Article

The scCO$_2$ storage and sealing capacity of the Janggi Basin in Korea; based on laboratory scale experiments

Jinyoung Park1,2, Minjune Yang1, Seyoon Kim1, Minhee Lee1,*, Sookyun Wang3

1 Department of Earth Environmental Sciences, Pukyong National University, Busan, Republic of Korea
2 BK21 Plus Project of the Graduate School of Earth Environmental Hazard System, Pukyong National University, Busan, Republic of Korea
3 Department of Energy Resources Engineering, Pukyong National University, Busan, Republic of Korea

* Correspondence: heelee@pknu.ac.kr; Tel.: +82-51-629-6630

Abstract: Laboratory experiments were performed to measure the supercritical CO$_2$ (scCO$_2$) storage ratio (%) of the conglomerate and sandstone in Janggi Basin, which are classified as rock in Korea available for CO$_2$ storage. The scCO$_2$ storage capacity was evaluated by direct measurement of the scCO$_2$ amount replacing pore water in a reservoir rock core. The scCO$_2$ sealing capacity of the cap rock (i.e., tuff and mudstone), was also compared by measuring the initial scCO$_2$ seepage pressure (Δp) into the rock core. The measured average scCO$_2$ storage ratio of the conglomerate and the sandstone in Janggi Basin was 30.7 % and 13.1 %, respectively, suggesting that the scCO$_2$ storage capacity is greater than 360,000 metric tons in the Janggi Basin. The initial scCO$_2$ seepage pressure of the tuff in the Janggi Basin was 15 bar and continuous scCO$_2$ injection into the tuff core occurred at Δp higher than 20 bar. For the mudstone, the initial scCO$_2$ seepage pressure was higher than 150 bar (10 times higher than that of the tuff), demonstrating that the mudstone is more suitable than the tuff to shield scCO$_2$ leakage from the reservoir rock in the Janggi Basin.

Keywords: CO$_2$ reservoir rock; CO$_2$ sealing capacity; CO$_2$ sequestration; CO$_2$ storage capacity; CO$_2$ storage ratio; supercritical CO$_2$.

1. Introduction

Eco-friendly plans and policies to reduce CO$_2$ emission are being driven forward around the world. In developed countries, CO$_2$ capture and sequestration (CCS) technology is partially commercialized and the total amount of subsurface CO$_2$ storage has been on the rise [1–4]. Since the early 2000s, the government of South Korea has been working on several projects to determine optimal CO$_2$ storage sites on the Korean peninsula and the Janggi Basin located in the southeastern part of the East Sea is currently being evaluated as one of the best onshore and/or offshore storage sites in Korea [5,6]. From geophysical and geological surveys, it is has become clear that the Miocene Janggi Basin consists of four small blocks (Guryongpo, Ocheon, Noeseongsan, and Yeongamri basins). The Noeseongsan block contains rudaceous sandstone and conglomerate layers considered promising for CO$_2$ storage sites more than 800 m deep, which also have mudstone and dacitic tuff layers above them to serve as stable shield layers [7,8]. The Korean government has a plan to inject a hundred thousand metric tons of CO$_2$ in a pilot-scale onshore CO$_2$ storage test site in 2030 and the Janggi Basin is considered a suitable place for the scCO$_2$ storage test site. During stratigraphic analysis in 2015 and 2016, four sites in the Janggi Basin were drilled by the Korea Institute of Geoscience and Mineral Resources (KIGAM), and continuous drill cores to 1,200 m in depth were collected at each site. From the previous well logging data and the geophysical exploration results,
the area of the basin is now considered to be about 10 km², and it is assumed that the practical volume of the CO₂ storage formation in Janggi Basin deeper than 800 m is about 0.025 km³ [9].

The estimation of CO₂ storage capacity of geological storage reservoirs is essential to determine reasonable CO₂ storage site candidates and is directly dependent on the practical scCO₂ amounts in non-aqueous phase that can be stored in the pore spaces of the reservoir rock after scCO₂ injection. The more water displaced by scCO₂ in the void spaces of the reservoir rock, the more CO₂ could be stored there. There are no exact definitions for scCO₂ storage capacity yet, although there are several definitions of storage capacity from previous studies [10–18]. In recent research, the scCO₂ storage capacity was generally defined as the proportion of the volume of scCO₂ stored after injection, in relation to the pore volume of the CO₂ reservoir rock [8,9]. Geological exploration and numerical simulation to determine the representative amount of scCO₂ that could be stored within the pore spaces of a specific reservoir formation have been major subjects in CO₂ sequestration (CS) studies. The scCO₂ displacement of water from pore spaces of the rock during scCO₂ injection can be influenced by various parameters, not only physical properties such as pore size, heterogeneity of the pore network, and injection pressure, but also mineralogical and geochemical reactivity. Thus, the best way to determine the scCO₂ storage amount for a specific rock formation is direct measurement of scCO₂ displacement of water under scCO₂ injection conditions. This occurs using rock cores at laboratory scale, from which the results are extended to macro scale including the entire reservoir formation [19].

