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Abstract: Currently the majority of studies on vision-based measurement has been conducted 19 
under ideal environments so that an adequate measurement performance and accuracy is ensured. 20 
However, vision-based systems may face some adverse influencing factors such as illumination 21 
change and fog interference, which can affect the measurement accuracy. This paper develops a 22 
robust vision-based displacement measurement method which can handle the two common and 23 
important adverse factors given above and achieve sensitivity at the subpixel level. The proposed 24 
method leverages the advantage of high-resolution imaging incorporating spatial and temporal 25 
context aspects. To validate the feasibility, stability and robustness of the proposed method, a series 26 
of experiments was conducted on a two-span three-lane bridge in the laboratory. The illumination 27 
change and fog interference are simulated experimentally in the laboratory. The results of the 28 
proposed method are compared to conventional displacement sensor data and current 29 
vision-based method results. It is demonstrated that the proposed method gives better 30 
measurement results than the current ones under illumination change and fog interference. 31 

Keywords: structural health monitoring, displacement measurement, non-contact, computer 32 
vision, environmental factors, spatio-temporal context, Taylor approximation 33 

 34 

1. Introduction 35 

1.1. Background 36 

Computer vision-based displacement measurement using cameras has attracted increasing 37 
attention in the community of structural health monitoring (SHM) because of its being a non-contact, 38 
long distance, multi-point, high precision, time saving and cost effective sensing technique 39 
[1,2,11–16,3–10]. Structural displacement is a critical indicator for evaluating performance, 40 
identifying and determining the effects of damage/change under external loads. For instance, during 41 
the regular operation of a structure, the displacement can be monitored to ensure that it stays within 42 
a specified tolerance and safety range [17]. Once the displacement time histories from the monitored 43 
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structures are extracted using vision-based methods, traditional structural health monitoring and 44 
behavior analysis [18] can easily be done. Vision-based displacement measurement methods are also 45 
applied for bridge load testing to evaluate the bridge load carrying capacity [19] and have even been 46 
used for contactless bridge weigh-in-motion [20]. Combining the multi-point displacement response 47 
with structural input data extracted from vehicle tracking, structural identification can be carried out 48 
using traditional structural indicators such as the unit influence line (UIL) and unit influence surface 49 
(UIS) [21,22]. Without the need for the deployment of conventional sensor networks, operational 50 
modal analysis can be performed using vision-based displacement measurement methods, which 51 
may provide multi-point synchronization and therefore a much denser spatial resolution than is 52 
practical with conventional sensors [4,23–27]. Full field motion estimation and instantaneous mode 53 
shapes can even be obtained with high spatial and temporal resolution [28–31]. Modal properties 54 
and other indices derived from the vision-based displacement time histories can be turned into 55 
sensitive indicators for structural damage detection and model updating [32–34]. There are also 56 
numerous studies relating to the estimation of stay cable forces that use vision-based displacement 57 
measurement [35,36]. In addition to the structural response monitoring, the external loading 58 
information can be predicted. Celik et al. [14] estimated the load time histories of individuals and 59 
crowds with the displacement time histories obtained using computer vision-based. These 60 
successful research applications make the computer vision-based displacement methods a very 61 
promising complementary tool to conventional structural health monitoring practices, particularly 62 
for bridges. 63 

1.2. Motivations and objectives 64 

The majority of applications and experiments in the literature are conducted in an ideal 65 
measurement environment so that an adequate measurement performance and accuracy is ensured. 66 
In addition, when these experiments are performed for the purpose of new method verification or 67 
comparison, the measurement time span is generally short and the adverse factors which can 68 
influence the measurement accuracy and stability are mostly avoided. For a general proof of 69 
concept, it makes sense to conduct such studies. However, when vision-based systems are intended 70 
for long-term deployment, either as standalone or to complement a conventional SHM system, some 71 
unfavorable contingencies may affect the measurement quality. Even in short term, the accuracy and 72 
stability of a vision-based system can be affected adversely. In a review of current literature, Feng 73 
and Feng [8] summarize the possible measurement error sources in vision-based methods, 74 
including: 1) camera motion; 2) coordinate conversion; 3) hardware limitations; and 4) 75 
environmental sources. Brownjohn et al. [12] investigate the challenges in field application of a 76 
commercial vision-based system resulting from camera instability, the nature of the target (artificial 77 
or structural feature), and illumination. Ye et al. [37] review the state-of-art on systematic errors, 78 
assessment and reduction, including: 1) target size and texture, 2) camera alignment; 3) motion blur; 79 
and 4) the ratio between target size and full view. Xu and Brownjohn [11] review subpixel 80 
techniques used in vision-based displacement measurement methods. Ma et al. [38] study the 81 
measurement error in the digital image correlation method caused by self-heating of digital cameras. 82 
Ye et al. [39] conduct a series of shaking table experiments in the laboratory to examine the 83 
environmental influence factors which affect the accuracy and stability of vision-based systems. The 84 
target used in the experiments are QR (quick response) code and the texture of QR codes shows rich 85 
sparkle patterns. It is suggested that the measurement results are adversely affected by illumination 86 
and vapor. Subsequently, Dong and Ye [40,41] investigate the possibility of improving the accuracy 87 
and the stability of vision-based system with the adverse factor of vapor. They use light emitting 88 
diodes (LED) and infrared emitting diodes as the measurement target and the experimental results 89 
show that these emitting diodes can mitigate the adverse effects of vapor. However, installing these 90 
kinds of target on the structure can be difficult, perhaps requiring wiring and a mains power supply, 91 
which may not be feasible for a bridge.  92 

