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Abstract 

In the present work, a novel and the robust computational investigation is carried out to estimate 

solubility of different acids in supercritical carbon dioxide. Four different algorithms such as radial 

basis function artificial neural network, Multi-layer Perceptron artificial neural network, Least 

squares support vector machine and adaptive neuro-fuzzy inference system are developed to 

predict the solubility of different acids in carbon dioxide based on the temperature, pressure, 

hydrogen number, carbon number, molecular weight, and acid dissociation constant of acid. In the 

purpose of best evaluation of proposed models, different graphical and statistical analyses and also 

a novel sensitivity analysis are carried out. The present study proposed the great manners for best 

acid solubility estimation in supercritical carbon dioxide, which can be helpful for engineers and 

chemists to predict operational conditions in industries.  
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1. Introduction  

In the recent years, supercritical fluid has become one of the interests of chemical engineers and 

chemists as a novel and extensive applicable technology. The synthesis and generating of 

nanomaterials and extraction process of different materials are the popular applications of 

supercritical fluids [1-13]. One of the supercritical fluids which have wide applications in the 

extraction of various metals from solid and liquid phases [14-16]. Due to non-flammability, 

nontoxicity, low cost and critical points (304.2 K and 7.38 MPa) of carbon dioxide, the 

supercritical carbon dioxide becomes one the interesting and applicable supercritical fluids in 

industries[17, 18]. The viscosity and density of supercritical carbon dioxide are known as two 

important transport properties of the fluids which are affected by pressure and temperature. 

Another dominant thermos physical property of supercritical carbon dioxide is solubility of 

different materials in supercritical carbon dioxide which is a function of various factors such as 

polarity, molecular weight, pressure, temperature and vapor pressure[19, 20]. 

One types of the materials which have a solubility in supercritical carbon dioxide are acids, the 

nanofluoropentanoic acid which is known as one type of perfluorocarboxylic acids, has extensive 

applications in the production of paints additives, polymers, foams and stain repellents but because 

of their high ability instability they are harmful to environment[21-27]. Adrien Dartiguelongue 

and coworkers studied solubility of perfluoropentanoic acid in supercritical carbon dioxide in the 

wide range of temperature and pressure and also proposed some density based models to predict 

solubility in terms of density of supercritical fluids [22]. Gurdial et al. constructed dynamic setup 

to study solubility of o-, m- and p-hydroxybenzoic acid in the supercritical carbon dioxide in the 

wide range pressure of 80-205 mbar and temperature range of 35-55 C and correlated the measured 

solubility as a function of density[28]. Kumoro measured the solubility of 2R,3β-dihydroxyurs-
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12-en-28-oic acid which is called Corosolic acid dynamically in a different range of pressure 8 to 

30 MPa and five different temperatures of 308.15, 313.15, 323.15 and 333.15 K. Kumoro used 

various density based models to correlate the experimental data[29]. 

Sahihi et al. measured the solubility of Maleic acid in supercritical carbon dioxide by utilization 

of static experimental setup. The measured data belongs to Maleic acid in pressure range of 7 to 

30 MPa and temperature of 348.15 K[30]. Ghaziaskar and coworkers used a continuous flow set 

up to study solubility of tracetin, diacentin and acetic acid in supercritical carbon dioxide in the 

pressure range of 70 to 180 bar and various temperature of 313, 333 and 348 K and they also 

compared the obtained solubilities for different acids[31]. Helena Sovova adjusted the Adachi-Lu 

equation based on the solubility of Ribes nigrum (blackcurrant) and Vitis vinifera (grape-vine) in 

supercritical carbon dioxide. They concluded the Adachi-Lu equation has enough accuracy in 

forecasting solubility of triglycerides in carbon dioxide[32]. 

The issue of prediction of various acids solubility in supercritical carbon dioxide and phase 

equilibrium investigation of supercritical carbon dioxide and different materials are the important 

topics in chemical engineering research. According to the hardships of experimental studies such 

as special tools and procedure which are needed, in the present work, the mathematical 

investigation is considered as a great solution for these problems. In this paper four different 

algorithms, Radial basis function artificial neural network (RBF-ANN), Multi-layer Perceptron 

artificial neural network (MLP-ANN), Least squares support vector machine (LSSVM) and 

Adaptive neuro-fuzzy inference system (ANFIS) are developed to predict the solubility of different 

types of acid in supercritical carbon dioxide based on the various parameters such as structure of 

acid, pressure and temperature. 
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2. Methodology 

2.1. Experimental Data Gathering 

The dominant purpose of present paper is development of accurate and simple models to forecast 

solubility of different acids in supercritical carbon dioxide. Due to this, the required actual data for 

training and testing phases of models were assembled from the reliable source existed in literature 

[22, 28, 29, 32-35]. This collection of data contains the 180 acid solubility data points in terms of 

pressure, temperature and different acid structure. The details of data collection are reported in 

Table S1. Also, for clarification of this experimental dataset, the structure, linear formula and 

molecular weight of utilized acids are presented in Table S2. 