The scCO₂ storage ratio (%) of a reservoir formation is one of the most general parameters used in laboratory work for evaluating the CO₂ storage amount of a formation [3,14]. The scCO₂ storage ratio is defined as that fraction of the scCO₂ amount occupying pore spaces after scCO₂ injection into a reservoir formation. It can be directly measured under scCO₂ injection conditions simulated at laboratory scale. The CO₂ storage capacity for a specific reservoir formation can be calculated by multiplying the scCO₂ storage ratio by the total void volume of the formation, ignoring the amount of dissolved CO₂. There are many benefits of direct measurement of the scCO₂ storage ratio because it represents the substantive amount of CO₂ retained in a specific storage formation under the scCO₂ injection condition. However, the number of studies on scCO₂ storage capacity based on direct measurement in the laboratory is very limited [9].

This study presents a novel technique by which to quantitatively measure the scCO₂ storage ratio under CO₂ injection conditions and to select a successful subsurface CO₂ storage test site in Korea. Laboratory experiments were performed to measure the amount of scCO₂ displacing water from the pore spaces of the sandstones and conglomerate cores sampled from 800–1000 m in the Janggi Basin, which is classified as an available CO₂ storage reservoir in Korea. The scCO₂ storage capacity of the Janggi Basin was calculated quantitatively according to the measured scCO₂ storage ratio and additional geophysical data.

The scCO₂ sealing capacity of the cap rock is another major parameter used to select successful CO₂ storage sites because it correlates to the leakage of scCO₂ during the anticipated duration of CO₂ sequestration. Layers of mudstone and dacitic tuff are repeated above the rudaceous sandstone and conglomerate layers in the Janggi Basin and it is considered that they can play the role of cap rocks to prevent the upward movement of scCO₂ from deeper reservoir rocks [21,22]. The initial seepage pressure of scCO₂ into the cap rock core surface, determined when the scCO₂ began to infiltrate the rock, was measured in the laboratory. Then, the scCO₂ sealing capacity of the mudstone and dacitic tuff was evaluated based on their initial scCO₂ seepage pressures under simulated scCO₂ injection P-T conditions. The change of mineralogical composition of the reservoir and cap rock after 90 days of scCO₂-water-rock reaction at 50 °C and 100 bar was also investigated by XRF analysis. This was done to observe the effect of scCO₂-related geochemical reactions on the shield capacity. From the experimental results on the scCO₂ storage ratio for the reservoir rock, and of the initial scCO₂ seepage pressure for the cap rock, the feasibility of the Janggi Basin as an available pilot-scale test site where a hundred thousand metric tons of CO₂ could be injected was evaluated. The results of this study will provide ideas for further quantitative research about the CO₂ storage capacity and CO₂ leakage safety based on practical measurements of the scCO₂ storage ratio and initial scCO₂ seepage pressure.
2. Materials and Methods

2.1. Preparation of the scCO$_2$ reservoir and capping rock cores

From the well logging data for four drilling sites in the Janggi Basin, rudaceous sandstone and conglomerate layers were considered available CO$_2$ storage sites and the dacitic tuff and mudstone layers overlaying them as suitable cap rock [21]. Continuous drill cores (4.2 cm average diameter) from a drilling site 1200 m deep were acquired from KIGAM. From property analysis of these cores, three rudaceous sandstone cores (JG1-S1, JG1-S2, and JG1-S3; from 930–950 m) and three conglomerate cores (JG1-C1, JG1-C2, and JG1-C3; from 950–980 m) with average porosity of 14–18% were found and they were used for measurement of the scCO$_2$ storage ratio. For the sealing cap rock, three mudstone cores (JG1-M1, JG1-M2, and JG1-M3; from 780–790 m) and three tuff cores (JG1-T1, JG1-T2, and JG1-T3; from 800–810 m) were used for the measurement of the initial scCO$_2$ seepage pressure. Each rock core used in the experiment was cylindrical without cracks or fractures (4.2 cm diameter; length 5–7 cm). The geological map showing the area around the drilling site in the Janggi Basin and the rock cores used for the experiments are shown in Fig. 1.

