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Abstract: This research describes numerical methods to analyze the absolute transport demand of 
cyclists and then to quantify the road network weaknesses of a city with the aim to identify 
infrastructure improvements in favor of cyclists. The methods are based on a combination of bicycle 
counts and map-matched GPS traces and are demonstrated with the city of Bologna, Italy: the 
dataset is based on approximately 27,500 GPS traces from cyclists, recorded over a period of one 
month on a volunteer basis using a smartphone application. A first method estimates absolute, city-
wide bicycle flows, by scaling map-matched bicycle flows of the entire network to manual and 
instrumental bicycle counts of the main bikeways of the city. As there is a good correlation between 
the two sources of flow data, the absolute bike-flows on the entire network have been correctly 
estimated.  
A second method describes a novel link-deviation index, which quantifies for each network edge 
the total deviation generated for cyclists in terms of extra distances traveled with respect to the 
shortest possible route. The deviations are accepted by cyclists either to avoid unpleasant road 
attributes along the shortest route or to experience more favorable road attributes along the chosen 
route. The link deviation index indicates the planner which road links are contributing most to the 
total deviation of all cyclists – in this way, repelling and attracting road attributes for cyclists can be 
identified. This is why the deviation index is of practical help to prioritize bike infrastructure 
construction on individual road network links.  
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1. Introduction 

Congestion of motorized traffic is one of the major problem for urban mobility, producing 
negative outcomes at economic, social and environmental level. In recent years, due to congestion, 
air pollution, climate change, energy scarcity and physical inactivity, an increasing importance has 
been attributed to sustainable transport modes, and in particular to cycling. Municipalities have 
drawn attention to these issues and started to implement different strategies to encourage a greater 
usage of bicycles on urban streets and to reduce car trips. In particular, many cities have decided to 
invest in the construction of quality bikeways with the intention to incentivize people to cycle even 
medium (and long) distance on a daily basis. Data on cycling volumes help to support this decision 
making; researchers have investigated the factors that influences ridership [1-15]. This data can be 
collected by the use of traditional manual or instrumental counts [3,11], which are characterized by 
some drawbacks. Traditional manual counts lack spatial detail and temporal coverage. Instrumental 
and permanent count stations do provide continuous data, but cover typically only a small number 
sections of the road network. More recently, the widespread use of smartphones and mobile 
applications for self-localization and navigation has increased the availability of observed cyclists’ 
data [8-10, 12-15]. This type of data provides detailed information about the origin/destination of the 
trips as well as the chosen routes.  
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This paper explains how to estimate the city-wide bicycle flows and how to identify weak points 
of the road network in terms of bicycle friendliness. Both methods are data driven, explicit and do 
not require the calibration of sophisticated models. 

The methods are demonstrated for the city of Bologna, Italy, where bicycle flow-monitoring 
campaigns were conducted from 2009 to 2018. In order to show the importance of the relation 
between bikeway construction and bicycle flows, the measured flows are presented in function of 
bikeway meters per inhabitant. Cycling counts are compared with map-matched GPS traces recorded 
by a smartphone application to study the correlation between the two data sources. One of the main 
problems with GPS data is the representativeness of the data, because data collection is usually 
provided on a volunteer basis, which is not necessarily representative for the entire population [13]. 
Another problem is the level of detail of the network: in many cases, the success of identifying the 
correct network links from GPS points is limited if the bike network model is not sufficiently detailed 
[14, 15]. In the present work, care has been taken to obtain a realistic model of the bicycle network. 
The resulting good correlation between bicycle counts and map-matched GPS traces is exploited to 
reconstruct the absolute cyclists’ flows on all links of the analyzed road network, thus allowing to 
quantify the distribution of the ridership in Bologna.  

The paper is organized as follows: section 2 describes the study area and the features of the bike 
network. Section 3 depicts the bicycle flows obtained by traditional (manual and instrumental) 
counting methods and by GPS data collected by smartphone application. Moreover, section 3 
identifies a correlation between cycling counts and GPS data and describes the bicycle flow 
reconstruction method. In section 4 a deviation analysis is carried out. Concluding remarks and 
future research directions are presented in section 5. 

2. Dataset description 

2.1. Study area 

Bologna is a northern Italian city with approximately 390,000 inhabitants [16]. The climate is 
convenient for cycling all year, with an annual average temperature slightly below 15°C and low 
rainfall (about 700 mm rain/year and 74 days of rain per year).  