Table S1. Experimental data which are used in this study 

Acid name Pressure  Temperature 

(K) 

Acid 

dissociation 

constant 

(PKa) 

solubility 

(mol/mol) 

No of 

data 

points 

References 

Perfluoropentanoic 

acid 

10-26.2 314-334 0.52 0.0134-0.0298 17 (Dartiguelongue 

et al., 2016) 

o-Hydroxybenzoic 

Acid 

8.11-

20.26 

308.15-

328.15 

4.06 0.000007-

0.000624 

49 (Gurdial and 

Foster, 1991) 

Corosolic Acid 8.0-30 308.15-

333.15 

4.7 3.28*10-11 -  

0.071 

40 (Kumoro, 2011) 

Maleic Acid 7.0-30 318.15-

348.15 

1.83 0.000013-

0.0005917 

21 (Sahihi et al., 

2010) 

Ferulic Acid 12.0-28 301.15-

333.15 

4.38 0.00000155-

0.0000118 

18 (Sovova et al., 

2001) 
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Azelaic Acid 10.0-30 313.15-

333.15 

4.84 0.00000042-

0.00001012 

14 (Sparks et al., 

2007) 

Nonanoic  Acid 10.0-30 313.15-

333.15 

4.96 0.00013-

0.00782 

14 (Sparks et al., 

2008) 

p-aminobanzoic 

acid 

8.0-21 308-328.0 4.78 0.000001302-

0.000006452 

15 (Tian et al., 

2007) 

     Total=188  

 

Table S2. Details of acids which are utilized in this investigation. 

Acid name  structure Empirical Formula or linear 

formula 

Molecular 

weight 

gr/mole 

Perfluoropentanoic 

acid 

 

CF3(CF2)3COOH 264.05 

o-Hydroxybenzoic 

Acid 

 

 HOC6H4CO2H 

 

138.12 

Corosolic Acid 

 

 

C30H48O4  472.70 
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Maleic Acid 

 

 

HO2CCH=CHCO2H  

 

116.07 

Ferulic Acid 

 

 

 HOC6H3(OCH3)CH=CHCO2H 194.18 

Azelaic Acid 

 

 

HO2C(CH2)7CO2H 188.22 

Nonanoic (Sparks 

et al., 2008) Acid 

 

CH3(CH2)7COOH 158.24 

p-aminobanzoic 

acid 

 

C₇H₇NO₂ 137.14 

 

2.2. Artificial neural network 

Artificial neural networks have amazing similarities to the performance and structure of neuron 

units in the brain system[36, 37]. These computational blocks construct different types of layer 

such as input, output and hidden layers. In the layers, there are transfer functions or activation 
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function which organize the process of training in the algorithm. Each neuron has specific weight 

and bias values which control the optimization process. Artificial neural network has ability of 

tracing a nonlinear form relationship between input and output parameters. Due to this ability, 

artificial neural networks have widespread application in different industries and sciences [38-44]. 

Artificial neural networks can be classified in different forms such as a recurrent neural network 

(RNN), radial basis function and multilayer perceptron [45, 46]. In the present work, the MLP and 

RBF network are utilized. 

2.3. Least squares support vector machine 

Vapnik organized support vector machine based on statistical learning theory[47]. This 

computational intelligence can be used for regression and classification purposes. However, there 

are many advantages to this method but there is a hardship in its computational procedure because 

of quadratic programming. The least squares SVM (LSSVM) is proposed as a novel type of SVM 

to solve this problem. This novel approach organized linear equations for computation and 

optimization[48-50]. 