The CO$_2$ storage and shielding capacity of rocks depend on physico-chemical properties such as porosity, permeability, reaction rate, and mineralogical stability. The porosity of the rock cores was measured using the vacuum saturation method suggested by the International Society for Rock Mechanics (ISRM) with vacuum pressure of 1 torr and vacuum time of 80 min. For each sandstone and conglomerate core, several thin slabs (1 x 1 x 0.2 cm each) were also prepared to identify the mineral composition of each core by modal analysis. To quantify the average mineral portion of each reservoir rock, 500 locations on each thin section surface of each rock slab were observed using the point counter installed in a polarizing microscope. For each mudstone and tuff core, mineralogical and geochemical analyses were performed using XRD (X-Ray Diffractometer; X’Pert-MPD, Philips, The Netherlands), and XRF (X-Ray Fluorescence Spectrometer; XRF-1800, Shimadzu, Japan) to determine their mineralogical properties.

![Figure 1. Geological map of the area around the drilling site (JG-1: ⬤) in the Janggi Basin, Korea and photographs of rock cores (right side) used for the experiment (modified from [21]).](image-url)
2.2. Measurement of the scCO$_2$ storage ratio for the conglomerate and sandstone cores

When scCO$_2$ was injected, water filling the void spaces of the reservoir rock was not fully replaced by the scCO$_2$ because of the difference in interfacial tension between water and the scCO$_2$ (or difference in wettability). Thus, the amount of scCO$_2$ that could be stored in the subsurface reservoir rock is less than the total void space of the rock, and is affected by various physico-chemical parameters. For selection of an optimal CO$_2$ storage site, the scCO$_2$ storage capacity of rock from that specific reservoir should be estimated based on the real scCO$_2$ storage ratio. Moreover, the potential storage amount for each kind of reservoir rock should also be determined before subsurface injection of the scCO$_2$. Laboratory scale measurement of the scCO$_2$ storage ratio, displacing water from the pore spaces of Janggi sandstone and conglomerate cores under the simulated scCO$_2$ injection conditions, was performed. The experimental conditions were maintained (50 °C and 100 bar) to simulate the CO$_2$ storage conditions underground. The sandstone and conglomerate cores were cut (4.2 cm in diameter and 5–7 cm in length) and their surfaces were polished using powdered diamond paper. A high-pressure stainless steel cell was developed to measure the amount of scCO$_2$ stored in the pore spaces of each core after scCO$_2$ injection. It is difficult to measure the scCO$_2$ remaining in the pore space of the core after scCO$_2$ injection because of the leakage of the injected scCO$_2$ at the cylinder surface boundary between the cell inner wall and the rock-core wall surface. The high-pressureized cell was designed with two different walls; the inner wall was composed of a thick rubber layer (1 cm thick) and the outer wall of stainless steel. The space between the inner and the outer wall of the cell was sealed with pressurized water, which was injected from the outer part of the cell. The surface of the inner rubber wall was in tight contact with the rock core cylinder surface when the water pressure in the space was much higher than the scCO$_2$ injection pressure ($\Delta p > 100$ bar). The rock core top and bottom head surfaces were held using a screw-type steel holder with a hole in the middle for scCO$_2$ or water injection/drainage in the rock core. It was possible to shut off the bypass of injected scCO$_2$ or pore water through the boundary between the core cylinder surface and the cell inner wall, allowing the scCO$_2$ (or water) to flow only through pore spaces within the rock core. Fig. 2 shows photographs of the high-pressureized cell and the schematic diagram for the cross section of the cell used in the experiment.

![Diagram of high-pressureized cell](image-url)
For the experiment, each core was fully dried at 50 °C in an oven and then weighed. The dried core was fixed by two core holders inside the high-pressure stainless steel cell. The outer wall of the high-pressure cell was covered by a heating jacket to maintain the cell wall at the cell temperature of 50 °C. Distilled water was injected into the sealed space between the inner wall and the outer wall of the cell by a syringe pump (Isco-D260; Teledyne Isco, Inc.), which was maintained at 300–350 bar. Then the distilled water was flushed through the core at 100 bar (the injection pressure) for three pore volumes of the core to fully saturate the core with water. Next, scCO₂ was injected through the influent opening to the cell to displace water from the pore spaces of the core at 110 bar (Δp = 10 bar) while more than two pore volumes of scCO₂ were flushed from the core (assuming that displacement of water by the scCO₂ was successful). All of the effluent water was stored in a small stainless storage cell and its mass was weighed to measure the amount of water displaced by the scCO₂ in the rock core. The high-pressure stainless chamber (5 L capacity) was connected to the effluent of the cell to consider the boundary condition of the reservoir rock when the scCO₂ was flushed from the rock core in the experiment. The water in the pores was compressed as the pore pressure increased due to scCO₂ injection and enough water and/or scCO₂ volume should be provided in the chamber for the replacement of all the scCO₂ during the experiment. All of the high-pressureized cells were maintained at 50 °C and 110 bar after the CO₂ injection to simulate the subsurface CO₂ storage conditions. Fig. 3 shows the procedure of the experiment for scCO₂ exchange in the rock core.