The home-to-work bicycle mode share was 8.2% in 2011 [17], which is relatively high compared 
with other medium to large Italian cities. Nevertheless, the car ownership equals 0.515 cars per 
inhabitant [16], which corresponds to 0.97 cars per household. 

2.2. Bicycle network 

The Municipality of Bologna has made substantial investments in bikeways during the past 
decade and to date the city offers 129 km bikeways of different types: exclusive access and mixed 
access with pedestrians or buses [16]. The bicycle network layout is composed of 13 main radial 
bicycle paths, connecting the suburbs to the city center, and of many other bikeways connecting the 
radial bike-paths. The bikeway meters per citizen increased by 45% starting with 0.228 m/citizen in 
the year 2009 and reaching 0.330 m/citizen in 2018 [16]. This is an almost linearly-increasing 
expansion of the cycling infrastructure.  

3. Bicycle flow analysis 

3.1. Cyclists’ flows from traditional counting methods 

In the period 2009-2018, manual and instrumental counts of cyclists were carried out by DICAM-
Transport of the University of Bologna [18]: the bicycle counts had been conducted from September 
to October of each year. In recent years, counting has also been performed in May with the aim to 
evaluate the difference in bicycle flows of different periods of the same year. Locations of bicycle 
counters had been selected adopting representative and targeted locations: the sites include different 
geographic areas of the city, different types of bikeways as well as “pinch points” (i.e. locations where 
cyclists must converge to cross a barrier) [11]. The 46 (bidirectional) road-sections monitored in 2018 
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are showed in figure 1, highlighting the spatial distribution of measurement points. The monitored 
road-sections included the 13 main radial bicycle paths. 

 

 
 

Figure 1. Road sections monitored in 2018. 

Manual and instrumental counting was conducted at each road section from 8:30 a.m. to 10:30 
a.m. on weekdays. The trips purpose during this time period is most likely “work” or “study” and 
trips with both do have a clear destination, thus excluding round-trips or random trips for recreation 
purposes. The total average flows have increased between 2009 and 2018 by approximately 75%, 
which is significantly greater than the increase in bikeway meters per inhabitant in the same period. 

Fig. 2 shows the correlation between bikeway meters per inhabitant and the total average bicycle 
flows: each point represents one year from 2009 to 2018. 

 

 
 

Figure 2. Regression function between length of cycleways for inhabitant and bike flows. 

As shown in Fig. 2, the total average bike flows are positively and highly correlated with the 
length of cycleways per inhabitant (R2 = 0.96). In the city of Bologna, people use bicycles more often 
than in the past. Surely, such an increase in cycling is determined, like in other cities, by an integrated 
package of many different, complementary measures, including infrastructure provision, pro-bicycle 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2019                   doi:10.20944/preprints201906.0041.v1

Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 322; doi:10.3390/ijgi8080322

https://doi.org/10.20944/preprints201906.0041.v1
https://doi.org/10.3390/ijgi8080322


 4 of 10 

 

programs, supportive land use planning and restrictions of car use [19]. However, today’s bicycle 
network of Bologna connects the most popular origins and destinations and, as a result, the expansion 
of the cycling network has been perceived as an increased level of safety. The increasing bicycle use 
is also related to an increasing bicycle use of females, growing from a share of below 30% in 2009 to 
a share of 44% in 2018 [18].  

Using the regression function of figure 2, we can make the hypothesis that the addition of one 
bikeway centimeter per inhabitant generates an increase of about 100 cyclists per hour on the main 
sections of Bologna’s bicycle network. Based on the length increase of the bicycle network, the 
estimated bicycle mode share is currently around 10%, following the model proposed by Schweizer 
and Rupi [20].  

3.2. Map matched cyclists’ volumes 

A database with GPS traces has been obtained from a data collection initiative called the 
“European Cycling Challenge ECC” [21] which took place in May 2016. In particular, the city of 
Bologna participated in this initiative among other 51 cities from 18 European countries. In Bologna, 
1123 participants, equal to 0.3% of the population, recorded the GPS traces of their bicycle trips 
during the month of May 2016 by means of a mobile phone application. The participation has been 
on a volunteer basis. The total distance travelled by all participating cyclists has been almost 200,000 
km and the database contains over 7,998,000 GPS points, with 27,348 individual trips, covering the 
entire road network of Bologna. 

