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19 Abstract: Currently the majority of studies on vision-based measurement has been conducted
20 under ideal environments so that an adequate measurement performance and accuracy is ensured.
21 However, vision-based systems may face some adverse influencing factors such as illumination
22 change and fog interference, which can affect the measurement accuracy. This paper develops a
23 robust vision-based displacement measurement method which can handle the two common and
24 important adverse factors given above and achieve sensitivity at the subpixel level. The proposed
25 method leverages the advantage of high-resolution imaging incorporating spatial and temporal
26 context aspects. To validate the feasibility, stability and robustness of the proposed method, a series
27 of experiments was conducted on a two-span three-lane bridge in the laboratory. The illumination
28 change and fog interference are simulated experimentally in the laboratory. The results of the
29 proposed method are compared to conventional displacement sensor data and current
30 vision-based method results. It is demonstrated that the proposed method gives better
31 measurement results than the current ones under illumination change and fog interference.

32 Keywords: structural health monitoring, displacement measurement, non-contact, computer
33 vision, environmental factors, spatio-temporal context, Taylor approximation

34

35  1.Introduction

36 1.1. Background

37 Computer vision-based displacement measurement using cameras has attracted increasing
38  attention in the community of structural health monitoring (SHM) because of its being a non-contact,
39 long distance, multi-point, high precision, time saving and cost effective sensing technique
40 [1,2,11-16,3-10]. Structural displacement is a critical indicator for evaluating performance,
41  identifying and determining the effects of damage/change under external loads. For instance, during
42 the regular operation of a structure, the displacement can be monitored to ensure that it stays within
43  aspecified tolerance and safety range [17]. Once the displacement time histories from the monitored
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44 structures are extracted using vision-based methods, traditional structural health monitoring and
45  behavior analysis [18] can easily be done. Vision-based displacement measurement methods are also
46  applied for bridge load testing to evaluate the bridge load carrying capacity [19] and have even been
47  used for contactless bridge weigh-in-motion [20]. Combining the multi-point displacement response
48  with structural input data extracted from vehicle tracking, structural identification can be carried out
49  using traditional structural indicators such as the unit influence line (UIL) and unit influence surface
50 (UIS) [21,22]. Without the need for the deployment of conventional sensor networks, operational
51  modal analysis can be performed using vision-based displacement measurement methods, which
52 may provide multi-point synchronization and therefore a much denser spatial resolution than is
53 practical with conventional sensors [4,23-27]. Full field motion estimation and instantaneous mode
54 shapes can even be obtained with high spatial and temporal resolution [28-31]. Modal properties
95  and other indices derived from the vision-based displacement time histories can be turned into
56  sensitive indicators for structural damage detection and model updating [32-34]. There are also
57  numerous studies relating to the estimation of stay cable forces that use vision-based displacement
58  measurement [35,36]. In addition to the structural response monitoring, the external loading
59 information can be predicted. Celik et al. [14] estimated the load time histories of individuals and
60 crowds with the displacement time histories obtained using computer vision-based. These
61  successful research applications make the computer vision-based displacement methods a very
62  promising complementary tool to conventional structural health monitoring practices, particularly
63  for bridges.

64  1.2. Motivations and objectives

65 The majority of applications and experiments in the literature are conducted in an ideal
66 measurement environment so that an adequate measurement performance and accuracy is ensured.
67  In addition, when these experiments are performed for the purpose of new method verification or
68  comparison, the measurement time span is generally short and the adverse factors which can
69 influence the measurement accuracy and stability are mostly avoided. For a general proof of
70  concept, it makes sense to conduct such studies. However, when vision-based systems are intended
71 forlong-term deployment, either as standalone or to complement a conventional SHM system, some
72 unfavorable contingencies may affect the measurement quality. Even in short term, the accuracy and
73 stability of a vision-based system can be affected adversely. In a review of current literature, Feng
74  and Feng [8] summarize the possible measurement error sources in vision-based methods,
75  including: 1) camera motion; 2) coordinate conversion; 3) hardware limitations; and 4)
76  environmental sources. Brownjohn et al. [12] investigate the challenges in field application of a
77  commercial vision-based system resulting from camera instability, the nature of the target (artificial
78  or structural feature), and illumination. Ye et al. [37] review the state-of-art on systematic errors,
79  assessment and reduction, including: 1) target size and texture, 2) camera alignment; 3) motion blur;
80 and 4) the ratio between target size and full view. Xu and Brownjohn [11] review subpixel
81  techniques used in vision-based displacement measurement methods. Ma et al. [38] study the
82  measurement error in the digital image correlation method caused by self-heating of digital cameras.
83  Ye et al. [39] conduct a series of shaking table experiments in the laboratory to examine the
84  environmental influence factors which affect the accuracy and stability of vision-based systems. The
85  target used in the experiments are QR (quick response) code and the texture of QR codes shows rich
86  sparkle patterns. It is suggested that the measurement results are adversely affected by illumination
87  and vapor. Subsequently, Dong and Ye [40,41] investigate the possibility of improving the accuracy
88  and the stability of vision-based system with the adverse factor of vapor. They use light emitting
89  diodes (LED) and infrared emitting diodes as the measurement target and the experimental results
90  show that these emitting diodes can mitigate the adverse effects of vapor. However, installing these
91  kinds of target on the structure can be difficult, perhaps requiring wiring and a mains power supply,
92  which may not be feasible for a bridge.