![Figure 3. Schematic of the experiment to measure the scCO₂ storage ratio.](image)

When the amount of water drained from the core was measured, the scCO₂ storage ratio for the specific rock core under the scCO₂ injection condition (in this case, 100 bar and 50 °C) could be calculated using equation (1).

\[
\text{The scCO}_2 \text{ storage ratio (\%) for the rock } = \left(1 - \frac{W_s - W_{out}}{W_s}\right) \times 100
\]

where \(W_s\) is the volume of water saturating the core and \(W_{out}\) is the water volume displaced by scCO₂ during the scCO₂ injection.

From equation (1), the scCO₂ storage capacity of the conglomerate and the sandstone formations in the Janggi Basin were estimated via equation (2) with the volume of the stratum, the average porosity, the specific gravity of the scCO₂, and the storage ratio of scCO₂ [3,14].
2.3. Measurement of the initial scCO\textsubscript{2} seepage pressure for mudstone and dacitic tuff

When scCO\textsubscript{2} is injected into reservoir rock, it is distributed as a separate phase from water in pore spaces and begins to move slowly upward from the lower part of the reservoir rock due to buoyant force because of its lower density compared to water. Some of the injected scCO\textsubscript{2} may reach the boundary between the cap rock and the reservoir rock during continuous injection. At the early stage of scCO\textsubscript{2} injection, the amount of scCO\textsubscript{2} reaching the boundary is not much and the cap rock can prevent the intrusion of scCO\textsubscript{2} because of its low permeability. As the amount of scCO\textsubscript{2} at the boundary and its buoyant pressure increase because of continuous scCO\textsubscript{2} injection, advective and/or the diffusive intrusion of scCO\textsubscript{2} into the cap rock occurs. This pressure initiates seepage of the scCO\textsubscript{2} from the reservoir rock, threatening the leakage safety of the CO\textsubscript{2} storage site. The sealing capacity of the cap rock is directly dependent on the initial scCO\textsubscript{2} seepage (or intrusion) pressure on the cap rock surface \cite{22}. The direct measurement of the initial scCO\textsubscript{2} seepage pressure of the cap rock was performed at laboratory scale to evaluate the scCO\textsubscript{2} shielding capacity of the cap rocks in the study area. The mudstone and dacitic tuff rock cores sampled during the deep drilling expedition (from 700–800 m) at the onshore site in the Janggi Basin were used for the experiment (Fig. 1).

Rock cores without cracks or fractures were cut (4.2 cm diameter, 5–6 cm length) and were then fully dried at 50 °C in an oven. Each rock core was fixed in the high-pressureized stainless steel cell (which was used in the same way as in the previous experiment, Section 2.2). Each core was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to a large tank filled with 3 L of water and 2 L of scCO\textsubscript{2} at 100 bar and 50 °C, simulating the subsurface scCO\textsubscript{2} injection conditions. The initial scCO\textsubscript{2} seepage pressure into the rock core head (higher than 100 bar: \(\Delta p = \text{injection pressure} - 100\) bar), was controlled at the influent port with the regulator of the cell holder in the cell bottom until the scCO\textsubscript{2} begin to penetrate the rock. The scCO\textsubscript{2} injection pressure was set 110 bar and the injection pressure was increased by 10 bar until the scCO\textsubscript{2} began to penetrate the rock core head. At the outset, the scCO\textsubscript{2} injection pressure on the core head surface was set at 110 bar (\(\Delta p = 10\) bar) and any scCO\textsubscript{2} intrusion into the core was observed for 10 days. If no scCO\textsubscript{2} intrusion occurred, the injection pressure was increased by 10 bar for 10 more days to monitor any scCO\textsubscript{2} intrusion into the core. This process was repeated until the scCO\textsubscript{2} began to penetrate the rock core head. When the scCO\textsubscript{2} begin to intrude and the scCO\textsubscript{2} injection pressure started to decrease, the scCO\textsubscript{2} injection pressure was maintained until scCO\textsubscript{2} was flushed from the end of the rock core. This pressure was regarded as the initial scCO\textsubscript{2} seepage pressure (\(\Delta p\)) of the rock core. The scCO\textsubscript{2} shield capacity of each kind of cap rock core (dacitic tuffs and mudstones here) was evaluated by comparing their initial scCO\textsubscript{2} seepage pressures (\(\Delta p\)).