In addition, information regarding the bike users has been provided, such as gender, age and 
profession: in particular, 40% of the sample were female, matching well with the share of females 
observed during the manual counts. Consequently, the sample of cyclists recording the GPS traces is 
representative for the gender of the counted cyclists. 

The analysis focuses only on morning trips from 8:30 a.m. to 10:30 a.m. during work-days in 
order to obtain flow values comparable with manual and instrumental bicycle counts. In order to 
obtain bicycle flows on network links, the GPS data has been matched to the road-network, obtained 
by converting Open Street Map data into a SUMO network, as reported in Rupi and Schweizer [14]. 
The SUMO network has been manually corrected and enhanced, such that cyclists could potentially 
pass everywhere, including footpaths and the opposite direction of one-way roads (which is an 
“illegal” behavior in Italy). The final network contains 13,959 nodes and 38,324 links. In order to 
match the GPS points to network links with a high accuracy and to obtain a large number of correctly 
matched GPS traces, the entire map-matching analysis consists of 4 phases: (i) an initial filtering 
process, (ii) the actual map matching process itself, (iii) a post-filtering process and (iv) a final analysis 
of the matched routes. The employed map matching algorithm is based on a method proposed by 
Marchal et al. [22] and improved by Schweizer et al. [23]. Initially, many GPS traces could not be 
matched to the network due to missing links or missing access. Successively, the reasons for the failed 
matching of the trips have been analyzed in detail and missing network links or road access attributes 
have been added. Successively the mapmatching process has been repeated with a higher number of 
successfully matched trips. 

After the map-matching process and a quality ensuring filtering process, 4,029 map-matched 
routes, collected from 842 users, have been used. These traces correspond to 91.6% of all traces 
recorded during the considered morning. It is worth mentioning that this is a significantly higher 
percentage than reported in other studies [14, 15]. Starting from these map-matched routes, the 
bicycle flows (as number of cyclists passing through each network link per hour) have been 
evaluated. 

3.3. Estimated cyclists’ volumes 

A linear regression between the manually and instrumentally counted cyclists and map matched 
GPS traces in the monitored road sections has been carried out. The map matched bicycle volumes 
have been multiplied by a coefficient c in order to minimize the difference between the measured 
flows and flows derived from GPS data. 
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The regression, shown in Fig. 3, is based on the flow-comparison at 23 monitored sections (c = 
0.91).  

 
 

 
 

Figure 3. Regression function between manually counted cyclists’ volumes and map matched cyclists’ 
volumes (May 2016). 

The slope of the linear regression function is almost equal to one, highlighting that the average 
of map-matched cyclist-volumes are equal to the average of manually counted cyclist -volumes.  

The relatively high degree of correlation between the measured flows and the flows from the 
map matched GPS traces is evident (R2 = 0.73). This result is significantly better than the results 
obtained by other studies; i.e., Jestico et al. [10] have obtained an R2 equal to 0.4 for the a.m. peak 
period. The reason for this difference is likely due to the more detailed representation of the Bologna 
road network, representing more precisely cyclists’ freedom to move on all links in both directions. 
Based on this correlation, one crowdsourced cyclist corresponds in average to 59 cyclists at a count 
station, which is consistent with previous findings in [10]. 

Although crowdsourced cyclists represent a small portion of all cyclists, the flows obtained from 
the map matched GPS data are consistent with the observed flows on the main sections of the Bologna 
cycle network. Given the good correlation between GPS dataset of year 2016 and 
manual/instrumental counts, the linear relation between both flow types has been used to determine 
the flows on all network links where GPS points have been detected. The resulting link flows in 
cyclists per hour per direction are shown in the Fig. 4. This map is particularly useful to quantify the 
spatial distribution of ridership and provide important cycling exposure data for safety studies. 
Starting from this map, it is possible to obtain the OD matrix of cyclists, the chosen routes and the 
bicycle flow on every link of the network - essential data for modelling the cyclists’ route choice 
behavior and for planning the bicycle network. 
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Fig. 4. Estimated bicycle flows in cyclists per hour during workday morning peak hours (from 8:30 to 
10:30). Flows only on network links where GPS points have been detected. 