93 These problems may decrease the accuracy of the measurement results and affect the evaluation
94 of structural performance and health condition by monitoring using vision-based systems in a
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95  long-time span. In the literature, there are lots of studies on the analysis of sources of error, but only

96  afew [37,39] seek to improve system performance under adverse influencing factors. Therefore, it is

97  essential to develop a robust vision-based displacement measurement method for long-term

98 structural monitoring, which can handle some of these adverse factors.

99 While one study cannot address all issues related to computer vision-based monitoring, this
100  paper focuses on the mitigation of environmental factors such as illumination change and fog
101  interference, and improvement of the measurement sensitivity at subpixel level. A robust
102  vision-based displacement measurement method is developed, leveraging the advantages of
103  high-resolution imaging and computer vision techniques to mitigate the interferences induced by
104  illumination change and fog and be adapted for long-term bridge monitoring. The proposed method
105 utilizes the spatio-temporal context (STC) learning algorithm to track the measurement objects in
106  image sequences and obtain the locations. The STC algorithm [42] builds the spatio-temporal
107  relationships between the measurement target and its local context based on a Bayesian framework,
108  which models the statistical correlation between the low-level features (i.e., image intensity and
109  position) from the measurement target and its surrounding regions. The tracking problem is solved
110 by computing a confidence map and obtaining the best target location by maximizing an object
111  location likelihood function. Combining this with the Taylor approximation [43], the accuracy of the
112 proposed method achieves subpixel level without sacrificing processing speed. The objectives of this
113 study are: 1) developing a new vision-based displacement method using spatio-temporal context
114 learning; 2) achieving a subpixel level estimation based on a Taylor approximation for the new
115  vision-based method; and 3) verifying the feasibility, stability and robustness of the proposed
116  method via comparison with the current vision-based methods and conventional displacement
117  sensor (Linear Variable Differential Transformer, LVDT) by conducting a series of experiments
118  under two adverse environmental factors (illumination change and fog) on a two-span three-lane
119  model bridge in the laboratory.

120 2. Methodology

121 2.1. General procedure of the vision-based displacement measurement methods

122 The key aspect of vision-based displacement measurement methods is to convert the
123 measurement of the target motion in the image into actual motion with physical units such as
124 millimeters. In the literature, researchers propose different procedures of vision-based displacement
125  measurement. In this study, the authors summarize the state-of-the-art and present a general
126  procedure as illustrated in Figure 1. There are four steps in this procedure, namely: 1) camera
127  calibration; 2) initial image capture and target selection; 3) visual tracking and 4) scale
128  transformation and displacement calculation.

129
Initial image ; . ;
Camera capture & Visual Scale transformation
calibration tatoet tracking & dlSplélCéﬁlcﬂﬂt
wlestion calculation
130 Figure 1. General procedure of the vision-based displacement measurement methods.
131 In the first step, with the camera calibration, the relationship between the image entity and

132 physical world object is built. A camera is set up with the measurement targets included in the field of
133 view. This is also the step where camera calibration is conducted. If the camera is wide angle, it can
134  cause image distortion [44]. Yoon et al. [13] and Brownjohn et al. [12] implement a flexible technique
135  which was proposed by using the camera to observe a planar calibration object in a few different views
136  to easily calibrate a camera and resolve the distortion problems. The authors also recommend
137  implementing this method to resolve the distortion problems. In this study the authors select a
138  distortion-free camera so that the distortion problems are not an issue. With Zhang’s method [44] it is
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139  also possible to convert the image entities into physical world objects since, during the camera
140  calibration, the planar homography matrix between the image and the physical world is obtained. In
141  this paper, instead of planar homography matrix, for convenience, the authors use the scale factor to
142 convert the target motion in pixels to physical units of millimeter. When the optical axis is
143  perpendicular to the object motion plane, the scale factor, s, is

S=— (1)

144 where D is the physical length of the object on the motion plane and d is the length in pixels of its
145  corresponding image part. When there is an angle between the target motion plane and optical axis, 0,
146 the scale factor has to be modified by:

D
S=——,
dcosé
147  More details about the scale factor calculation can be found from the literature
148  [9,14,17,35,37,39-41,45,46].
149 In the second step, the region to be tracked which includes the measurement targets in the field of

150  view of the initial image is selected. According to the visual tracking methods used in the third step,
151  image preprocessing is utilized to extract useful features from the tracking region. Researchers who

)

152  use digital image correlation (DIC) either in the frequency domain [6] or the spatial domain [27] select
153  the target regions as the patterns and the low-level features of images play the role of visual tracking
154  features. Other researchers extract key points and descriptors such as Shi-Tomasi corners, SURF
155  (Speeded Up Robust Features), SIFT (Scale-Invariant Feature Transform), FREAK (Fast REtinA
156  Keypoint), etc. as the tracking features and the corresponding visual tracking method includes
157  Lucas-Kanade optical flow estimation and key point matching based on nearest neighborhood
158  approximation [9,10,13]. The third step is to track the selected targets in subsequent images captured
159 by the camera continuously and locate the targets’ new positions. In this paper, the authors implement
160  the spatio-temporal context (STC) learning method to do the visual tracking. The horizontal and
161  vertical displacements in pixels — xt - xo and y: - yo respectively — are found by subtracting the
162  coordinates of the initial target position (xo, yo) from the current target position, (xi, y:). When pattern
163  matching methods such as DIC, are used in this step, the displacements in pixels are always integer
164  values. One way to increase the sensitivity and to improve the measurement accuracy is by applying
165  subpixel techniques. For instance, Feng et al. [6] implement upsampled cross correlation in local region
166  to get the displacement at a subpixel level. In this paper, the authors utilize the Taylor approximation
167  method to achieve the subpixel level without upsampling the images and without sacrificing the
168  image processing speed. Finally, with the scale factor, s, and the displacement in pixels, the actual
169  displacement at time t of the physical unit is obtained: (x: - xo0)s, horizontally, and (y: - yo)s, vertically.
170  The visual tracking method and subpixel estimation used in this paper are introduced in detail in the
171  next sections.

