSSVM) is proposed as a novel type of SVM
to solve this problem. This novel approach organized linear equations for computation and

optimization[48-50].

By considering a dataset of (Xi,yi)n, the LSSVM regression prediction is utilized to estimate a
function, where x; and y; are known as input and target parameters and n represent the number of

data which utilized in training phase[51]. The linear regression is formulated such as following:

y=w'eXx+b Eq. (1)

Where ¢(x) denotes a nonlinear function that has different forms such as polynomial, linear,

sigmoid and radial basis functions. Also, ® and b denote the weights and determined constant
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coefficient in training process. A new optimization problem can be defined based on LSSVM

approach[52]:

min

J (we) =50"w+5y Ti_; ef Eq. (2)

w,b,e
Which is related to the below constraints:

Vi = 0To(x) + b + e k=1,2,....N Eq. (3)
The Lagrangian equation is constructed to solve the optimization problem:

L(w,b,e,0) =] (w,€) — Y= ar{w () + b + e, — yic} Eq. (4)

Where Y and ex are known as regularization parameter and regression error. The ax represent the

support value. To solve the above problem, the above equation is differentiated with respect to the

different parameters:

6L(u;,z,e,a) — 0o w=3N_, arp(x) Eq. (5)
6L(u;,1;,e,a) — 0o @ =0 Eq. (6)
"’L(‘;—:’ke‘*) =0-a,=ye,, k=12,..N Eq. (7)
"’“‘;’+{’k’e’“>= 0>y = o) +b+e  k=12,..N Eq. (8)

Karush— Kuhn—Trucker matrix can be obtained by elimination of ® and ¢[50, 53, 54]:

[10,, 19) +1)£/-11] [Z] - [2] Eqg. (9)
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Whichy = [y, ...yy]T,a = [ag ...ay]T, 1y = [1...1]7 and | represents the identity matrix. Qi is
@ ()T o(x) = K(xy, x;). K(Xk,Xi1) is known as kernel function which can be in different forms of
linear, polynomial and radial basis function forms[55]. The estimating function form of LSSVM

algorithm can be expressed as following formulation[56]:

y(x)=XN_ar K(x,x) + b Eq. (10)
2.4. Adaptive neuro-fuzzy inference system (ANFIS)

Adaptive neuro-fuzzy inference system which is called ANFIS algorithm, in brief, has five
different layers. The aforementioned approach was developed by Jang and Sun[57]. The hybrid
learning approach and back propagation are known as fundamentals of training of conventional
ANFIS algorithm. The ANFIS algorithm was born base on fuzzy logic and neural network
advantages and also the different evolutionary methods such as Imperialist Competitive Algorithm
(ICA), Particle Swarm Optimization (PSO) and Genetic algorithm (GA) can be used to reach the
optimal structure of ANFIS algorithm[38, 40, 58-61]. The ANFIS structure is demonstrated in

Figure 1. As shown there are two input variables and an output.
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Figure 1: Typical construction of ANFIS approach

In the first layer, the linguistic terms are build base on input data. The Gaussian membership
function is applied to organize these linguistic terms. The Gaussian function can be shown as

following formulation[62]:

1(X-2)2

0} = B(X) = exp' 2 2 Eq. (11)

Where Z and o denote the Gaussian parameters.
The next layer contains the weighted terms which are related to rules:
07 = W; = Bai(X). Bp:(X) Eqg. (12)

In the third layer the averages of determined weight are determined such as the following

formulation:
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0} =L Eq. (13)

Then in the next layer, the average weight values are multiple to the related function such as below:
0f = Wf; = W,(mX; + n; X, + 1) Eqg. (14)
Where, m, n, and r represent the resulting indexes.

At last, the fifth layer consists of the summation of previous layer outputs:

712 A T Wifi
0i5 =Y=Zinfi = Wifi + Waf; =22_le Eq. (15)

2.5. Particle swarm optimization (PSO)

The combination of random probability distribution approach and generation of the population
constructed the particle swarm optimization algorithm. Eberhart et al. introduced the PSO
algorithm that comes from the social behavior of birds and developed it to solve the nonlinear
function optimization problems[63]. This strategy has special similarities with other optimization
approach such as genetic algorithm which is constructed base on random solution population. Each
particle can be known as a probable solution of problem. A random population of particle created
in search space to relate in optimum system. Puest is known as the best solution which can obtained
from this strategy for a particle. Also grest represents the global best solution determined by swarm.
The particle move in the space by time iterations and the next iteration velocity is determined by

using Qrest , Prest and current velocity[64]. The P'th particle can be determined as follow:
X = X5+ vt Eq. (16)