The mineralogical changes of mudstone and tuff were also measured to evaluate their geochemical stability for 90 days of the scCO\textsubscript{2}-water-rock reaction under CO\textsubscript{2} storage conditions (100 bar and 50 °C). The rock core was pulverized using a mortar and ten grams of powered rock materials were mixed with 100 mL of distilled water in the high-pressureized stainless steel cell (capacity of 150 mL), of which the inner wall was coated with a Teflon layer. The void spaces in the cell were filled with scCO\textsubscript{2} using a syringe pump. Then scCO\textsubscript{2}-water-rock reactions were allowed to occur in the cell at 100 bar and 50 °C, simulating the subsurface storage conditions. The total reaction time was 90 days and XRD analysis was conducted before and after the reaction to identify any mineralogical changes of the cap rock due to the scCO\textsubscript{2}-water-rock reaction.
3. Results and discussion

3.1. Measurement of the scCO$_2$ storage ratio for the conglomerate and sandstone cores

Results of the modal analyses for the rudaceous sandstone and conglomerate cores are shown in Table 1 and the photomicrographs of their thin sections are shown in Fig. 4. The conglomerate was mostly composed of rhyolitic and andesitic rock fragments (average 74.5 %), followed by quartz, clay/accessory minerals, feldspar, micas, and calcite (in descending order). The sandstone mainly consisted of quartz, rock fragments, clay/accessory minerals, feldspar, micas, and calcite. Their average proportions were 32.5 %, 23.8 %, 18.3 %, 19.4 %, 2.5 %, and 2.5 %, respectively (Table 1). From previous studies, calcite, feldspars, chlorite, micas, and clay minerals bearing Ca and Mg may control the geochemical reactions with CO$_2$ in the storage site, thereby regulating the physical properties of the reservoir rock [23–26]. The results from XRD analyses (not shown in this paper), showed mineral composition similar to that indicated by modal analysis.

![Photomicrographs of thin sections of the conglomerate (a and b) and the rudaceous sandstone (c and d); Left column: closed mode and right column: open mode; Qtz: quartz, Flds: feldspars, Cal: calcite, Bit: biotite, and Rxs: rock fragments.](image-url)
Table 1. Petrographic detrital modal analysis of the rock cores