These problems may decrease the accuracy of the measurement results and affect the evaluation 93 
of structural performance and health condition by monitoring using vision-based systems in a 94 
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long-time span. In the literature, there are lots of studies on the analysis of sources of error, but only 95 
a few [37,39] seek to improve system performance under adverse influencing factors. Therefore, it is 96 
essential to develop a robust vision-based displacement measurement method for long-term 97 
structural monitoring, which can handle some of these adverse factors. 98 

While one study cannot address all issues related to computer vision-based monitoring, this 99 
paper focuses on the mitigation of environmental factors such as illumination change and fog 100 
interference, and improvement of the measurement sensitivity at subpixel level. A robust 101 
vision-based displacement measurement method is developed, leveraging the advantages of 102 
high-resolution imaging and computer vision techniques to mitigate the interferences induced by 103 
illumination change and fog and be adapted for long-term bridge monitoring. The proposed method 104 
utilizes the spatio-temporal context (STC) learning algorithm to track the measurement objects in 105 
image sequences and obtain the locations. The STC algorithm [42] builds the spatio-temporal 106 
relationships between the measurement target and its local context based on a Bayesian framework, 107 
which models the statistical correlation between the low-level features (i.e., image intensity and 108 
position) from the measurement target and its surrounding regions. The tracking problem is solved 109 
by computing a confidence map and obtaining the best target location by maximizing an object 110 
location likelihood function. Combining this with the Taylor approximation [43], the accuracy of the 111 
proposed method achieves subpixel level without sacrificing processing speed. The objectives of this 112 
study are: 1) developing a new vision-based displacement method using spatio-temporal context 113 
learning; 2) achieving a subpixel level estimation based on a Taylor approximation for the new 114 
vision-based method; and 3) verifying the feasibility, stability and robustness of the proposed 115 
method via comparison with the current vision-based methods and conventional displacement 116 
sensor (Linear Variable Differential Transformer, LVDT) by conducting a series of experiments 117 
under two adverse environmental factors (illumination change and fog) on a two-span three-lane 118 
model bridge in the laboratory. 119 

2. Methodology 120 

2.1. General procedure of the vision-based displacement measurement methods 121 

The key aspect of vision-based displacement measurement methods is to convert the 122 
measurement of the target motion in the image into actual motion with physical units such as 123 
millimeters. In the literature, researchers propose different procedures of vision-based displacement 124 
measurement. In this study, the authors summarize the state-of-the-art and present a general 125 
procedure as illustrated in Figure 1. There are four steps in this procedure, namely: 1) camera 126 
calibration; 2) initial image capture and target selection; 3) visual tracking and 4) scale 127 
transformation and displacement calculation. 128 

 129 

 

Figure 1. General procedure of the vision-based displacement measurement methods. 130 

In the first step, with the camera calibration, the relationship between the image entity and 131 
physical world object is built. A camera is set up with the measurement targets included in the field of 132 
view. This is also the step where camera calibration is conducted. If the camera is wide angle, it can 133 
cause image distortion [44]. Yoon et al. [13] and Brownjohn et al. [12] implement a flexible technique 134 
which was proposed by using the camera to observe a planar calibration object in a few different views 135 
to easily calibrate a camera and resolve the distortion problems. The authors also recommend 136 
implementing this method to resolve the distortion problems. In this study the authors select a 137 
distortion-free camera so that the distortion problems are not an issue. With Zhang’s method [44] it is 138 
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also possible to convert the image entities into physical world objects since, during the camera 139 
calibration, the planar homography matrix between the image and the physical world is obtained. In 140 
this paper, instead of planar homography matrix, for convenience, the authors use the scale factor to 141 
convert the target motion in pixels to physical units of millimeter. When the optical axis is 142 
perpendicular to the object motion plane, the scale factor, s, is 143 

D
s

d
 , (1) 

where D is the physical length of the object on the motion plane and d is the length in pixels of its 144 
corresponding image part. When there is an angle between the target motion plane and optical axis, θ, 145 
the scale factor has to be modified by: 146 

cos

D
s

d 
 , (2) 

More details about the scale factor calculation can be found from the literature 147 
[9,14,17,35,37,39–41,45,46]. 148 