172 2.2. Visual tracking using spatio-temporal context (STC) learning

173 The spatio-temporal relationship between the local scenes containing the target in consecutive
174 frames can be used to model the statistical correlation between the low-level features, such as image
175 intensity and position, extracted from the target and its local context [42]. As illustrated in the
176  footbridge example of Figure 2., the yellow (smaller) box is the target to be tracked and the red (larger)
177  box s the local context.

178
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179 Figure 2. Graphical model of spatial relationship between the target and its surrounding context.
180 The visual tracking task can be obtained by maximizing an object location likelihood function c(x)
181  as[42]:
c(x)=P(x|0)= zc(z)exc P(x.c(z)|0)
®)

- ZC(Z)EXc P(x|c(z),0)P(c(z)l0)

182 where x is the target location which can be represented with the coordinates defined above, (x, i) and o
183  denotes the target present in the scene. The context feature set, X, is defined as:

X°:{c(z):(l(z),z)|ZEQC(x*)}, 4)

184  where I(z) denotes the image intensity at location z and Q«(x) is the neighborhood of location x". The
185 conditional probability P(x|c(z), 0) in Eq. (3) models the spatial relationship between the object location
186  and its context information. It can help to resolve ambiguities when the image measurements allow
187  different interpretations which are introduced in the following parts. P(c(z)lo) is a context prior
188  probability which models the appearance in the local context.

189 The conditional probability P(x!c(z), 0) in Eq. (3) is defined as:

P(x|c(z),0)=h*(x-2), (5)

190  where h=(x-z) is a function only of the direction and the relative distance between the target location x
191  and itslocal context location z, which means this function contains the spatial relationship between the
192  target and its spatial context. Eq. (5) defines the spatial context model. It is worth noting that Eq. (5) is
193  not a radially symmetric function which means that h<(x-z) is not equal to h<(Ix-zl). It considers
194  different spatial relationships between the target and its local context, which facilitates the solving of
195  the ambiguities when similar objects appear in close proximity. As shown in Figure 2, when a visual
196  tracking method tries to track a bolt based only on the appearance denoted by z;, it might be distracted
197  to the right one denoted by z- because both bolts and the local surroundings have a similar appearance.
198  This would cause ambiguities and consequently decrease the tracking accuracy, especially when the
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target moves fast and the search region is not small. With the non-radially symmetric characteristics of
h=(x-z), the ambiguities can be resolved.

In Eq. (3), P(c(z)lo) can be calculated according to the target location that has been initialized
manually in the first frame. It is modeled by:

P(c(z)|o):l(z)wa(z—x*), (6)

where w() is a weighted function defined by:

= 7
w, (z)=ae =, @
In Eq. (7) a is the normalization constant which restricts P(c(z) |0) to be in the range from 0 to 1 and ¢ is
a scale parameter. Eq. (6) ensures that, the closer the context location z is to the current tracking target
location x°, the more important it is to predict the location and a greater weight is set.

The confidence map of an object location is modeled as:

B
X—X"

c(x):P(x|o):be7 o ®

where b is a normalization constant, « is a scale parameter and § is a shape parameter. According to the
literature [42] robust results can be obtained when = 1. Based on the context prior model in Eq. (6)
and the confidence map function in Eq. (8), the objective is to learn the spatial context model, i.e. Eq.
(3). Combining Egs. (3), (5), (6) and (8), gives:

X=X

a

c(x)= P(x|o):be7
=ZZ€QC(X*)hS°(x—z)I(z)wg(z—x*), ©)
=h*(x)® 1 (x)w, (x—x*)

where @ denotes the convolution operator. The Fast Fourier Transform (FFT), Eq. (9) transforms the
function to the frequency domain:

«|f
X=X

a

7| be = 7 (h*(x) o~ (1(x)w, (x-x')), (10)

where F denotes the FFT function and © is the element-wise product. Then the spatial context model

is:

*
X=X

(24

F be_

h*(x)=7" : a7

f(l(x)wa(x—x*))

where F! denotes the inverse FFT function. Then in the whole image sequence, the spatio-temporal
context model of the (t+1)* frame, Hfﬁ, can be updated using the spatio-temporal context model,

HtStc , and the spatial context model, htSC , of the tth frame. It is formulated as:

d0i:10.20944/preprints201906.0023.v1
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Htsﬁ = (1_:0) HtStc +ph, (12)

where p is a learning parameter and ¢ denotes the # frame. It should be noted that in the first frame,

i.e, when tis equal to 1, the spatio-temporal context model Hftc is equal to the spatial context model,
htSC
Finally, the target location X:+1 in the (t+1)* frame is determined by maximizing the new

confidence map:

X, =argmaxc,, (x),
XEQC(X:)

(13)
Deduced from Eq. (10), the new confidence map cw1(x) is represented as:

cm(x):f‘l(f(Hfjj( ))Of( (X)W, (x—x*))), (14)

As the scale of the target may tend to change over time, the scale parameter o in the weight
function wo in Eq. (7) is updated by:

, (15)

Where S/ is the estimated scale between two consecutive frames. The estimated target scale s is

obtained through filtering in which §; is the average of the estimated scale from 1 consecutive frames

to avoid oversensitive adaptation and to reduce noise, and A > 0 is a fixed parameter. More details
about the derivation can be found in the literature [42]. In general, the scale updating should be
considered, but in this study, only in-plane motion is considered for two-dimensional displacement
measurement, so that scale updating is neglected. If this method is used to do three-dimensional
displacement measurement which means there is out-plane motion, scale updating has to be
considered.

To obtain robust tracking results, the reference gives rules of thumb regarding the selection of the
parameters used in STC tracking: a =225, =1, p=0.075, s1=1, A =0.25, and n = 5. Additionally, for Eq.
(12), with the deductions,

Hts_}_i (1 p) H stc +phtSC
[He ™ dt = [(1- p) Hie ™ dt + [ phie dt;’
LHS J H stc 7jwtdt — I H stc —JW —1 (t 1)
eij' H stce jwtdt — e]WH stc
RHS = [ (1- p)H e ™dt + [ phfe ™t
=(1-p) [He ™dt+ p[ e dt
=(1-p)H + phy;

d0i:10.20944/preprints201906.0023.v1
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LHS = RHS;
H stc — _ p hSC
w e jw (1_ p) w
238  atemporal filtering procedure can be easily obtained in the frequency domain, which is,
H stc — _ p hSC ,
w ejw _(1_p) ' (16)
239  where
Hse = I H e "dt, (17)
240  is the temporal Fourier transform of Hftc and similar to h. . The temporal filter can be represented
241 by,
P
F=—T——7m, 1

242  which is a low-pass filter [47]. With this low-pass filter, the spatio-temporal context model is able to
243 filter out image noise caused by appearance variations and this leads to more stable measurement
244 results. The properties of the spatio-temporal model contribute to the resolution of the adverse effects
245  induced by environmental factors such as illumination change and fog.

246 2.3. Subpixel level estimation using Taylor approximation

247 With Eq. (13), the targets can easily be tracked in the image sequence, but the change of locations
248  can only be obtained with integer pixel values. To achieve subpixel level motion, the Taylor
249  approximation method is applied to solve the optical flow estimation. Assuming there are two
250  consecutive images, f(x, y) and g(x, y), with a shift (Ax, Ay), the following estimation applies:

g(x,y)=f(x+AX,y+Ay)
0 0 , (19)
~ (X, AX— f (X, Ay — f (X,
(y)+ax 2 F(xy)+ay - F(xy)

251  which is the first order Taylor series approximation. The shift in the image can be calculated by
252  minimizing the sum of squared errors (SSE):

argmin @ (Ax, Ay), (20)
253 where
0 0 i
D(x,y)= Z{g (xy)=f(xy)-Ax—f(xy)-ay—f(xy)| , @
X,y OX ay
254 Using the ordinary least squares (OLS) method to solve Eq. (20), the optimal Ax and Ay can be
255  determined by setting the partial derivatives of Eq. (21) to zero, i.e.,
o® g
OAX )
o _,
OAy

256 Combining Egs. (21) and (22) gives the system of linear equations:
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o (of Y of of |
25 T35
p (23)

xy OX Oy {Ax}_ '

21| Ay - of
o o z(@] S(g-1)
L Xy axay X,y 6y a ’

The optimal shift, (Ax, Ay), is obtained by solving Eq. (23). It should be noted that to make the
Taylor approximation valid, the assumptions, |Ax| <<1 and |Ay| <<1 has to be satisfied. When small
motion is estimated, i.e. motion less than one pixel, the assumption holds. The procedure simplified
from optical flow estimation is called Taylor approximation here and it will be utilized to solve the
subpixel level motion estimation [43].

Figures 3. and 4. illustrate the proposed motion estimation at the subpixel level. At first, the
spatio-temporal context (STC) tracking method is employed to determine the integer pixel

displacements, ( AX , E/ ).

- s el B ——(5)‘,5),!)

AT ()

——-F-F---}-(axn)

Ty Ty(xo, ¥o)
T’ (xgtox, yo +oy)
T(x,»)

Figure 3. Sketches of motion estimation using STC tracking and Taylor approximation.

STC | 7
trackjngj-

J (Av.Ay)

( g(x,y)=
f(x+Ax,y+Ay) [

f(x+0x,y+8y) | Ax = Ax+8x

>

Taylor
Approximation

Integer pixel

Ay =Ay+38y

Figure 4. Flowchart of STC based subpixel tracking using Taylor approximation.