4. Deviation analysis 

The deviation analysis aims at identifying the network links which are the most avoided by all 
cyclists who registered GPS traces. The analysis starts with the following basic assumption: given the 
choice of two routes with identical properties (same safety, pavement, environment, etc.), cyclists 
would always choose the shortest one. If this is true, the cyclist would only accept a longer route if it 
offers better properties (safer, quieter, etc.). From a different perspective, if certain road links are 
avoided by deviating on alternative links, then the avoided links are supposed to possess less 
attractive characteristics, even though these characteristics may be good in the absolute sense. In an 
ideal bicycle network, no cyclists should feel constraint to take a longer route due to some repelling 
characteristics of the shortest route or due to better characteristics of longer routes. The most 
“avoided links” of the city’s road network are therefore identified with the km of deviation caused 
to cyclists. The deviation index for each road link is calculated in the following way: 

1. For all matched routes, calculate the shortest route by connecting the first and last edge of 
each matched route. 

2. For each matched route, identify all non-overlapping sections where links deviate from the 
shortest route. 

3. For each of these non-overlapping sections, calculate the partial deviation which is the 
difference between the length of the part of the chosen route and the length of the 
corresponding part of the shortest route; add the partial deviation to the deviation indexes 
of all links on the shortest route of this section, see also illustration of Fig. 5. 
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Figure 5. Illustration of the calculation of the deviation index for the non-overlapping route section 
between nodes A and B. 

Fig. 5 shows links 1, 2 and 3 which, despite they are part of the shortest route, are not chosen 
(solid line); whereas, links 4, 5 and 6 are part of the chosen route (dashed line). With the non-
overlapping section between node A and B shown in Fig. 5, the chosen route is constituted also by 
links 4, 5 and 6, while the shortest route contains links 1, 2 and 3. If Li is the length of generic link i, 
then the partial deviation attributed to links 1, 2 and 3 equals to L4 + L5 + L6 - ( L1 + L2 + L3).The 
deviation index of a road link is the sum of all partial deviations received from all non-overlapping 
sections of all matched trips. The deviation index for the central part of Bologna network is shown in 
Fig. 6. 

 
Figure 6. Deviation index determined for the central part of Bologna network. 

The highest deviation index can been seen on the main radial roads from and into the city center. 
As seen in Fig. 4, these are also roads with high bicycle flows. This means that many cyclists actually 
do use theses radial roads but also many try to avoid them. Note that there are also roads in the city 
center with high bicycle flows, but generating almost no deviations. The deviation index quantifies 
the deviations generated by road links but does not identify the reasons for the deviations. However, 
it is evident that those radial roads with high bike flows and high deviations are characterized by an 
absence of reserved bike lanes, a high level of bus traffic, often on reserved bus lanes, and a high 
density of intersections. In contrast, roads where bicycle flows are high but deviations are low, are 
generally less trafficated, often provide bike lanes and are not part of major bus routes.  
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Analysing the road attributes of the chosen part and the shortest part of all non-overlapping 
sections of all trips, the causes for the deviations become clearer, see first 3 columns of Tab. 1. As 
expected, cyclists accept deviations in order to travel on roads with: 1.) a high share of reserved 
bikeways, 2.) a low priority (roads with one lane per direction and speed limits of 30km/h), 3.) a low 
intersection density and 4.) a low share of mixed access, such as bike&bus or bike&pedestrians. In 
average, the chosen route-parts are 20% longer with respect to the shortest route-parts. 

The statistics of the road link attributes of the overlapping sections of each trip (i.e. all links 
where chosen and shortest routes coincide) are presented in the last column of Tab.1. It becomes 
evident that the values of the mixed road access share, the reserved bikeway share and the 
intersection density are in between the values of the shortest route (column 1) and the chosen route 
(column 2) of the non-overlapping sections. One could conclude that cyclists tend to deviate if road 
attribute values are below/above those of the overlapping sections. An exception is the low priority 
road share, where the overlapping sections show values even below the one of the shortest route. 

Table 1. Road link attributes of chosen and shortest routes of non-overlapping sections and on overlapping sections. 