By considering a dataset of (xi,yi)n, the LSSVM regression prediction is utilized to estimate a 

function, where xi and yi are known as input and target parameters and n represent the number of 

data which utilized in training phase[51]. The linear regression is formulated such as following: 

𝑦 = 𝜔𝑇φ(x) + b                                                                                                                   Eq. (1)  

Where φ(x) denotes a nonlinear function that has different forms such as polynomial, linear, 

sigmoid and radial basis functions. Also, ω and b denote the weights and determined constant 
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coefficient in training process. A new optimization problem can be defined based on LSSVM 

approach[52]: 

𝑚𝑖𝑛

𝜔,𝑏,𝑒
𝐽 (𝜔, 𝑒) =

1

2
𝜔𝑇𝜔 +

1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1                                                                                 Eq. (2) 

Which is related to the below constraints: 

𝑦𝑘 = 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘                    k=1,2,…,N                                                                 Eq. (3) 

The Lagrangian equation is constructed to solve the optimization problem: 

L(ω, b, e, α) = 𝐽 (𝜔, 𝑒) − ∑ 𝛼𝑘{𝜔𝑇𝜑(𝑥𝑘)𝑁
𝑘=1 + 𝑏 + 𝑒𝑘 − 𝑦𝑘}                                       Eq. (4)                      

Where ϒ and ek are known as regularization parameter and regression error. The αk represent the 

support value. To solve the above problem, the above equation is differentiated with respect to the 

different parameters: 

𝜕𝐿(ω,b,e,α)

𝜕𝜔
= 0 → 𝜔 = ∑ 𝛼𝑘

𝑁
𝑘=1 𝜑(𝑥𝑘)                                                                              Eq. (5) 

𝜕𝐿(ω,b,e,α)

𝜕𝑏
= 0 → ∑ 𝛼𝑘

𝑁
𝑘=1 = 0                                                                                          Eq. (6) 

𝜕𝐿(ω,b,e,α)

𝜕𝑒𝑘
= 0 → 𝛼𝑘 = 𝛾𝑒𝑘,     k=1,2,…,N                                                                       Eq. (7) 

𝜕𝐿(ω,b,e,α)

𝜕𝛼𝑘
= 0 → 𝑦𝑘 = 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘       k=1,2,…,N                                               Eq. (8) 

Karush– Kuhn–Trucker matrix can be obtained by elimination of  ω and e[50, 53, 54]: 

[
0 1𝑣

𝑇

1𝑣 𝛺 + 𝛾−1𝐼
] [

𝑏
𝛼

] = [
0
𝑦

]                                                                                                    Eq. (9) 
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Which 𝑦 = [𝑦1 … 𝑦𝑁]𝑇,𝛼 = [𝛼1 … 𝛼𝑁]𝑇,1𝑁 = [1 … 1]𝑇 and I represents the identity matrix. 𝛀kl is 

𝜑(𝑥𝑘)𝑇𝜑(𝑥𝑙) = 𝐾(𝑥𝑘, 𝑥𝑙). K(xk,xl) is known as kernel function which can be in different forms of 

linear, polynomial and radial basis function forms[55]. The estimating function form of LSSVM 

algorithm can be expressed as following formulation[56]: 

𝑦(𝑥) = ∑ 𝛼𝑘
𝑁
𝑘=1 𝐾(𝑥, 𝑥𝑘) + 𝑏                                                                                            Eq. (10) 

2.4. Adaptive neuro-fuzzy inference system (ANFIS) 

Adaptive neuro-fuzzy inference system which is called ANFIS algorithm, in brief, has five 

different layers. The aforementioned approach was developed by Jang and Sun[57]. The hybrid 

learning approach and back propagation are known as fundamentals of training of conventional 

ANFIS algorithm. The ANFIS algorithm was born base on fuzzy logic and neural network 

advantages and also the different evolutionary methods such as Imperialist Competitive Algorithm 

(ICA), Particle Swarm Optimization (PSO) and Genetic algorithm (GA) can be used to reach the 

optimal structure of ANFIS algorithm[38, 40, 58-61]. The ANFIS structure is demonstrated in 

Figure 1. As shown there are two input variables and an output. 
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Figure 1: Typical construction of ANFIS approach 

In the first layer, the linguistic terms are build base on input data. The Gaussian membership 

function is applied to organize these linguistic terms. The Gaussian function can be shown as 

following formulation[62]: 

𝑂𝑖
1 = 𝛽(𝑋) = 𝑒𝑥𝑝

(−
1

2
 
(𝑋−𝑍)2

𝜎2 )
                                                                                                 Eq. (11) 

Where Z and σ denote the Gaussian parameters. 