The particle velocity is updated by the following expression:
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Vig(t + 1) = woig(t) + 171 (Poestia(t) — Xiaa(®)) + c27s (Gpest.a(®) — Xia(®)) Eq. (17)
w, ¢, and r are inertia weight, learning rate and random number respectively[65-69].
3. Results and discussion

In the present study, the determined structure of MLP-ANN algorithm utilizes log-sigmoid and
linear activation functions the hidden and output layers respectively. By utilization of trial and
error, the optimum number of neurons in hidden layers is determined as 7 to reach the best structure
of MLP-ANN algorithm. The performance of Levenberg Marquardt training of MLP-ANN
algorithm based on the mean square error is shown in Figure 2. In the RBF-ANN algorithm, the
radial basis function (RBF) is utilized for hidden layers. According to information in the literature,
the hidden layer neurons for RBF-ANN can be supposed one-tenth of training data points. The
training process of RBF-ANN algorithm base on MSE has been reported in Figure 3. In this work,
particle swarm optimization approach is applied to train the best structure of ANFIS algorithm.
Figure 4 demonstrates the gained root mean squared error (RMSE) of estimated and experimental
acid solubility values in training step. The optimum structure of ANFIS can be recognized by the
RMSE value of 0.003 after 1000 of iteration steps. Trained membership functions of proposed

ANFIS model are also shown in Figure 5 for each cluster.
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Figure 3: Trained RBF-ANN approach by Levenberg Marquardt algorithm
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The RBF kernel function due to its high degree of performance is utilized to construct the LSSVM
algorithm. The LSSVM algorithm has two tuning parameters, o? and Y which are determined by
utilizing PSO algorithm. The schematic demonstration of LSSVM algorithm is depicted in Figure

6. The details of predicting models are summarized in Table 1.

Random division of data into
training and testing

\
Training Testing
Data Data
— i

Implement
PSO and select

o2

Employ feature
subset (0‘2 ¥

Construct
L.SSVM model

o) |

Evaluate the model by
training and testing
data

Return the LSSVM
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eet stopping
criterion?

Determine
Optimum oY

Figure 6: Schematic demonstration of trained LSSVM algorithm
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Table 1: Details of proposed models

do0i:10.20944/pre

Type comment/value  Type comment/value
LSSVM ANFIS
Kernel function RBF Membership function Gaussian
o’ 0.80321 No. of membership function 112
parameters
Y 12893.2264 No. of clusters 8
Number of data utilized for 141 Number of data utilized for training 141
training
Number of data utilized for 47 Number of data utilized for testing 47
testing
Population size 85 Population size 50
Iteration 1000 Iteration 1000
C1 1 C1 1
Cc2 2 C2 2
MLP-ANN MLP-ANN
No. input neuron layer 6 No. input neuron layer 6
No. hidden neuron layer 8 No. hidden neuron layer 50
No. output neuron layer 1 No. output neuron layer 1
Hidden layer  activation Sigmoid Hidden layer activation function RBF
function
output layer activation linear output layer activation function linear
function
Number of data utilized for 141 Number of data utilized for training 141
training
Number of data utilized for 47 Number of data utilized for testing 47
testing
Number of max iteration 1500 Number of max iteration 50

In order to show the performance of proposed models in prediction of solubility of different acids,

regression plots of RBF-ANN, MLP-ANN, ANFIS and LSSVM algorithms are depicted in Figure

7 to compare the determined and actual solubility values. Based on these plots, the surprising fits

for the predicting algorithms are obtained. Also, the predicted acid solubility data for proposed

models are demonstrated along with the corresponding actual acid solubility values in Figure S1.

It can be observed that the model's output solubility values have excellent agreement with actual

solubility values. Another graphical evaluation method is a demonstration of relative error between

predicted and experimental acid solubility in supercritical carbon dioxide. Figure S2 shows the

rints201906.0055.v1
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percentage of absolute error for the different predicting algorithm, which expresses the acceptable

degree of accuracy in prediction of acid solubility.
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Figure 7: Regression plots obtained for different models
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Figure S2: Absolut deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-ANN
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Furthermore, in order to clarify the performance of predicting algorithms, the statistical analysis
is required so the coefficients of determination (R?), average absolute deviation (AAD), Mean

squared errors (MSEs) and Standard deviations (STDs) are determined such as following:

N actual predicted. 2
X (XX )

R2=1 S Eq. (18)
AAD = %Z?Lllxipredicted _ Xiactual| Eq(19)
MSE = — 3, (xgetual — xpredictedyz Eq. (20)
STDerror = (- Ly (error — &77o7)) S Eq. (21)

The R?, AD, MSE and STD values of different algorithms are summarized in Table 2. According

to these results, the LSSVM model has the greatest ability in forecasting acid solubility.