 Non-overlapping sections 
Overlapping 

sections 

 Shortest 
route 

Chosen route Chosen vs 
Shortest 

Chosen and 
shortest route 

Total length [km] 8265 9975 +20.7% 7130 
Mixed road access share 32.6% 25.7% -21.2% 28.4% 
Low priority road share 50.0% 74.1% +48.2% 40.2% 
Reserved bikeway share 16.4% 39.2% +139.0% 23.5% 
Intersection density [1/km] 18.5 15.9 -14.2% 16.1 

However, the deviation index depends on the presence of route alternatives to the shortest route, 
and their respective road attributes: in case there are no feasible route alternatives to deviate a certain 
link, then the deviation index of the respective link is zero, even though attributes are unfavourable. 
In case the shortest route has favourable link attributes, but the alternative has even more favourable 
link attributes then the deviation index is high, despite the good conditions on the shortest route. The 
former case is the most severe as criticalities of unfavourable roads for cyclists without route 
alternatives remain undiscovered by the deviation analysis. 

5. Conclusions 

In this research, the cyclists’ flows obtained by traditional counting methods have been 
compared with GPS traces from smartphone at the same locations and during the same time period.  

Although crowdsourced cyclists represent often a small portion of all cyclists, they do represent 
well the ridership of Bologna in terms of cyclists’ volumes and gender distribution. This result 
emerges clearly by comparing traditional counting method with GPS traces, confirming their 
representativeness of the population. The correlation between cycling counts and GPS data collected 
by smartphones has been relatively high, with an R2 value of 0.73. This correlation is significantly 
higher than the results obtained by other studies, most likely due to the more detailed representation 
of the Bologna network, including footpaths in parks and the possibility to cycle one-way roads in 
both directions. Due to this good correlation, it has been possible to estimate the absolute bicycle 
flows on all network links by an appropriate scaling of the map-matched flows. The cyclists’ routes 
are of great value for cycling infrastructure planning and the drafting of cycling policies. The 
proposed method, which combines bicycle counts at a few main road sections with area covering 
GPS traces, can readily be applied in other cities in order to reliably estimate the absolute bike flows 
of an entire urban area. 

GPS data have been further used to determine the deviation index, which counts the total 
deviations that a road link causes to cyclists. The deviation index is useful to identify weak links of 
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the cycling network, but it does not identify the reason why certain road links are avoided. However, 
applying the deviation index to the Bologna road network, the highest deviation index have been 
seen on trafficked roads without physically protected bike lane. Also roads with reserved bus lanes, 
which are open for bicycles too, showed high deviation rates. Further analyses of chosen and shortest 
road sections have shown that cyclists are willing to make deviations when the alternative route 
provides a high share of reserved bikeways, a high share of low-priority lanes, a low intersection 
density and a low share of roads with mixed traffic (with buses and pedestrians). Obviously the 
deviation index does not reveal deviations if there are no alternatives to avoid a certain road link.  

In future works, the representativeness of the results could be improved by statistically 
weighting the GPS traces according to different person attributes, such as occupation, gender or age. 
The deviation index of an individual link could be modelled by a linear combination of link attributes 
such as the presence of reserved bikeways, reserved bus lanes, vehicle flows-rates etc. Further 
research can combine an alternative routes analysis with the cyclists’ preferences revealed by the 
deviation index, in order to identify edges which prioritize intervention.  

Author Contributions: Study conceptualization, Federico Rupi and Joerg Schweizer; Methodology, Federico 
Rupi and Joerg Schweizer; Programming and data retrieval, Federico Rupi, Joerg Schweizer and Cristian 
Poliziani; Formal GIS analysis, Joerg Schweizer and Cristian Poliziani; Writing—review and editing, Federico 
Rupi, Joerg Schweizer and Cristian Poliziani. 

Funding: Open access funding provided by Department of Civil, Chemical, Environmental, and Materials 
Engineering (DICAM)—University of Bologna. 

Acknowledgments: We are grateful to SRM Bologna srl for providing the GPS data of the European Cycling 
Challenge 2016. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Dill, J., K. Voros. Factors Affecting Bicycling Demand: Initial Survey Findings from the Portland, Oregon, Region. 
Transportation Research Record 2007, 44 (2031), 9–17 

2. Stinson, M. Bhat, C. Commuter Bicyclist Route Choice: Analysis using a Stated Preference Survey. In 
Transportation Research Record 2003, 39 (1828), 107-115 

3. Niemeier, D. A. Longitudinal Analysis of Bicycle Count Variability: Results and Modeling Implications. Journal 
of Transportation Engineering 1996, 122(3), 220-206 

4. Rossi, R., Mantuano, A., Pascucci, F., Rupi, F. Fitting time headway and speed distributions for bicycles on 
separate bicycle lanes. Transportation Research Procedia 2017, 27, 19-26 

5. Nelson, A. C., Allen, D. If you build them commuters will use them – association between bicycle facilities and 
bicycle commuting. Transportation Research Record 1997, 1578, 79-83 

6. Dill, J., Carr, T. Bicycle Commuting facilities in major US cities: if you build them commuters will use them – another 
look. Transportation Research Record 2003, 1828, 116-123. 