The next layer contains the weighted terms which are related to rules: 

𝑂𝑖
2 = 𝑊𝑖 = 𝛽𝐴𝑖(𝑋). 𝛽𝐵𝑖(𝑋)                                                                                                 Eq. (12) 

In the third layer the averages of determined weight are determined such as the following 

formulation: 
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𝑂𝑖
3 =

𝑊𝑖

∑ 𝑊𝑖
                                                                                                                          Eq. (13) 

Then in the next layer, the average weight values are multiple to the related function such as below: 

𝑂𝑖
4 = 𝑊𝑖

̅̅ ̅𝑓𝑖 = 𝑊𝑖
̅̅ ̅(𝑚𝑖𝑋1 + 𝑛𝑖𝑋2 + 𝑟𝑖)                                                                                Eq. (14) 

Where, m, n, and r represent the resulting indexes.  

At last, the fifth layer consists of the summation of previous layer outputs: 

𝑂𝑖
5 = 𝑌 = ∑ 𝑊𝑖

̅̅ ̅𝑓𝑖𝑖 = 𝑊1
̅̅ ̅̅ 𝑓1 + 𝑊2

̅̅ ̅̅ 𝑓2 =
∑ 𝑊𝑖𝑓𝑖

∑ 𝑊𝑖
                                                                      Eq. (15) 

2.5. Particle swarm optimization (PSO) 

The combination of random probability distribution approach and generation of the population 

constructed the particle swarm optimization algorithm. Eberhart et al. introduced the PSO 

algorithm that comes from the social behavior of birds and developed it to solve the nonlinear 

function optimization problems[63]. This strategy has special similarities with other optimization 

approach such as genetic algorithm which is constructed base on random solution population. Each 

particle can be known as a probable solution of problem. A random population of particle created 

in search space to relate in optimum system. Pbest is known as the best solution which can obtained 

from this strategy for a particle. Also gbest represents the global best solution determined by swarm. 

The particle move in the space by time iterations and the next iteration velocity is determined by 

using gbest , Pbest and current velocity[64]. The P'th particle can be determined as follow: 

𝑋𝑝𝑑
𝑖𝑡𝑒𝑟+1 = 𝑋𝑝𝑑

𝑖𝑡𝑒𝑟 + 𝑉𝑝𝑑
𝑖𝑡𝑒𝑟+1                                                                                                   Eq. (16) 

The particle velocity is updated by the following expression: 
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𝑣𝑖𝑑(𝑡 + 1) = 𝑤𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡,𝑖𝑑(𝑡) − 𝑋𝑖𝑖𝑑(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡,𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))                   Eq. (17) 

w, c, and r are inertia weight, learning rate and random number respectively[65-69]. 

3. Results and discussion  

In the present study, the determined structure of MLP-ANN algorithm utilizes log-sigmoid and 

linear activation functions the hidden and output layers respectively. By utilization of trial and 

error, the optimum number of neurons in hidden layers is determined as 7 to reach the best structure 

of MLP-ANN algorithm. The performance of Levenberg Marquardt training of MLP-ANN 

algorithm based on the mean square error is shown in Figure 2. In the RBF-ANN algorithm, the 

radial basis function (RBF) is utilized for hidden layers. According to information in the literature, 

the hidden layer neurons for RBF-ANN can be supposed one-tenth of training data points. The 

training process of RBF-ANN algorithm base on MSE has been reported in Figure 3. In this work, 

particle swarm optimization approach is applied to train the best structure of ANFIS algorithm. 

Figure 4 demonstrates the gained root mean squared error (RMSE) of estimated and experimental 

acid solubility values in training step. The optimum structure of ANFIS can be recognized by the 

RMSE value of 0.003 after 1000 of iteration steps. Trained membership functions of proposed 

ANFIS model are also shown in Figure 5 for each cluster. 
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Figure 2: Trained MLP-ANN model by Levenberg Marquardt algorithm 

 

Figure 3: Trained RBF-ANN approach by Levenberg Marquardt algorithm 
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Figure 4: Performance of trained ANFIS model 
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Figure 5: Trained membership function parameters 
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The RBF kernel function due to its high degree of performance is utilized to construct the LSSVM 

algorithm. The LSSVM algorithm has two tuning parameters, σ2 and ϒ which are determined by 

utilizing PSO algorithm. The schematic demonstration of LSSVM algorithm is depicted in Figure 

6. The details of predicting models are summarized in Table 1.  

 

Figure 6: Schematic demonstration of trained LSSVM algorithm 
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Table 1: Details of proposed models 