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Quartz</th>
<th>K-feldspar</th>
<th>Plagioclase</th>
<th>Rock fragment</th>
<th>Fine matrix and clay</th>
<th>Calcite</th>
<th>Micas</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>JG1-C1</td>
<td>7.8</td>
<td>1.8</td>
<td>1.2</td>
<td>80.6</td>
<td>8.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>JG1-C2</td>
<td>17.8</td>
<td>6.6</td>
<td>4.8</td>
<td>57.4</td>
<td>10.8</td>
<td>0.4</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>JG1-C3</td>
<td>6.4</td>
<td>1.8</td>
<td>1.0</td>
<td>85.4</td>
<td>3.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Average± standard deviation</td>
<td>10.7±6.2</td>
<td>3.4±2.8</td>
<td>2.3±2.1</td>
<td>74.5±15.0</td>
<td>7.5±3.5</td>
<td>0.3±0.1</td>
<td>0.5±0.6</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>JG1-S1</td>
<td>33.6</td>
<td>8.8</td>
<td>12.0</td>
<td>24.8</td>
<td>16.0</td>
<td>2.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>JG1-S2</td>
<td>31.6</td>
<td>11.6</td>
<td>8.2</td>
<td>24.2</td>
<td>18.4</td>
<td>0.6</td>
<td>4.4</td>
<td>1.0</td>
</tr>
<tr>
<td>JG1-S3</td>
<td>32.2</td>
<td>10.4</td>
<td>7.0</td>
<td>22.4</td>
<td>20.4</td>
<td>4.6</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Average± standard deviation</td>
<td>32.5±1.0</td>
<td>10.3±1.4</td>
<td>9.1±2.6</td>
<td>23.8±1.2</td>
<td>18.3±2.2</td>
<td>2.5±0.6</td>
<td>2.5±0.2</td>
<td>1.2±0.2</td>
</tr>
<tr>
<td>JG1-M1</td>
<td>40.8</td>
<td>3.0</td>
<td>1.4</td>
<td>0.4</td>
<td>47.4</td>
<td>1.2</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>JG1-M2</td>
<td>43.8</td>
<td>2.8</td>
<td>0.6</td>
<td>0.0</td>
<td>47.4</td>
<td>0.4</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>JG1-M3</td>
<td>33.6</td>
<td>2.4</td>
<td>0.4</td>
<td>0.2</td>
<td>58.6</td>
<td>0.2</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Average± standard deviation</td>
<td>39.4±5.2</td>
<td>2.7±0.3</td>
<td>0.8±0.5</td>
<td>0.2±0.2</td>
<td>51.1±6.5</td>
<td>0.6±0.5</td>
<td>2.4±0.2</td>
<td>2.7±0.4</td>
</tr>
<tr>
<td>JG1-T1</td>
<td>26.0</td>
<td>12.2</td>
<td>11.6</td>
<td>18.6</td>
<td>19.6</td>
<td>1.4</td>
<td>3.8</td>
<td>6.8</td>
</tr>
<tr>
<td>JG1-T2</td>
<td>19.4</td>
<td>10.4</td>
<td>14.8</td>
<td>11.6</td>
<td>32.4</td>
<td>1.2</td>
<td>4.2</td>
<td>6.0</td>
</tr>
<tr>
<td>JG1-T3</td>
<td>24.5</td>
<td>9.7</td>
<td>13.2</td>
<td>16.7</td>
<td>22.0</td>
<td>2.4</td>
<td>3.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Average± standard deviation</td>
<td>23.3±3.5</td>
<td>10.8±1.3</td>
<td>13.2±1.6</td>
<td>15.6±3.6</td>
<td>24.7±6.8</td>
<td>1.7±0.6</td>
<td>3.7±0.6</td>
<td>7.1±1.2</td>
</tr>
</tbody>
</table>

* JG1-C: conglomerate cores; JG1-S: rudaceous sandstone cores, JG1-M: mudstone cores and JG1-T: dacitic tuff cores.

The porosity of the conglomerate and the sandstone cores were measured and are shown in Table 2. The average porosity of the conglomerate and the rudaceous sandstone was 17.8 % and 14.5 %, respectively, suggesting that they fall within the porosity range of typical CO₂ storage formations in other places, where large amounts of scCO₂ have been injected [20,27–32]. At 110 bar of the initial scCO₂ injection pressure condition (Δp = 10 bar between the injection pressure and the pore water pressure in the core), scCO₂ intruded into the rock core fixed in the cell and began to displace water from the pore spaces of the core. More than two pore volumes of scCO₂ was flushed out from the core at 110 bar (Δp = 10 bar). Then the scCO₂ storage ratio of each conglomerate and sandstone core was measured and their averages are shown in Table 2. The calculated average scCO₂ storage ratio of the Janggi conglomerates was 30.7 %, suggesting that 30.7 % of the void space in the conglomerate was...
filled with scCO$_2$ while the pressure difference between the scCO$_2$ injection and the pore water was maintained at 10 bar. The average scCO$_2$ storage ratio of rudaceous sandstones was 13.0 %, which was about two-fifths that of the conglomerate. From these results, both kinds of rock had great capability for storing CO$_2$ in their pore spaces, but the conglomerate was considered a better option for the CO$_2$ storage site than was the rudaceous sandstone.

The scCO$_2$ storage ratio values were used for the estimation of the CO$_2$ storage capacity for the Janggi Basin (Table 3). From previous studies [21], it was known that the Janggi Basin extends horizontally over about 0.25 km2 below the depth of 800 m and that the thickness of both the conglomerate and sandstone layers available for the CO$_2$ reservoir was 100 m (about 1:1 ratio), assuming that the maximum volume of the CO$_2$ storage formation in the Janggi Basin under 800 m in depth is about 0.025 km3. The parameter values used to calculate the CO$_2$ storage capacity and the calculated scCO$_2$ capacity for the two formations are shown in Table 3. The scCO$_2$ storage capacity of the reservoir rocks around the probable scCO$_2$ injection site in Janggi Basin was calculated to be 368,742 metric tons, demonstrating that the conglomerate and sandstone formations in Janggi Basin have great potential for use as a pilot test site for CO$_2$ storage in Korea (to receive more than 100,000 metric tons of CO$_2$ injection at the test storage site).