7. Bernardi, S., Krizek, K.J., Rupi, F. Quantifying the role of disturbances and speeds on separated bicycle facilities. 
Journal of Transport and Land Use 2016, 9(2), 105-119. 

8. Bernardi, S., La Paix-Puello, L., Geurs, K. Modelling route choice of Dutch cyclists using smartphone data. Journal 
of Transport and Land Use 2018, 11(1), 883-900 

9. Pritchard, R., Frøyen, Y. K., Bernhard, S. Bicycle Level of Service for Route Choice—A GIS Evaluation of Four 
Existing Indicators with Empirical Data. International Journal of Geo-Information 2019, 8(5),1-19 

10. Jestico, B., Nelson, T., Winters, M. Mapping ridership using crowdsourced cycling data. Journal of Transport 
Geography 2016, 52, 90-97 

11. Ryus, P., Ferguson, E., Laustsen, K. M., Schneider, R. J., Proulx, F. R., Hull, T., Miranda-Moreno, L. 
Guidebook on Pedestrian and Bicycle Volume Data Collection. National Cooperative Highway Research 
Program Report 2014, 797. 

12. Casello, J.M., Usyukov, V. Modeling cyclists' route choice based on GPS data. Transportation Research Record 
2014, 2430, 155-161 

13. Watkins, K., Ammanamanchi, R., LaMondia, V., Le Dantec, C. A. Comparison of Smartphone-based Cyclists 
GPS Data Sources. Transportation Research Board 2016, 16-5309 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2019                   doi:10.20944/preprints201906.0041.v1

Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 322; doi:10.3390/ijgi8080322

https://doi.org/10.20944/preprints201906.0041.v1
https://doi.org/10.3390/ijgi8080322


 10 of 10 

 

14. Rupi, F., Schweizer, J. Evaluating cyclist patterns using GPS data from smartphones. ITE Intelligent Transport 
Systems 2018, 12 (4), 279 - 285 

15. Khatri, R., Cherry, C. R., Nambisan, S. S., Han, L. D. Modeling Route Choice of Utilitarian Bikeshare Users with 
GPS Data. Transportation Research Record 2016, 2587, 141-149 

16. Municipality of Bologna, Statistics, https://www.comune.bologna.it/iperbole/piancont/dati.html 
17. ISTAT Statistics https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/popolazione-e-

abitazioni/popolazione-2011, 2011 
18. Municipality of Bologna Rilevamento dei flussi di biciclette sulle principali piste ciclabili presenti nel territorio del 

comune di Bologna. Elaborazione dei dati raccolti e confronto con le serie storiche disponibili. 2018 
www.comune.bologna.it/media/files/report_flussi_ciclabili_2018.pdf 

19. Pucher, J., Buehler, R. Making cycling irresistible: lessons from the Netherlands, Denmark and Germany. 
Transport reviews 2008, 28, 4, 495-528. 

20. Schweizer, J., Rupi, F. Performance evaluation of extreme bicycle scenarios. Procedia-Social and Behavioral 
Sciences 2014, 111, 508-517. 

21. European Cycling Challenge 2016 .www.europeancyclingchalleg.org 
22. Marchal, F, Hackney, J. K., Axhausen, K. W. Efficient map matching of large Global Positioning System data sets: 

Test on speed-monitoring experiment in Zurich. Transportation Research Record 2005, 1935, 93 – 100. 
23. Schweizer, J., Bernardi, S., Rupi, F. Map-matching algorithm applied to bicycle global positioning system traces in 

Bologna. ITE Intelligent Transport Systems 2016, 10(4), 244-250. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2019                   doi:10.20944/preprints201906.0041.v1

Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 322; doi:10.3390/ijgi8080322

https://doi.org/10.20944/preprints201906.0041.v1
https://doi.org/10.3390/ijgi8080322