Type comment/value Type comment/value 

LSSVM ANFIS 

Kernel function RBF Membership function Gaussian 

σ2 0.80321 No. of membership function 

parameters 

112 

ϒ 12893.2264 No. of clusters 8 

Number of data utilized for 

training 

141 Number of data utilized for training 141 

Number of data utilized for 

testing 

47 Number of data utilized for testing 47 

Population size 85 Population size 50 

Iteration 1000 Iteration 1000 

C1 1 C1 1 

C2 2 C2 2 
 

MLP-ANN MLP-ANN 

No. input neuron layer 6 No. input neuron layer 6 

No. hidden neuron layer 8 No. hidden neuron layer 50 

No. output neuron layer 1 No. output neuron layer 1 

Hidden layer activation 

function 

Sigmoid Hidden layer activation function RBF 

output layer activation 

function 

linear output layer activation function linear 

Number of data utilized for 

training 

141 Number of data utilized for training 141 

Number of data utilized for 

testing 

47 Number of data utilized for testing 47 

Number of max iteration 1500 Number of max iteration 50 

 

In order to show the performance of proposed models in prediction of solubility of different acids, 

regression plots of RBF-ANN, MLP-ANN, ANFIS and LSSVM algorithms are depicted in Figure 

7 to compare the determined and actual solubility values. Based on these plots, the surprising fits 

for the predicting algorithms are obtained. Also, the predicted acid solubility data for proposed 

models are demonstrated along with the corresponding actual acid solubility values in Figure S1. 

It can be observed that the model's output solubility values have excellent agreement with actual 

solubility values. Another graphical evaluation method is a demonstration of relative error between 

predicted and experimental acid solubility in supercritical carbon dioxide. Figure S2 shows the 
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percentage of absolute error for the different predicting algorithm, which expresses the acceptable 

degree of accuracy in prediction of acid solubility.   

Train: y = 1.005x + 1E-05, R² = 0.9993

Test: y = 0.9903x - 2E-05, R² = 0.9982
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Figure 7: Regression plots obtained for different models 
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Figure S1: Experimental and predicted solubility of CO2 by the proposed models 
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Figure S2: Absolut deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-ANN 
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Furthermore, in order to clarify the performance of predicting algorithms, the statistical analysis 

is required so the coefficients of determination (R2), average absolute deviation (AAD), Mean 

squared errors (MSEs) and Standard deviations (STDs) are determined such as following:  

R2 = 1 −
∑ (Xi

actual−Xi
predicted

)2N
i=1

∑ (Xi
actual−Xactual)2N

i=1

                                                                                           Eq. (18) 

𝐴𝐴𝐷 =  
1

𝑁
∑ |𝑋𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑋𝑖
𝑎𝑐𝑡𝑢𝑎𝑙|𝑁

𝑖=1                                                                                    Eq(19) 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑋𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑁

𝑖=1                                                                                Eq. (20) 

𝑆𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = (
1

𝑁−1
∑ (𝑒𝑟𝑟𝑜𝑟 − 𝑒𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1 )0.5                                                                         Eq. (21) 

The R2, AD, MSE and STD values of different algorithms are summarized in Table 2. According 

to these results, the LSSVM model has the greatest ability in forecasting acid solubility. 

Table 2: Statistical analyses of models 

Model Set  MSE RMSE R2 STD AAD (%) 

LSSVM Train 5.72159E-

07 

0.000756 0.998 0.0007 0.0269 

Test 1.7978E-07 0.000424 0.999 0.0004 0.0149 

Total 2.77875E-

07 

0.000527 0.999 0.0005 0.0179 

ANFIS Train 5.79633E-

06 

0.002408 0.975 0.0022 0.1093 

Test 1.00976E-

05 

0.003178 0.965 0.0027 0.1677 

Total 9.02227E-

06 

0.003004 0.967 0.0026 0.1531 

MLP-

ANN 

Train 3.23782E-

06 

0.001799 0.987 0.0017 0.0756 

Test 1.44839E-

06 

0.001203 0.995 0.0010 0.0600 
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Total 1.89575E-

06 

0.001377 0.993 0.0012 0.0639 

RBF-ANN Train 2.33037E-

06 

0.001527 0.986 0.0013 0.0827 

Test 1.61993E-

06 

0.001273 0.995 0.0010 0.0779 

Total 1.79754E-

06 

0.001341 0.993 0.0011 0.0791 

 

In addition to previous statistical indexes, there is another statistical approach to evaluate the 

reliability and accuracy of predicting algorithm, which called Leverage method. The mentioned 

approach consists of some statistical concepts such as model residuals, Hat matrix and Williams 

plot which are used for detection of suspected and outlier data. There is more description of 

Leverage method in the literature [70-72].In this method, the residuals are estimated and inputs 

are utilized to build a matrix called Hat matrix such as follow:  

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇                                                                                                                Eq. (22) 

Where X is the m×n matrix which n and m are the numbers of model parameters and samples 

respectively. 