In the second step, the region to be tracked which includes the measurement targets in the field of 149 
view of the initial image is selected. According to the visual tracking methods used in the third step, 150 
image preprocessing is utilized to extract useful features from the tracking region. Researchers who 151 
use digital image correlation (DIC) either in the frequency domain [6] or the spatial domain [27] select 152 
the target regions as the patterns and the low-level features of images play the role of visual tracking 153 
features. Other researchers extract key points and descriptors such as Shi-Tomasi corners, SURF 154 
(Speeded Up Robust Features), SIFT (Scale-Invariant Feature Transform), FREAK (Fast REtinA 155 
Keypoint), etc. as the tracking features and the corresponding visual tracking method includes 156 
Lucas-Kanade optical flow estimation and key point matching based on nearest neighborhood 157 
approximation [9,10,13]. The third step is to track the selected targets in subsequent images captured 158 
by the camera continuously and locate the targets’ new positions. In this paper, the authors implement 159 
the spatio-temporal context (STC) learning method to do the visual tracking. The horizontal and 160 
vertical displacements in pixels – xt - x0 and yt - y0 respectively – are found by subtracting the 161 
coordinates of the initial target position (x0, y0) from the current target position, (xt, yt). When pattern 162 
matching methods such as DIC, are used in this step, the displacements in pixels are always integer 163 
values. One way to increase the sensitivity and to improve the measurement accuracy is by applying 164 
subpixel techniques. For instance, Feng et al. [6] implement upsampled cross correlation in local region 165 
to get the displacement at a subpixel level. In this paper, the authors utilize the Taylor approximation 166 
method to achieve the subpixel level without upsampling the images and without sacrificing the 167 
image processing speed. Finally, with the scale factor, s, and the displacement in pixels, the actual 168 
displacement at time t of the physical unit is obtained: (xt - x0)s, horizontally, and (yt - y0)s, vertically. 169 
The visual tracking method and subpixel estimation used in this paper are introduced in detail in the 170 
next sections. 171 

2.2. Visual tracking using spatio-temporal context (STC) learning 172 

The spatio-temporal relationship between the local scenes containing the target in consecutive 173 
frames can be used to model the statistical correlation between the low-level features, such as image 174 
intensity and position, extracted from the target and its local context [42]. As illustrated in the 175 
footbridge example of Figure 2., the yellow (smaller) box is the target to be tracked and the red (larger) 176 
box is the local context. 177 

 178 
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Figure 2. Graphical model of spatial relationship between the target and its surrounding context. 179 

The visual tracking task can be obtained by maximizing an object location likelihood function c(x) 180 
as [42]: 181 

       

      

| , |

| , |

c

c

c X

c X

c P o P o

P o P o





 







z

z

x x x c z

x c z c z
, (3) 

where x is the target location which can be represented with the coordinates defined above, (x, y) and o 182 
denotes the target present in the scene. The context feature set, Xc, is defined as: 183 

       , |c

cX I   *
c z z z z x , (4) 

where I(z) denotes the image intensity at location z and Ωc(x*) is the neighborhood of location x*. The 184 
conditional probability P(x|c(z), o) in Eq. (3) models the spatial relationship between the object location 185 
and its context information. It can help to resolve ambiguities when the image measurements allow 186 
different interpretations which are introduced in the following parts. P(c(z)|o) is a context prior 187 
probability which models the appearance in the local context. 188 

The conditional probability P(x|c(z), o) in Eq. (3) is defined as: 189 

    | , scP o h x c z x z , (5) 

where hsc(x-z) is a function only of the direction and the relative distance between the target location x 190 
and its local context location z, which means this function contains the spatial relationship between the 191 

target and its spatial context. Eq. (5) defines the spatial context model. It is worth noting that Eq. (5) is 192 
not a radially symmetric function which means that hsc(x-z) is not equal to hsc(|x-z|). It considers 193 

different spatial relationships between the target and its local context, which facilitates the solving of 194 
the ambiguities when similar objects appear in close proximity. As shown in Figure 2, when a visual 195 
tracking method tries to track a bolt based only on the appearance denoted by zl, it might be distracted 196 
to the right one denoted by zr because both bolts and the local surroundings have a similar appearance. 197 
This would cause ambiguities and consequently decrease the tracking accuracy, especially when the 198 
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target moves fast and the search region is not small. With the non-radially symmetric characteristics of 199 
hsc(x-z), the ambiguities can be resolved. 200 

In Eq. (3), P(c(z)|o) can be calculated according to the target location that has been initialized 201 
manually in the first frame. It is modeled by: 202 

      |P o I w  *
c z z z x , (6) 

where wσ(·) is a weighted function defined by: 203 

 

2

2

w ae 






z

z , 
(7) 

In Eq. (7) a is the normalization constant which restricts P(c(z)|o) to be in the range from 0 to 1 and σ is 204 
a scale parameter. Eq. (6) ensures that, the closer the context location z is to the current tracking target 205 
location x*, the more important it is to predict the location and a greater weight is set. 206 

The confidence map of an object location is modeled as:  207 

   |c P o be








 

x x

x x , 
(8) 

where b is a normalization constant, α is a scale parameter and β is a shape parameter. According to the 208 
literature [42] robust results can be obtained when β = 1. Based on the context prior model in Eq. (6) 209 
and the confidence map function in Eq. (8), the objective is to learn the spatial context model, i.e. Eq. 210 
(3). Combining Eqs. (3), (5), (6) and (8), gives: 211 
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, (9) 

where ⊗ denotes the convolution operator. The Fast Fourier Transform (FFT), Eq. (9) transforms the 212 
function to the frequency domain: 213 

       scbe h I w












 
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 
 
 

x x

x x x x , (10) 

where  denotes the FFT function and ⊙ is the element-wise product. Then the spatial context model 214 

is:  215 

 
    

1sc

be

h
I w














  
  
  
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  
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 
 
 

x x

x
x x x

, (11) 

where −1 denotes the inverse FFT function. Then in the whole image sequence, the spatio-temporal 216 

context model of the (t+1)th frame, 1

stc

tH  , can be updated using the spatio-temporal context model, 217 
stc

tH , and the spatial context model, 
sc

th , of the tth frame. It is formulated as: 218 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2019                   doi:10.20944/preprints201906.0023.v1