In Figure 3., the yellow solid line box represents the original target location in the initial frame
and the red dashed line box represents the target recognized in the current frame using STC tracking
which has an accuracy at subpixel level. Here the centers of the targets are used to represent their
locations, i.e., To and T". Assuming the real target in the current frame is the red solid line box at

location T, the true displacements are (Ax, Ay). Then the displacements (A_X , A_y) are the integer

estimations of the true displacements, (Ax, Ay). The differences between (B( , A_y) and (Ax, Ay) are

(0x, oy), from T’ to T, where |0x| <1 and Iyl < 1. And the assumption of using the Taylor
approximation is satisfied with the condition of 10x| < 1 and I6yl < 1. Secondly, the Taylor
approximation is employed to estimate the displacement between the target tracked by STC (red
dashed line box) and the real target (in red solid line box), i.e., (x, 0y). Finally, the total displacements
are

d0i:10.20944/preprints201906.0023.v1
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AX = AX + 6
— , (24)
Ay =Ay+0y
278 According to the literature [43], the Taylor approximation gives an error bound of less than

279  0.0125 pixel, without any image upsampling and the error is much smaller than that of the normal
280 template matching methods using image upsampling. The feasibility and performance of the
281  proposed method for structural displacement will be verified through laboratory experiments in the
282  next sections.

283 3. Laboratory verification

284  3.1. Experimental setup

285 Figure 5 shows the two-span bridge model constructed in the University of Central Florida’s
286  Civil Infrastructure Technologies for Resilience and Safety (CITRS) Experimental Design and
287  Monitoring (EDM) laboratory. The bridge is a scaled down model of a mid-sized real-life structure
288  and toy trucks with variable weights are used to model moving loads.

289 Figure 5. Experimental setup.

290 An industrial camera is set up in front of the bridge to record images at a measuring point (1)
291  during the moving load trials. An LVDT is mounted under the deck to measure the displacement of
292  P1 and is assumed as the ground truth. During the experiments, the truck moves from one side of
293  the bridge to the other while the LVDT and the camera record the motion of P1 (midspan of the left
294  span) synchronously. The resolution of the camera is 1280 x 960 with the maximum frame rate of 60
295  FPS (frame per second). The focal length of the lens is within a zoom range of 6 ~ 60 mm. The
296  sampling rate of the data acquisition system for LVDT is 300 Hz, which is then downsampled to 60
297  Hz during post processing. Three experiment cases are specified to achieve the objectives of this

298  paper:

299 e Case 1: the truck moves on the bridge in ideal conditions and no adverse factors are imposed in
300 the measuring environment;

301 e Case 2: the truck moves on the bridge while the illumination of the laboratory is changed
302 several times by switching a manual controller (shown in Figure 6.). A light meter (Dr. Meter
303 LX1010B Digital Illuminance) is used here to measure the illumination change. Normally, 9
304 light panels in the lab are on and the illumination is 34 lux. By turning off the 3 light panels

305 which are close to the measurement target, the illumination drops to 18 lux. As shown in Figure
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306 6, the left image is lighter which is taken when the illumination is 34 lux, while the right image
307 is darker which is taken when the illumination is 18 lux;
308 e Case 3: a humidifier (Honeywell HUL520B Mistmate Cool Mist Humidifier) is placed between
309 the camera and measuring targets (shown in Figure 7). The humidifier produces a mist at the
310 maximum status to simulate natural fog. Normally, the temperature is 24 °C and the relative
311 humidity is 49%. While in the center of the mist, the temperature is 20.3 °C and the relative
312 humidity is 49%.

313 Figure 6. [llumination change.

\

e

W

)
I/

B Humidifier ’

314 Figure 7. Fog simulation.

315 3.2. Results analysis and comparative study of Case 1
316 The objectives for Case 1 are:

317 1. To evaluate the performance of the subpixel estimation method implemented in this paper;
318 2. To verify the feasibility and performance of the proposed method (i.e, STC tracking plus Taylor

319 Approximation, STC-Taylor App) by comparing the conventional LVDT data with the current
320 vision-based displacement methods, e.g., Lucas-Kanade optical flow with SURF features
321 (LK-SURF), key point matching with Fast Library for Approximate Nearest Neighbors and
322 SUREF features (FLANN-SURF), digital image correlation (DIC). Figure 8. illustrates the vertical
323 displacement time histories of P1 in pixel units induced by the vehicle loading when the toy
324 truck travels along the two-span bridge.
30 s T ; =
——STC-integer ﬁ: fmn = i
b, ——STC-upsampled i 4 \\/ N it
2 20 |——STC-Taylor App H° K
& i i — i
= ,’ : \ /A b
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L o =
s o— IR eeemmT 1
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-10
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325 Figure 8. Vertical displacement time histories of P1 in pixel unit using non-subpixel technique, image

326 upsampling technique and Taylor approximation technique.
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327 The vision-based methods used here include STC tracking with non-subpixel technique
328  (STC-integer), STC tracking with image upsampling technique (STC-upsample8) and STC tracking
329  with Taylor approximation (STC-Taylor App). In Figure 8, by zooming in the green dashed line box
330  area of the displacement time histories, it is clear that the results of the STC-integer approach are
331  rounded to integer values, ie., (4, 3,3,3,2,1,1,1,1,1,1,0,0, (-1), (-1) pixels, ...). The image
332  upsampling technique means that each image recorded during the experiment is upsampled to 8
333  times in the horizontal and vertical directions using bicubic interpolation. Then the minimum
334  resolution is 1/8 = 0.125 pixel. The result of using image upsampling is a much smoother curve and
335  shows more subpixel level displacement records. However, it still cannot provide more details about
336  the small motion [1], especially at the very beginning and at the end. When there are no apparent
337 loads on the structure, there is still very small structural motion induced by the random
338  environmental loads such as wind, or machine operations nearby, ambient ground vibration etc. As
339 illustrated in Figure 9, during the first several seconds before the toy truck moves, the displacements
340  measured by both STC-integer and STC-upsample8 are exactly zero, which might not be true. Even
341  though the structure is not loaded, it can still vibrate under random environmental loading.
342  STC-Taylor App indicates the small motions of the structure caused by random environmental
343  loadings. It is indicated that the proposed method which combines STC tracking and the Taylor
344  approximation, has a higher sensitivity, resolution and accuracy.