Table 2: Statistical analyses of models

Model Set MSE RMSE R2 STD AAD (%)
LSSVM  Train 5.72&59E— 0.000756 0.998 0.0007 0.0269
7
Test 1.7978E-07  0.000424 0.999 0.0004 0.0149
Total 2.77(?755 0.000527 0.999 0.0005 0.0179
7
ANFIS Train 5.79(()5633E— 0.002408 0.975 0.0022 0.1093
Test 1.005)76E- 0.003178 0.965 0.0027 0.1677
Total 9.02(?:275 0.003004 0.967 0.0026 0.1531
MLP- Train 3.23;;325 0.001799 0.987 0.0017 0.0756
ANN Test 1.44839E-  0.001203 0.995 0.0010 0.0600

06
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Total 1.89575E- 0.001377 0.993 0.0012 0.0639
RBF-ANN  Train 2.33%637E— 0.001527 0.986 0.0013 0.0827
Test 1.61%?33E— 0.001273 0.995 0.0010 0.0779
Total 1.79%:54E— 0.001341 0.993 0.0011 0.0791

In addition to previous statistical indexes, there is another statistical approach to evaluate the
reliability and accuracy of predicting algorithm, which called Leverage method. The mentioned
approach consists of some statistical concepts such as model residuals, Hat matrix and Williams
plot which are used for detection of suspected and outlier data. There is more description of
Leverage method in the literature [70-72].In this method, the residuals are estimated and inputs

are utilized to build a matrix called Hat matrix such as follow:

H=X(XTX)"1xT Eq. (22)

Where X is the mxn matrix which n and m are the numbers of model parameters and samples

respectively.

Figure 8 illustrates the William plot for the proposed models. As shown in this figure, the most of
data points to place in the range of leverage limit and lower and higher residuals of -3 to 3. The

leverage limit is formulated such as following:

H =3(m+1)/m Eq. (23)

d0i:10.20944/preprints201906.0055.v1
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Figure 8: Absolute deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-ANN

Another method to investigate the validity of the models is a parametric analysis of solubility. To
this end, the Relevancy index is introduced to investigate the impact of inputs on acid solubility.

The Relevancy index is determined such as following[70]:

r = Lz K= X (Vi-Y) Eq. (24)

Jz?=1<xk,i—x_k)22?=1<vi—y_)2
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Which Y;, Y , X ; and X, are the ‘i’ th output, output average, kth of input and average of input.
The Relevancy index absolute value represent the effectiveness of the parameters on acid
solubility. As shown in Figure 9, the molecular weight of acid has the most Relevancy factor
between different input parameters so this parameter is known as the most effective parameters on

acid solubility in supercritical carbon dioxide.

0.7 0.696101413
0.627904124
0.599749735
0.6
{1
0.5

Relevency Factor
(=
L8]

0.1 ——
0 £ S | —
-0.1 -0.061335474 -
-0.028280772
B Pressure (Mpa) Temprature (K)
Number of carbon of acid ® Number of Hydrogen of acid

Acid dissociation constant (PKa)  Molecular wight of acid

Figure 9: Sensitivity analysis of investigated variables

4. Conclusions

In this paper, we have applied RBF-ANN, MLP-ANN, ANFIS-PSO and LSSVM algorithms to
determine the different acids solubility values in supercritical carbon dioxide in terms of pressure,
temperature and different acid structure based on a reliable databank which gathered from the

literature. These predicting approaches can forecast acid solubility in the wide range of operating
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conditions. To prove the aforementioned acclaim, different statistical and graphical evaluations
have been performed in the previous section. According to the obtained results from comparisons,
the LSSVM model has the best performance respect to the others and ANFIS algorithm has the
least of accuracy in this prediction. Also, the results of sensitivity analysis identify the molecular
weight of the acid parameter is the most effective factor in solubility of acids in supercritical carbon
dioxide. Based on these comprehensive investigations this manuscript has great potential and

ability to help the researchers in their future works.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference system

LSSVM Least squares support vector machine

RBF-ANN Radial basis function artificial neural network

MLP-ANN Multi-layer Perceptron artificial neural
network

PSO Particle swarm optimization

o(x) nonlinear function

o weight

b bias

Y regularization parameter

ek support value

K kernel function

Z Gaussian parameter

c Gaussian parameter

m One of the resulting index of ANFIS

n One of the resulting index of ANFIS

r One of the resulting index of ANFIS

W inertia weight

c learning rate

R? coefficient of determination

AAD average absolute deviation

MSE Mean squared error

STD Standard deviation

H Hat matrix

H* The leverage limit
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