Peer-reviewed version available at Sensors 2019, 19, 3197; doi:10.3390/s19143197

https://doi.org/10.20944/preprints201906.0023.v1
https://doi.org/10.3390/s19143197


 7 of 21 

 

 1 1stc stc sc

t t tH H h     , (12) 

where ρ is a learning parameter and t denotes the tth frame. It should be noted that in the first frame, 219 

i.e., when t is equal to 1, the spatio-temporal context model 
stc

tH  is equal to the spatial context model, 220 
sc

th . 221 

Finally, the target location 
*

1tx  in the (t+1)th frame is determined by maximizing the new 222 

confidence map: 223 

 
 

*

*

1 1arg max
c t

t tc 



x x

x x , 
(13) 

Deduced from Eq. (10), the new confidence map ct+1(x) is represented as: 224 

          1 *

1 1 1 t

stc

t t tc H I w



   x x x x x , (14) 

As the scale of the target may tend to change over time, the scale parameter σ in the weight 225 
function wσ in Eq. (7) is updated by: 226 
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, (15) 

Where ts  is the estimated scale between two consecutive frames. The estimated target scale st+1 is 227 

obtained through filtering in which ts  is the average of the estimated scale from n consecutive frames 228 

to avoid oversensitive adaptation and to reduce noise, and λ > 0 is a fixed parameter. More details 229 
about the derivation can be found in the literature [42]. In general, the scale updating should be 230 
considered, but in this study, only in-plane motion is considered for two-dimensional displacement 231 
measurement, so that scale updating is neglected. If this method is used to do three-dimensional 232 
displacement measurement which means there is out-plane motion, scale updating has to be 233 
considered. 234 

To obtain robust tracking results, the reference gives rules of thumb regarding the selection of the 235 
parameters used in STC tracking: α = 2.25, β = 1, ρ = 0.075, s1 = 1, λ = 0.25, and n = 5. Additionally, for Eq. 236 
(12), with the deductions, 237 
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a temporal filtering procedure can be easily obtained in the frequency domain, which is, 238 

 j 1

stc sc

w ww
H h

e






 
, (16) 

where 239 

jstc stc wt

w tH H e dt  , (17) 

is the temporal Fourier transform of 
stc

tH  and similar to 
sc

wh . The temporal filter can be represented 240 

by, 241 

 j 1
w w

F
e






 
, (18) 

which is a low-pass filter [47]. With this low-pass filter, the spatio-temporal context model is able to 242 
filter out image noise caused by appearance variations and this leads to more stable measurement 243 
results. The properties of the spatio-temporal model contribute to the resolution of the adverse effects 244 
induced by environmental factors such as illumination change and fog. 245 

2.3. Subpixel level estimation using Taylor approximation 246 

With Eq. (13), the targets can easily be tracked in the image sequence, but the change of locations 247 
can only be obtained with integer pixel values. To achieve subpixel level motion, the Taylor 248 
approximation method is applied to solve the optical flow estimation. Assuming there are two 249 
consecutive images, f(x, y) and g(x, y), with a shift (Δx, Δy), the following estimation applies: 250 

   

     

, ,

, , ,

g x y f x x y y

f x y x f x y y f x y
x y

    

 
    

 

, (19) 

which is the first order Taylor series approximation. The shift in the image can be calculated by 251 
minimizing the sum of squared errors (SSE): 252 

 arg min ,x y   , (20) 

where 253 

         
2

,

, , , , ,
x y

x y g x y f x y x f x y y f x y
x y

  
     

  
 , (21) 

Using the ordinary least squares (OLS) method to solve Eq. (20), the optimal Δx and Δy can be 254 
determined by setting the partial derivatives of Eq. (21) to zero, i.e., 255 

0

0

x

y







 


, (22) 

Combining Eqs. (21) and (22) gives the system of linear equations: 256 
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  

 

, (23) 

The optimal shift, (Δx, Δy), is obtained by solving Eq. (23). It should be noted that to make the 257 
Taylor approximation valid, the assumptions, |Δx| << 1 and |Δy| << 1 has to be satisfied. When small 258 
motion is estimated, i.e. motion less than one pixel, the assumption holds. The procedure simplified 259 
from optical flow estimation is called Taylor approximation here and it will be utilized to solve the 260 
subpixel level motion estimation [43]. 261 

Figures 3. and 4. illustrate the proposed motion estimation at the subpixel level. At first, the 262 
spatio-temporal context (STC) tracking method is employed to determine the integer pixel 263 

displacements, ( x , y ).  264 

 

Figure 3. Sketches of motion estimation using STC tracking and Taylor approximation. 265 

 

Figure 4. Flowchart of STC based subpixel tracking using Taylor approximation. 266 

In Figure 3., the yellow solid line box represents the original target location in the initial frame 267 
and the red dashed line box represents the target recognized in the current frame using STC tracking 268 
which has an accuracy at subpixel level. Here the centers of the targets are used to represent their 269 
locations, i.e., T0 and T’. Assuming the real target in the current frame is the red solid line box at 270 

location T, the true displacements are (Δx, Δy). Then the displacements ( x , y ) are the integer 271 

estimations of the true displacements, (Δx, Δy). The differences between ( x , y ) and (Δx, Δy) are 272 