~0.2F T T T T T —
B ——STC-integer
8, ——STC-upsample8
; 0.1 ——STC-Taylor App| |
g /‘/ ///\\ /// e aa — Ai\\ — _—
A B -
s
5—0.1 = =
0.2 a
1 | 1 | | 1
0.8 0.9 1 1.1 1.2 1.3
Time (s)
345 Figure 9. Zoom in the beginning part of the vertical displacement time histories of P1.
346 Figure 10 verifies the previous findings. In this figure, the horizontal time displacement

347  histories show the bridge motion in the longitudinal direction induced by the moving truck impact.
348  The motion is very small, around 1 pixel. The result from the proposed method (STC-Taylor App)
349  gives very detailed information about the vehicle impact while the results of STC-integer and
350  STC-upsample8 are almost zero except for one or two points, which means the bridge is stationary in

351  the longitudinal direction. Figure 11. is a zooming into the area of the green dashed line box in
352  Figure 10.
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353 Figure 10. Horizontal displacement time histories of P1 in pixel unit using non-subpixel technique,

354 image upsampling technique and Taylor approximation technique.
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355 Figure 11. Zoom in the horizontal displacement time histories of P1 in pixel unit.
356 In the zoomed figure, the displacements of the non-zero points measured by STC-integer,

357  STC-upsample8 and STC-Taylor App are 1, 0.125 and 1.281 pixels. For STC-integer and
358  STC-upsample8, 1 and 0.125 are their minimum measurement resolutions and statistically these
359  points are outliers which should be removed from the displacement time histories. In addition, the
360  image processing speed of the proposed method is much faster than using image upsampling. Table
361 1. shows the elapsed processing time of one image using three different STC-based methods. The
362  program environment is MATLAB running on a computer with the CPU of i7, 8 processors and 16G
363  RAM. The original image has a resolution of 1280 x 960. It takes 0.0481 seconds to process one image
364  to obtain the displacement at integer pixel level (STC-integer). However, when doing subpixel level
365  estimation using image upsampling, it takes 2.4895 seconds, which is about (2.4895-0.0481)/0.0481 =
366  50.76 times that of the STC-integer. It takes only 0.0495 seconds to do this and gives even better
367  subpixel results when using STC-Taylor App. The proposed method is about 50 times faster than
368  using image upsampling techniques.

369 Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.
Methods STC-integer = STC-upsample8  STC-Taylor App
Time (s) 0.0481 2.4895 0.0495

370

371 Overall, it is suggested that the proposed method using STC tracking and Taylor

372  approximation can provide displacement measurements at subpixel level with high sensitivity,
373  resolution, accuracy, and faster speed.

374 The next step is to convert the displacement in pixel units to physical unit, e.g., millimeter, and
375  verify the feasibility and performance of displacement measurement by comparing the vision-based
376  methods with the conventional displacement sensor. As illustrated in Figure 12, four vision-based
377  displacement measurement methods (i.e., LK-SURF, FLANN-SURF, DIC and STC-Taylor App) and
378  one conventional displacement sensor (i.e., LVDT) are used to obtain the displacement time histories
379  of P1 when the toy truck passes over the bridge. At the very beginning, the toy truck stands at the
380  left end of the first span, then moves to the right and approaches the measurement point P1. In the
381  meantime, the displacement of P1 (the downward direction is positive) gradually increases to a
382  maximum when the truck is located at P1. Then the toy truck begins to drive off P1 and keep
383  heading to the right, while the displacement of P1 gradually decreases. When the toy truck moves to
384  the right span, the displacement begins to be negative (i.e., upward displacement) due to loading on
385  the other span of the two span bridge. As it approaches the right end of the right span, the absolute
386  value of the displacement at P1 first increases and achieves a maximum and then decreases. When
387  the toy truck arrives at the right end of the bridge, the displacement of P1 becomes stable but does
388  not go back to zero. This is because the rear axle still rests on the bridge.
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389 Figure 12. Case 1: displacement time histories of P1 obtained from different methods.
390 By comparing the displacement time histories, it is easy to see that the result obtained from the

391  proposed method (i.e., STC+Taylor App) is quite consistent with those obtained from the LVDT and
392  other three vision-based methods. Figure 13 illustrates the correlation matrix of these time
393  displacement histories for Case 1. The figures on the diagonal of the correlation matrix are the
394  histograms of the displacement time histories whereas the others are data plots and linear fits
395  between the displacement time histories from the two methods. The correlation matrix is symmetric,
396  and the last row and the last column give the correlation coefficients between the displacement data
397  obtained from the vision-based methods and the conventional displacement sensor, i.e. LVDT. The
398  correlation coefficients of the LK-SURF, FLANN-SURF and DIC with the ground truth, i.e. LVDT are
399  all 0.99, while the correlation coefficient between the proposed method, i.e., STC-Taylor App, and
400 LVDT is 098, which is also quite good. The performance of the vision-based displacement
401  measurement methods can also be obtained from the similarity of the histograms of each method
402  comparing with the one of LVDT.
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403 Figure 13. Correlation matrix of time displacement histories of Case 1
404 Here from the diagonal element of the correlation matrix, it is indicated that the histograms of

405  these time displacement histories are highly consistent with each other. In this case, under ideal
406  experimental conditions and no adverse factors added to the experiment, the robustness and
407  advantages of the proposed method (STC-Taylor App) don't reveal itself. However, the
408  displacement measurement result shows that the proposed method is immensely powerful
409  competitor comparing with the vision-based methods. In the next two cases, the robustness and
410  advantages of the proposed method will be verified.