Table 2. The scCO$_2$ storage ratios of conglomerate and rudaceous sandstone cores at the Janggi Basin

<table>
<thead>
<tr>
<th>Core number</th>
<th>Rock type</th>
<th>Porosity (%)</th>
<th>The scCO$_2$ storage ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JG1-C1</td>
<td>Conglomerate</td>
<td>19.23</td>
<td>23.56</td>
</tr>
<tr>
<td>JG1-C2</td>
<td>Conglomerate</td>
<td>18.92</td>
<td>35.41</td>
</tr>
<tr>
<td>JG1-C3</td>
<td>Conglomerate</td>
<td>15.12</td>
<td>31.20</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>17.76</td>
<td>30.72</td>
</tr>
<tr>
<td>JG1-S1</td>
<td>Rudaceous sandstone</td>
<td>10.54</td>
<td>13.12</td>
</tr>
<tr>
<td>JG1-S2</td>
<td>Rudaceous sandstone</td>
<td>16.44</td>
<td>16.28</td>
</tr>
<tr>
<td>JG1-S3</td>
<td>Rudaceous sandstone</td>
<td>17.26</td>
<td>9.64</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>14.75</td>
<td>13.01</td>
</tr>
</tbody>
</table>

Table 3. The scCO$_2$ storage capacity of conglomerate and rudaceous formations at the Janggi Basin (unit: metric ton)

<table>
<thead>
<tr>
<th>Rock type</th>
<th>The calculated scCO$_2$ storage amount for conglomerate and rudaceous formation (metric ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conglomerate</td>
<td>V(50m x 250m x 1000m) x ϕ x $p^*(400 \text{ kg/m}^3) x \varepsilon$ = 272,793.6</td>
</tr>
<tr>
<td>Rudaceous sandstone</td>
<td>V(50m x 250m x 1000m) x ϕ x $p^*(400 \text{ kg/m}^3) x \varepsilon$ = 95948.8</td>
</tr>
</tbody>
</table>

* Density of scCO$_2$ at 100 bar and 50 °C (from [33,34])

3.2. Measurement of the initial scCO$_2$ seepage pressure for mudstone and dacitic tuff

The mineralogical changes of the mudstone and the dacitic tuff after 90 days of scCO$_2$-water-rock reaction were investigated by XRF analyses and their results are shown in Table 4. The results indicated that even after 90 days of reaction, the proportions of the major constituents of the two kinds of rock were not significantly changed except for a minor decrease of SiO$_2$ and CaO. These originated from increased dissolution of calcite, Ca-feldspar, and Ca-bearing silicates (Table 4). It is...
suggested that the mudstone and the dacitic tuff in the Janggi Basin is likely to maintain significant stability against scCO$_2$-involved geochemical reactions during CO$_2$ storage.

Table 4. XRF analysis of mudstone and dacitic tuff before and after 90 days of scCO$_2$-water-rock reaction

<table>
<thead>
<tr>
<th>Composition</th>
<th>JG1-M1 Before</th>
<th>JG1-M1 After 90 day reaction</th>
<th>JG1-M2 Before</th>
<th>JG1-M2 After 90 day reaction</th>
<th>JG1-T1 Before</th>
<th>JG1-T1 After 90 day reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>57.2</td>
<td>56.51</td>
<td>56.36</td>
<td>55.65</td>
<td>57.28</td>
<td>56.76</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>20.84</td>
<td>20.89</td>
<td>17.88</td>
<td>17.94</td>
<td>18.54</td>
<td>18.69</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.78</td>
<td>0.78</td>
<td>0.62</td>
<td>0.62</td>
<td>0.79</td>
<td>0.76</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>5.32</td>
<td>5.29</td>
<td>4.99</td>
<td>5.06</td>
<td>8.06</td>
<td>8.19</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.08</td>
<td>0.12</td>
<td>0.12</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>0.79</td>
<td>0.92</td>
<td>0.71</td>
<td>0.81</td>
<td>2.02</td>
<td>1.98</td>
</tr>
<tr>
<td>CaO</td>
<td>1.14</td>
<td>1.08</td>
<td>1.16</td>
<td>1.09</td>
<td>4.27</td>
<td>3.61</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1.63</td>
<td>1.73</td>
<td>1.32</td>
<td>1.36</td>
<td>2.98</td>
<td>3.00</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2.30</td>
<td>2.40</td>
<td>2.04</td>
<td>2.09</td>
<td>1.15</td>
<td>1.04</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.09</td>
<td>0.09</td>
<td>0.15</td>
<td>0.15</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>LOI</td>
<td>9.61</td>
<td>10.07</td>
<td>14.44</td>
<td>14.96</td>
<td>4.37</td>
<td>5.23</td>
</tr>
<tr>
<td>Total</td>
<td>99.8</td>
<td>99.85</td>
<td>99.79</td>
<td>99.85</td>
<td>99.84</td>
<td>99.87</td>
</tr>
</tbody>
</table>