(δx, δy), from T’ to T, where |δx| < 1 and |δy| < 1. And the assumption of using the Taylor 273 
approximation is satisfied with the condition of |δx| < 1 and |δy| < 1. Secondly, the Taylor 274 
approximation is employed to estimate the displacement between the target tracked by STC (red 275 
dashed line box) and the real target (in red solid line box), i.e., (δx, δy). Finally, the total displacements 276 
are 277 
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, (24) 

According to the literature [43], the Taylor approximation gives an error bound of less than 278 
0.0125 pixel, without any image upsampling and the error is much smaller than that of the normal 279 
template matching methods using image upsampling. The feasibility and performance of the 280 
proposed method for structural displacement will be verified through laboratory experiments in the 281 
next sections. 282 

3. Laboratory verification 283 

3.1. Experimental setup 284 

Figure 5 shows the two-span bridge model constructed in the University of Central Florida’s 285 
Civil Infrastructure Technologies for Resilience and Safety (CITRS) Experimental Design and 286 
Monitoring (EDM) laboratory. The bridge is a scaled down model of a mid-sized real-life structure 287 
and toy trucks with variable weights are used to model moving loads. 288 

 

Figure 5. Experimental setup. 289 

An industrial camera is set up in front of the bridge to record images at a measuring point (P1) 290 
during the moving load trials. An LVDT is mounted under the deck to measure the displacement of 291 
P1 and is assumed as the ground truth. During the experiments, the truck moves from one side of 292 
the bridge to the other while the LVDT and the camera record the motion of P1 (midspan of the left 293 
span) synchronously. The resolution of the camera is 1280 × 960 with the maximum frame rate of 60 294 
FPS (frame per second). The focal length of the lens is within a zoom range of 6 ~ 60 mm. The 295 
sampling rate of the data acquisition system for LVDT is 300 Hz, which is then downsampled to 60 296 
Hz during post processing. Three experiment cases are specified to achieve the objectives of this 297 
paper: 298 

 Case 1: the truck moves on the bridge in ideal conditions and no adverse factors are imposed in 299 
the measuring environment; 300 

 Case 2: the truck moves on the bridge while the illumination of the laboratory is changed 301 
several times by switching a manual controller (shown in Figure 6.). A light meter (Dr. Meter 302 
LX1010B Digital Illuminance) is used here to measure the illumination change. Normally, 9 303 
light panels in the lab are on and the illumination is 34 lux. By turning off the 3 light panels 304 
which are close to the measurement target, the illumination drops to 18 lux. As shown in Figure 305 
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6, the left image is lighter which is taken when the illumination is 34 lux, while the right image 306 
is darker which is taken when the illumination is 18 lux; 307 

 Case 3: a humidifier (Honeywell HUL520B Mistmate Cool Mist Humidifier) is placed between 308 
the camera and measuring targets (shown in Figure 7). The humidifier produces a mist at the 309 
maximum status to simulate natural fog. Normally, the temperature is 24 °C and the relative 310 
humidity is 49%. While in the center of the mist, the temperature is 20.3 °C and the relative 311 
humidity is 49%. 312 

 

Figure 6. Illumination change. 313 

 

Figure 7. Fog simulation. 314 

3.2. Results analysis and comparative study of Case 1 315 

The objectives for Case 1 are: 316 

1. To evaluate the performance of the subpixel estimation method implemented in this paper; 317 
2. To verify the feasibility and performance of the proposed method (i.e, STC tracking plus Taylor 318 

Approximation, STC-Taylor App) by comparing the conventional LVDT data with the current 319 
vision-based displacement methods, e.g., Lucas-Kanade optical flow with SURF features 320 
(LK-SURF), key point matching with Fast Library for Approximate Nearest Neighbors and 321 
SURF features (FLANN-SURF), digital image correlation (DIC). Figure 8. illustrates the vertical 322 
displacement time histories of P1 in pixel units induced by the vehicle loading when the toy 323 
truck travels along the two-span bridge. 324 

 

Figure 8. Vertical displacement time histories of P1 in pixel unit using non-subpixel technique, image 325 
upsampling technique and Taylor approximation technique. 326 
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The vision-based methods used here include STC tracking with non-subpixel technique 327 
(STC-integer), STC tracking with image upsampling technique (STC-upsample8) and STC tracking 328 
with Taylor approximation (STC-Taylor App). In Figure 8, by zooming in the green dashed line box 329 
area of the displacement time histories, it is clear that the results of the STC-integer approach are 330 
rounded to integer values, i.e., (4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, (-1), (-1) pixels, …). The image 331 
upsampling technique means that each image recorded during the experiment is upsampled to 8 332 
times in the horizontal and vertical directions using bicubic interpolation. Then the minimum 333 
resolution is 1/8 = 0.125 pixel. The result of using image upsampling is a much smoother curve and 334 
shows more subpixel level displacement records. However, it still cannot provide more details about 335 
the small motion [1], especially at the very beginning and at the end. When there are no apparent 336 
loads on the structure, there is still very small structural motion induced by the random 337 
environmental loads such as wind, or machine operations nearby, ambient ground vibration etc. As 338 
illustrated in Figure 9, during the first several seconds before the toy truck moves, the displacements 339 
measured by both STC-integer and STC-upsample8 are exactly zero, which might not be true. Even 340 
though the structure is not loaded, it can still vibrate under random environmental loading. 341 
STC-Taylor App indicates the small motions of the structure caused by random environmental 342 
loadings. It is indicated that the proposed method which combines STC tracking and the Taylor 343 
approximation, has a higher sensitivity, resolution and accuracy. 344 