411
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412 3.3. Results analysis and comparative study of Case 2

413 This case is designated to verify the robustness of the proposed vision-based displacement
414  method under the adverse environmental condition: illumination change. For vision-based methods,
415  illumination is a serious problem when conducting field applications since the image quality is easy
416  to be affected by the illumination change. Consequently, the visual tracking performance and the
417  displacement measurement accuracy are affected by the poor quality in the formation of images. In
418  this experiment, the environmental illumination is determined by the fluorescent light in the lab. By
419  turning the light switches in the laboratory on and off, the image quality is changed as shown in
420  Figure 6. The time histories of P1 obtained from different vision-based methods and LVDT under
421  environmental illumination change are illustrated in Figure 14.

10 T T T
25T
E
= 0
5
= —LK-SURF
Tl ——FLANN-SURF |
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422 Figure 14. Case 2: displacement time histories of P1 obtained from different methods
423 The spikes in Figure 14 show that the vision-based method, FLANN-SURF is apparently

424 influenced by the illumination change, which means FLANN-SURF cannot handle this kind of
425  situation comparing to other vision-based methods. As shown in Figure 15, the correlation
426  coefficient of the time histories between that obtained from FLANN-SURF and the ground truth,
427  LVDT, drops to 0.84, while LK-SURF’s and DIC’s drops from 0.99 to 0.98 and from 0.9 to 0.97 when
428  compared with the correlation matrix obtained in Case 1 shown in Figure 13. However, the
429  correlation coefficient of the time histories between that obtained from the proposed method,
430  STC-Taylor App, and the ground truth, LVDT, is still 0.98 comparing that of Case 1. From Figure 14
431  and Figure 15, it is indicated that the illumination change does have a significant negative
432  implication effect on the FLANN-SURF and might also influence LK-SURF and DIC slightly. On the
433  other hand, the proposed method, STC-Taylor App shows great robustness and is almost not
434 influenced by the illumination change. STC-Taylor App could be a good option for long-term
435  vision-based displacement measurement since the illumination change is a common problem in field
436  applications.
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437 Figure 15. Correlation matrix of time displacement histories of Case 2
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438  3.4. Results analysis and comparative study of Case 3

439 This case is designated to verify the robustness of the proposed vision-based displacement
440  method under the adverse environmental condition: fog. In this experiment, the fog is simulated by
441  the mist produced by the humidifier as shown in Figure 7. The fog not only does affect the image
442  quality but also contaminates the image features which is the basic foundation of target recognition
443  for visual tracking. In addition, the fog is not still but has a random motion. DIC might perform
444 undesirably because it highly relies on the image intensity to do pattern matching and the intensity
445  would always change under this situation. Due to the random motion of the fog, a false optical flow
446  would be added to the real target motion which causes the optical flow method (e.g. LK method) to
447 fail. Even though feature points, e.g., Shi-Tomasi corners, SURF, SIFT, FREAK, etc., are very robust
448  and distinctive, their use with feature-based methods (e.g., LK-SURF and FLANN-SUREF) still can
449  have bad performance due to bad matches. The mist could block features and induce more bad
450  matches as shown in Figure 16. It causes displacement measurement to have errors, especially when
451  there are not enough feature points to describe the tracking targets.

Bad matches

452 Figure 16. Poor matches when using feature-based methods

453 Figure 17 illustrates the time histories of P1 obtained from different vision-based methods and
454  LVDT under fog interference. When the fog is imposed to the measurement environment, the
455  displacement results obtained from LK-SURF and DIC provide very poor performance resulting in
456  lots of spikes appearing in the displacement time histories. Only the results from the proposed
457  method (STC-Taylor App) and FLANN-SURF show satisfactory performance. Zooming in the
458  purple dashed line box area of Figure 17, more details are shown in Figure 18. In this figure, except
459  the spikes, some data is also lost from the displacement time history when using. It is because the
460  visual tracker based on LK-SURF loses the targets due to the fog interference. In general view, even
461  though FLANN-SURF gives a good result, it still has outliers. Figure 18 shows an example of the
462  outlier when using FLANN-SURF. The outlier causes more than one-millimeter error comparing
463  with the ground truth and the result from STC-Taylor App. Statistically, it can be removed.
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464 Figure 17. Case 3: displacement time histories of P1 from different methods
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Figure 18. Zoom in the horizontal displacement time histories of P1