Figure 8 illustrates the William plot for the proposed models. As shown in this figure, the most of 

data points to place in the range of leverage limit and lower and higher residuals of -3 to 3. The 

leverage limit is formulated such as following:  

𝐻∗ = 3(𝑛 + 1)/𝑚                                                                                                                Eq. (23) 
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Figure 8: Absolute deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) RBF-ANN 

Another method to investigate the validity of the models is a parametric analysis of solubility. To 

this end, the Relevancy index is introduced to investigate the impact of inputs on acid solubility. 

The Relevancy index is determined such as following[70]: 

𝑟 =
∑ (𝑛

𝑖=1 𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )(𝑌𝑖−𝑌̅)

√∑ (𝑋𝑘,𝑖−𝑋𝑘̅̅ ̅̅ )2 ∑ (𝑌𝑖−𝑌)̅̅ ̅2𝑛
𝑖=1

𝑛
𝑖=1

                                                                                               Eq. (24) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.02 0.04 0.06 0.08 0.1 0.12

S
ta

n
d

a
rd

 R
es

id
u

a
l

Hat value

Valid Data

Suspected Data

Leverage limit

Standard residual limit

(c)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.02 0.04 0.06 0.08 0.1 0.12

S
ta

n
d

a
rd

 R
es

id
u

a
l

Hat value

Valid Data

Suspected Data

Leverage limit

Standard residual limit

(d)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2019                   doi:10.20944/preprints201906.0055.v1

https://doi.org/10.20944/preprints201906.0055.v1


Which 𝑌𝑖, 𝑌̅ , 𝑋𝑘,𝑖 and 𝑋𝑘
̅̅ ̅ are the ‘i’ th output, output average, kth of input and average of input. 

The Relevancy index absolute value represent the effectiveness of the parameters on acid 

solubility. As shown in Figure 9, the molecular weight of acid has the most Relevancy factor 

between different input parameters so this parameter is known as the most effective parameters on 

acid solubility in supercritical carbon dioxide. 

 

Figure 9: Sensitivity analysis of investigated variables 

4. Conclusions 

In this paper, we have applied RBF-ANN, MLP-ANN, ANFIS-PSO and LSSVM algorithms to 

determine the different acids solubility values in supercritical carbon dioxide in terms of pressure, 

temperature and different acid structure based on a reliable databank which gathered from the 

literature. These predicting approaches can forecast acid solubility in the wide range of operating 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2019                   doi:10.20944/preprints201906.0055.v1

https://doi.org/10.20944/preprints201906.0055.v1


conditions. To prove the aforementioned acclaim, different statistical and graphical evaluations 

have been performed in the previous section. According to the obtained results from comparisons, 

the LSSVM model has the best performance respect to the others and ANFIS algorithm has the 

least of accuracy in this prediction. Also, the results of sensitivity analysis identify the molecular 

weight of the acid parameter is the most effective factor in solubility of acids in supercritical carbon 

dioxide. Based on these comprehensive investigations this manuscript has great potential and 

ability to help the researchers in their future works. 
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Nomenclature 
 

 

ANFIS Adaptive neuro-fuzzy inference system 

LSSVM Least squares support vector machine 

RBF-ANN Radial basis function artificial neural network 

MLP-ANN Multi-layer Perceptron artificial neural 

network 

PSO Particle swarm optimization 

φ(x) nonlinear function 

ω             weight    

b                bias 

ϒ           regularization parameter 

ek     support value 

K kernel function 

Z Gaussian parameter 

σ Gaussian parameter 

m One of the resulting index of ANFIS 

n One of the resulting index of ANFIS 

r One of the resulting index of ANFIS 

W inertia weight 

c learning rate 

R2 coefficient of determination 

AAD average absolute deviation 

MSE Mean squared error 

STD Standard deviation 

H Hat matrix 

H* The leverage limit 
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