 

Figure 9. Zoom in the beginning part of the vertical displacement time histories of P1. 345 

Figure 10 verifies the previous findings. In this figure, the horizontal time displacement 346 
histories show the bridge motion in the longitudinal direction induced by the moving truck impact. 347 
The motion is very small, around 1 pixel. The result from the proposed method (STC-Taylor App) 348 
gives very detailed information about the vehicle impact while the results of STC-integer and 349 
STC-upsample8 are almost zero except for one or two points, which means the bridge is stationary in 350 
the longitudinal direction. Figure 11. is a zooming into the area of the green dashed line box in 351 
Figure 10. 352 

 

Figure 10. Horizontal displacement time histories of P1 in pixel unit using non-subpixel technique, 353 
image upsampling technique and Taylor approximation technique. 354 
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Figure 11. Zoom in the horizontal displacement time histories of P1 in pixel unit. 355 

In the zoomed figure, the displacements of the non-zero points measured by STC-integer, 356 
STC-upsample8 and STC-Taylor App are 1, 0.125 and 1.281 pixels. For STC-integer and 357 
STC-upsample8, 1 and 0.125 are their minimum measurement resolutions and statistically these 358 
points are outliers which should be removed from the displacement time histories. In addition, the 359 
image processing speed of the proposed method is much faster than using image upsampling. Table 360 
1. shows the elapsed processing time of one image using three different STC-based methods. The 361 
program environment is MATLAB running on a computer with the CPU of i7, 8 processors and 16G 362 
RAM. The original image has a resolution of 1280 × 960. It takes 0.0481 seconds to process one image 363 
to obtain the displacement at integer pixel level (STC-integer). However, when doing subpixel level 364 
estimation using image upsampling, it takes 2.4895 seconds, which is about (2.4895-0.0481)/0.0481 = 365 
50.76 times that of the STC-integer. It takes only 0.0495 seconds to do this and gives even better 366 
subpixel results when using STC-Taylor App. The proposed method is about 50 times faster than 367 
using image upsampling techniques. 368 

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited. 369 

Methods STC-integer STC-upsample8 STC-Taylor App 

Time (s) 0.0481 2.4895 0.0495 

 370 
Overall, it is suggested that the proposed method using STC tracking and Taylor 371 

approximation can provide displacement measurements at subpixel level with high sensitivity, 372 
resolution, accuracy, and faster speed.  373 

The next step is to convert the displacement in pixel units to physical unit, e.g., millimeter, and 374 
verify the feasibility and performance of displacement measurement by comparing the vision-based 375 
methods with the conventional displacement sensor. As illustrated in Figure 12, four vision-based 376 
displacement measurement methods (i.e., LK-SURF, FLANN-SURF, DIC and STC-Taylor App) and 377 
one conventional displacement sensor (i.e., LVDT) are used to obtain the displacement time histories 378 
of P1 when the toy truck passes over the bridge. At the very beginning, the toy truck stands at the 379 
left end of the first span, then moves to the right and approaches the measurement point P1. In the 380 
meantime, the displacement of P1 (the downward direction is positive) gradually increases to a 381 
maximum when the truck is located at P1. Then the toy truck begins to drive off P1 and keep 382 
heading to the right, while the displacement of P1 gradually decreases. When the toy truck moves to 383 
the right span, the displacement begins to be negative (i.e., upward displacement) due to loading on 384 
the other span of the two span bridge. As it approaches the right end of the right span, the absolute 385 
value of the displacement at P1 first increases and achieves a maximum and then decreases. When 386 
the toy truck arrives at the right end of the bridge, the displacement of P1 becomes stable but does 387 
not go back to zero. This is because the rear axle still rests on the bridge. 388 
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Figure 12. Case 1: displacement time histories of P1 obtained from different methods. 389 

By comparing the displacement time histories, it is easy to see that the result obtained from the 390 
proposed method (i.e., STC+Taylor App) is quite consistent with those obtained from the LVDT and 391 
other three vision-based methods. Figure 13 illustrates the correlation matrix of these time 392 
displacement histories for Case 1. The figures on the diagonal of the correlation matrix are the 393 
histograms of the displacement time histories whereas the others are data plots and linear fits 394 
between the displacement time histories from the two methods. The correlation matrix is symmetric, 395 
and the last row and the last column give the correlation coefficients between the displacement data 396 
obtained from the vision-based methods and the conventional displacement sensor, i.e. LVDT. The 397 
correlation coefficients of the LK-SURF, FLANN-SURF and DIC with the ground truth, i.e. LVDT are 398 
all 0.99, while the correlation coefficient between the proposed method, i.e., STC-Taylor App, and 399 
LVDT is 0.98, which is also quite good. The performance of the vision-based displacement 400 
measurement methods can also be obtained from the similarity of the histograms of each method 401 
comparing with the one of LVDT. 402 

 