Figure 19 shows the correlation matrix between the vision-based methods and the conventional
displacement method, i.e., LVDT. The correlation coefficient between LK-SURF and LVDT drops
from 0.99 (in Case 1) to 0.84, which means the measurement error of LK-SURF increases. It is even
worse for DIC, whose correlation coefficient drops from 0.99 (in Case 1) to 0.78. The linear fit plots
between LK-SURF and LVDT and that between DIC and LVDT are hard to be interpreted as
correlation. The correlation coefficient between the proposed method, STC-Taylor App and LVDT
also drops from 0.98 (in Case 1) to 0.92. Considering the initial status, it is a little bit better than that
of FLANN-SUREF, since the correlation coefficient between the proposed method, STC-Taylor App
and LVDT also drops from 0.99 (in Case 1) to 0.92.
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Figure 19. Correlation matrix of time displacement histories of Case 3

The outlier in displacement time history obtained by using FLANN-SURF also shows
correlation in matrix plot. The fog indeed has undesirable effects on all of these vision-based
methods at different levels. These bad effects might not be easy to find or be quantified in the time
histories, but they apparently reveal themselves in correlation matrix. Comparing with the other
three vision-based methods, the proposed method gives the best performance. The proposed
vision-based displacement measurement method, i.e., STC-Taylor App, shows great robustness
under fog interference. STC-Taylor App could be a good option for long-term vision-based bridge
displacement measurement since the fog is a common weather problem in field application,
especially when the bridge crosses a river and during the foggy season.

Considering the result analysis of Case 2 and Case 3, the proposed method shows the best
performance under the two adverse environmental factors.

d0i:10.20944/preprints201906.0023.v1
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489 4. Conclusions

490 In this study, a robust non-contact displacement measurement method using spatio-temporal
491  context learning and Taylor approximation is proposed. This study aims to resolve the adverse
492  effects induced by the environmental factors such as illumination change and fog interference when
493  using vision-based methods to conduct displacement measurements without adding manual
494 markers or artificial light source for long-term bridge monitoring. The first method that is proposed,
495  namely spatio-temporal context learning, leverages the advantage of image in high resolution of
496  spatial and temporal aspects, which can be used in long-term bridge monitoring. Then, as an
497  extension, the Taylor approximation technique is implemented into the proposed method and to
498  improve the accuracy of the displacement at subpixel level without sacrificing the processing speed.
499  The performance of the proposed subpixel estimation method is compared with the general image
500  upsampling techniques and results shows that the proposed subpixel estimation method is faster
501  than the general image upsampling technique about 50 times. Also, the precision of the proposed
502  method is much better than the general image upsampling technique. To validate the feasibility,
503  stability and robustness of the proposed method, a series of experiments on a two-span three-lane
504  bridge in laboratory under the adverse environmental factors such as illumination change and fog
505 interference are conducted. The illumination change is achieved by turning on and off the light
506  switches in the room and the fog interference is simulated with a humidifier which can produce
507  mist. The results from the proposed method show that:

508 1. InCase 1, there is no adverse environmental factors and the measurement condition is desirable

509 for vision-based systems. The correlation coefficients of the LK-SURF, FLANN-SURF and DIC
510 with the ground truth, i.e. LVDT are all 0.99, while the correlation coefficient between the
511 proposed method, i.e., STC-Taylor App, and LVDT is 0.98, which is also quite good. It is
512 indicated that that at least in the desirable measurement environment, the proposed method is
513 a strong competitor of the current methods.

514 2. In Case 2, with the illumination change, the correlation coefficient of the time histories between
515 that obtained from FLANN-SURF and the ground truth, LVDT, drop to 0.84, while LK-SURF’s
516 and DIC’s just drop from 0.99 to 0.98 and from 0.99 to 0.97, respectively, comparing with the
517 correlation matrix obtained from Case 1. However, the correlation coefficient of the time
518 histories between that obtained from the proposed method, STC-Taylor App, and the ground
519 truth, LVDT, is still 0.98 comparing to that of Case 1.

520 3. In Case 3, with the fog interference, the correlation coefficient between LK-SURF and LVDT
521 drops from 0.99 to 0.84, while DIC’s drops from 0.99 to 0.78 which is the worst. FLANN-SURF’s
522 drops from 0.99 to 0.92 and the proposed method, STC-Taylor App, drops from 0.98 to 0.92;
523 Combining the result analysis of the experimental results, the proposed method shows the best

524  performance under the two adverse environmental factors, and it gives an accuracy at subpixel level
525  without sacrificing the processing speed. By considering the spatial and temporal context learning
526  process, the proposed method in this paper successfully mitigates the effects induced by
527  illumination change and fog interference. Although, the benefits of the proposed method to address
528  other real-world challenges is not explored in this paper, the proposed method may be applied to
529  solve other adverse influencing factors such as motion blur, rain, object occlusion, out of plane
530  movement, orientation of the camera relative to the bridge and camera motion, etc., by taking the
531  advantage of the high spatio-temporal resolution. The computer vision-based approach along with
532 the proposed method can be a good alternative and complementary approach to the conventional
533  structural health monitoring practices. In the future, more studies will be carried out on real bridges
534  to validate the feasibility of the proposed method and also to investigate other relevant challenges
535  for long-term bridge monitoring using computer vision. Besides, in this study only one camera was
536  used, and the proposed method was verified by tracking motion of bridge deck in two-dimensional
537  (2D) plane, which is the limitation. In future study, the feasibility of 3D motion tracking using the
538  proposed method will be investigated and will be tested on other applications such as long span
539  bridge monitoring and cable vibration monitoring.

540
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