Results from the measurement of the initial scCO$_2$ seepage pressure (Δp) for the mudstone and the tuff core are shown in Fig. 5. For all of the tuff cores, the scCO$_2$ began to intrude into the rock core at 115 bar (Δp = 15 bar) and continuous scCO$_2$ injection into the core occurred at Δp higher than 20 bar. This suggests that the initial scCO$_2$ seepage pressure (Δp) of the dacitic tuff ranged from 15 to 20 bar under the conditions of 100 bar and 50 °C. In the tuff cores, 8–10 % of the void space (0.7–0.9 mL) was filled by scCO$_2$ at Δp higher than 20 bar. In a previous study (Kim et al. 2019), the average initial scCO$_2$ seepage pressure of the sandstone and conglomerate in the Janggi Basin was lower than 10 bar (mostly < 5 bar), which was less than one-third that for the dacitic tuff. For the mudstone cores in the Janggi Basin, the scCO$_2$ did not penetrate the core surface and the stored scCO$_2$ was less than 0.005 mL even when the injection pressure was 250 bar (Δp = 150 bar) for 30 days. This suggests that the initial scCO$_2$ seepage pressure for the mudstone core was much higher than 150 bar (10 times higher than for the tuff). Based on the initial scCO$_2$ seepage pressure, the mudstone formation in Janggi Basin was much more suitable than the tuff formation as a shield to scCO$_2$ leakage from the reservoir rock.

Fig. 5. Initial scCO$_2$ seepage pressure (Δp) and the volume of scCO$_2$ stored in mudstone and dacitic tuff cores.
4. Conclusions

One of the main issues for the geological sequestration of CO$_2$ has been how to determine an
optimal storage site and what the main parameters for consideration should be. During the last two
decades, evaluation of the storage capacity and the leakage safety has been considered essential for
optimal storage site selection. However, only rough estimations were made of the reservoir and the
capping rock using conventional parameters such as porosity and permeability, and/or by using
large-scale information acquired from geophysical exploration and geological field observation. The
quantitative evaluation of CO$_2$ storage capacity and of the risk of CO$_2$ leakage has been very limited
even at laboratory scale. This study presents an easy and effective technique by which to evaluate the
CO$_2$ capacity of reservoir rock and the leakage safety of the cap rock for a specific CO$_2$ storage site.

The scale-up estimation of the CO$_2$ storage capacity for the conglomerate and the rudaceous
sandstone in the Janggi Basin of Korea was performed based on direct measurement of the scCO$_2$
storage ratio. The safety risk of scCO$_2$ leakage for cap rock of dacitic tuff and mudstone in the Janggi
Basin was also quantitatively evaluated by measuring the initial scCO$_2$ seepage pressure. The
experimental results successfully demonstrated that the conglomerate and sandstone formations of
the Janggi Basin are suitable as a geological storage test site for injection of a hundred thousand tons
of CO$_2$. It was also verified that the mudstone formation in the Janggi Basin is adequate to prevent
the seepage of buoyant scCO$_2$ from the reservoir site because its high initial seepage pressure
(difference between the pore water pressure of the mudstone and the scCO$_2$ injection pressure: Δp)
was higher than 150 bar. The quantitative measurement of the scCO$_2$ storage ratio and the initial
scCO$_2$ seepage pressure applied in this study can be used to determine practicable CO$_2$ storage sites
and could also provide meaningful information for future decisions regarding scCO$_2$ injection
conditions.

Acknowledgments: This research was supported by a grant (16CTAP-C115166-01) from the Technology
Advancement Research Program (TARP) funded by the Ministry of Land, Infrastructure, and Transport of the
Korean government. The authors would like to express their gratitude to the anonymous reviewers for their
critical comments and advice.

Author Contributions: Minhee Lee and Jinyoung Park conceived and designed the methodology and the
experiments; Jinyoung Park, Minhee Lee and Seyoon Kim performed the experiments and the data analyses;
Sookyun Wang and Minjune Yang contributed materials and data interpretation; Minhee Lee wrote the paper
to prepare the submission.

Conflicts of Interest: The authors declare no conflict of interest.
References