Figure 13. Correlation matrix of time displacement histories of Case 1 403 

Here from the diagonal element of the correlation matrix, it is indicated that the histograms of 404 
these time displacement histories are highly consistent with each other. In this case, under ideal 405 
experimental conditions and no adverse factors added to the experiment, the robustness and 406 
advantages of the proposed method (STC-Taylor App) don’t reveal itself. However, the 407 
displacement measurement result shows that the proposed method is immensely powerful 408 
competitor comparing with the vision-based methods. In the next two cases, the robustness and 409 
advantages of the proposed method will be verified. 410 

 411 
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3.3. Results analysis and comparative study of Case 2 412 

This case is designated to verify the robustness of the proposed vision-based displacement 413 
method under the adverse environmental condition: illumination change. For vision-based methods, 414 
illumination is a serious problem when conducting field applications since the image quality is easy 415 
to be affected by the illumination change. Consequently, the visual tracking performance and the 416 
displacement measurement accuracy are affected by the poor quality in the formation of images. In 417 
this experiment, the environmental illumination is determined by the fluorescent light in the lab. By 418 
turning the light switches in the laboratory on and off, the image quality is changed as shown in 419 
Figure 6. The time histories of P1 obtained from different vision-based methods and LVDT under 420 
environmental illumination change are illustrated in Figure 14. 421 

 

Figure 14. Case 2: displacement time histories of P1 obtained from different methods 422 

The spikes in Figure 14 show that the vision-based method, FLANN-SURF is apparently 423 
influenced by the illumination change, which means FLANN-SURF cannot handle this kind of 424 
situation comparing to other vision-based methods. As shown in Figure 15, the correlation 425 
coefficient of the time histories between that obtained from FLANN-SURF and the ground truth, 426 
LVDT, drops to 0.84, while LK-SURF’s and DIC’s drops from 0.99 to 0.98 and from 0.99 to 0.97 when 427 
compared with the correlation matrix obtained in Case 1 shown in Figure 13. However, the 428 
correlation coefficient of the time histories between that obtained from the proposed method, 429 
STC-Taylor App, and the ground truth, LVDT, is still 0.98 comparing that of Case 1. From Figure 14 430 
and Figure 15, it is indicated that the illumination change does have a significant negative 431 
implication effect on the FLANN-SURF and might also influence LK-SURF and DIC slightly. On the 432 
other hand, the proposed method, STC-Taylor App shows great robustness and is almost not 433 
influenced by the illumination change. STC-Taylor App could be a good option for long-term 434 
vision-based displacement measurement since the illumination change is a common problem in field 435 
applications. 436 

 

Figure 15. Correlation matrix of time displacement histories of Case 2 437 
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3.4. Results analysis and comparative study of Case 3 438 

This case is designated to verify the robustness of the proposed vision-based displacement 439 
method under the adverse environmental condition: fog. In this experiment, the fog is simulated by 440 
the mist produced by the humidifier as shown in Figure 7. The fog not only does affect the image 441 
quality but also contaminates the image features which is the basic foundation of target recognition 442 
for visual tracking. In addition, the fog is not still but has a random motion. DIC might perform 443 
undesirably because it highly relies on the image intensity to do pattern matching and the intensity 444 
would always change under this situation. Due to the random motion of the fog, a false optical flow 445 
would be added to the real target motion which causes the optical flow method (e.g. LK method) to 446 
fail. Even though feature points, e.g., Shi-Tomasi corners, SURF, SIFT, FREAK, etc., are very robust 447 
and distinctive, their use with feature-based methods (e.g., LK-SURF and FLANN-SURF) still can 448 
have bad performance due to bad matches. The mist could block features and induce more bad 449 
matches as shown in Figure 16. It causes displacement measurement to have errors, especially when 450 
there are not enough feature points to describe the tracking targets. 451 

 

Figure 16. Poor matches when using feature-based methods 452 

Figure 17 illustrates the time histories of P1 obtained from different vision-based methods and 453 
LVDT under fog interference. When the fog is imposed to the measurement environment, the 454 
displacement results obtained from LK-SURF and DIC provide very poor performance resulting in 455 
lots of spikes appearing in the displacement time histories. Only the results from the proposed 456 
method (STC-Taylor App) and FLANN-SURF show satisfactory performance. Zooming in the 457 
purple dashed line box area of Figure 17, more details are shown in Figure 18. In this figure, except 458 
the spikes, some data is also lost from the displacement time history when using. It is because the 459 
visual tracker based on LK-SURF loses the targets due to the fog interference. In general view, even 460 
though FLANN-SURF gives a good result, it still has outliers. Figure 18 shows an example of the 461 
outlier when using FLANN-SURF. The outlier causes more than one-millimeter error comparing 462 
with the ground truth and the result from STC-Taylor App. Statistically, it can be removed. 463 

 

Figure 17. Case 3: displacement time histories of P1 from different methods 464 
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Figure 18. Zoom in the horizontal displacement time histories of P1 465 

Figure 19 shows the correlation matrix between the vision-based methods and the conventional 466 
displacement method, i.e., LVDT. The correlation coefficient between LK-SURF and LVDT drops 467 
from 0.99 (in Case 1) to 0.84, which means the measurement error of LK-SURF increases. It is even 468 
worse for DIC, whose correlation coefficient drops from 0.99 (in Case 1) to 0.78. The linear fit plots 469 
between LK-SURF and LVDT and that between DIC and LVDT are hard to be interpreted as 470 
correlation. The correlation coefficient between the proposed method, STC-Taylor App and LVDT 471 
also drops from 0.98 (in Case 1) to 0.92. Considering the initial status, it is a little bit better than that 472 
of FLANN-SURF, since the correlation coefficient between the proposed method, STC-Taylor App 473 
and LVDT also drops from 0.99 (in Case 1) to 0.92. 474 

 

Figure 19. Correlation matrix of time displacement histories of Case 3 475 

The outlier in displacement time history obtained by using FLANN-SURF also shows 476 
correlation in matrix plot. The fog indeed has undesirable effects on all of these vision-based 477 
methods at different levels. These bad effects might not be easy to find or be quantified in the time 478 
histories, but they apparently reveal themselves in correlation matrix. Comparing with the other 479 
three vision-based methods, the proposed method gives the best performance. The proposed 480 
vision-based displacement measurement method, i.e., STC-Taylor App, shows great robustness 481 
under fog interference. STC-Taylor App could be a good option for long-term vision-based bridge 482 
displacement measurement since the fog is a common weather problem in field application, 483 
especially when the bridge crosses a river and during the foggy season. 484 

Considering the result analysis of Case 2 and Case 3, the proposed method shows the best 485 
performance under the two adverse environmental factors. 486 

 487 
 488 
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4. Conclusions 489 

In this study, a robust non-contact displacement measurement method using spatio-temporal 490 
context learning and Taylor approximation is proposed. This study aims to resolve the adverse 491 
effects induced by the environmental factors such as illumination change and fog interference when 492 
using vision-based methods to conduct displacement measurements without adding manual 493 
markers or artificial light source for long-term bridge monitoring. The first method that is proposed, 494 
namely spatio-temporal context learning, leverages the advantage of image in high resolution of 495 
spatial and temporal aspects, which can be used in long-term bridge monitoring. Then, as an 496 
extension, the Taylor approximation technique is implemented into the proposed method and to 497 
improve the accuracy of the displacement at subpixel level without sacrificing the processing speed. 498 
The performance of the proposed subpixel estimation method is compared with the general image 499 
upsampling techniques and results shows that the proposed subpixel estimation method is faster 500 
than the general image upsampling technique about 50 times. Also, the precision of the proposed 501 
method is much better than the general image upsampling technique. To validate the feasibility, 502 
stability and robustness of the proposed method, a series of experiments on a two-span three-lane 503 
bridge in laboratory under the adverse environmental factors such as illumination change and fog 504 
interference are conducted. The illumination change is achieved by turning on and off the light 505 
switches in the room and the fog interference is simulated with a humidifier which can produce 506 
mist. The results from the proposed method show that: 507 
1. In Case 1, there is no adverse environmental factors and the measurement condition is desirable 508 

for vision-based systems. The correlation coefficients of the LK-SURF, FLANN-SURF and DIC 509 
with the ground truth, i.e. LVDT are all 0.99, while the correlation coefficient between the 510 
proposed method, i.e., STC-Taylor App, and LVDT is 0.98, which is also quite good. It is 511 
indicated that that at least in the desirable measurement environment, the proposed method is 512 
a strong competitor of the current methods. 513 

2. In Case 2, with the illumination change, the correlation coefficient of the time histories between 514 
that obtained from FLANN-SURF and the ground truth, LVDT, drop to 0.84, while LK-SURF’s 515 
and DIC’s just drop from 0.99 to 0.98 and from 0.99 to 0.97, respectively, comparing with the 516 
correlation matrix obtained from Case 1. However, the correlation coefficient of the time 517 
histories between that obtained from the proposed method, STC-Taylor App, and the ground 518 
truth, LVDT, is still 0.98 comparing to that of Case 1. 519 

3. In Case 3, with the fog interference, the correlation coefficient between LK-SURF and LVDT 520 
drops from 0.99 to 0.84, while DIC’s drops from 0.99 to 0.78 which is the worst. FLANN-SURF’s 521 
drops from 0.99 to 0.92 and the proposed method, STC-Taylor App, drops from 0.98 to 0.92; 522 
Combining the result analysis of the experimental results, the proposed method shows the best 523 

performance under the two adverse environmental factors, and it gives an accuracy at subpixel level 524 
without sacrificing the processing speed. By considering the spatial and temporal context learning 525 
process, the proposed method in this paper successfully mitigates the effects induced by 526 
illumination change and fog interference. Although, the benefits of the proposed method to address 527 
other real-world challenges is not explored in this paper, the proposed method may be applied to 528 
solve other adverse influencing factors such as motion blur, rain, object occlusion, out of plane 529 
movement, orientation of the camera relative to the bridge and camera motion, etc., by taking the 530 
advantage of the high spatio-temporal resolution. The computer vision-based approach along with 531 
the proposed method can be a good alternative and complementary approach to the conventional 532 
structural health monitoring practices. In the future, more studies will be carried out on real bridges 533 
to validate the feasibility of the proposed method and also to investigate other relevant challenges 534 
for long-term bridge monitoring using computer vision. Besides, in this study only one camera was 535 
used, and the proposed method was verified by tracking motion of bridge deck in two-dimensional 536 
(2D) plane, which is the limitation. In future study, the feasibility of 3D motion tracking using the 537 
proposed method will be investigated and will be tested on other applications such as long span 538 
bridge monitoring and cable vibration monitoring. 539 

 540 
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