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Abstract: The Boltzmann-Gibbs (BG) entropy has been used in a wide variety of problems for 
more than a century. It is well known that BG entropy is extensive, but for certain systems such 
as those dictated by long-range interactions, the entropy must be non-extensive. Tsallis entropy 
possesses non-extensive characteristics, which is parametrized by a variable q (q = 1 being the 
classic BG limit), but unless q is determined from microscopic dynamics, the model remains but a 
phenomenological tool. To this date very few examples have emerged in which q can be computed 
from first p  r inciples. T his p aper s hows t hat t he s pace p lasma e n vironment, w hich i s  governed 
by long-range collective electromagnetic interaction, represents a perfect example for which the 
q parameter can be computed from micro-physics. By taking the electron velocity distribution 
function measured in the heliospheric environment into account, and considering them to be in quasi 
equilibrium state with electrostatic turbulence known as the quasi-thermal noise, it is shown that 
the value corresponding to q = 9/13 = 0.6923 may be deduced. This prediction is verified against 
observation made by spacecraft, and it is shown to be in excellent agreement.

Keywords: non-extensive entropic principle; plasma turbulence; quasi equilibrium
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1. Introduction14

The celebrated Boltzmann-Gibbs (BG) definition for entropy [1–3]

S = k log W (1)

has been used in a wide variety of problems for more than a century. Here, W represents the
combinatorial number of all possible micro states of a system, be it classical or quantum mechanical.
The constant k is taken as the Boltzmann constant kB = 1.3806503 × 10−23 m2 kg s−2 K−1 for
thermostatistics, and unity for information system, in which case, it is known as the Shannon entropy
[4]. A more general form of Boltzmann-Gibbs-Shannon (BGS) entropy is expressed in terms of the
probability, pi, of the system being in a particular micro state, labeled i, namely,

S = −k
W

∑
i=1

pi ln pi. (2)

For the particular case of equal probability, pi = 1/W for all i, we recover S = k log W. This well-known15

expression for the entropy has been in use since the 1870s, not only in physics, but for a variety of16

problems in chemistry, mathematics, computational sciences, engineering, and elsewhere.17

It should be noted that the BG entropy is not universally applicable to all situations. While the
definition is eminently suitable for an ideal gas and systems dictated by short-range interactions, for
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systems interacting through long-range forces the applicability of BG entropy has been doubted by a
number of individuals, including Boltzmann himself [5], Einstein [6], Fermi [7], and others. One of the
characteristics of BG entropy is that it is additive, or extensive, that is, the entropy of the total system
equals the sum of entropies of subsystems. If A and B represent two subsystems and A + B the total
system, then

S(A + B) = S(A) + S(B). (3)

The non-extensive entropy violates this rule.18

For short-range interactions, micro states are governed by neighboring particles. As such, the19

combinatorial number of possible micro states associated with the total system is simply the sum of20

combinatorial number of micro states associated with each sub system. This is because of particles21

interacting with short-ranged force are not aware of the presence of other particles belonging to other22

subsystems. The ionized gas, or plasma, is governed by long-ranged electromagnetic interaction23

among charged particles. As such, the combinatorial number of micro states may be more than that of24

the simple sum for sub systems, since charged particles in one system are affected by distant particles25

in other subsystem by virtue of the long-ranged nature of the interaction. For such a situation, the26

non-extensive entropic principle S(A + B) 6= S(A) + S(B) is expected.27

Over the past many years a number of attempts were made to generalize BG entropy to
non-extensive situations. Among these is the 1988 paper by Tsallis [8], which has triggered a recent
interest in the non-extensive thermostatics, although in a strict sense, Tsallis was not the first to suggest
the particular functional form. As he acknowledges in his recent monograph [9], a number of previous
attempts had already entertained similar functional form for the generalized entropy (see entry 107
in the Bibliography section of [9], p. 347, for full reference of early works.). Tsallis put forth a model
entropy of the form

Sq = −
k
(

1−∑W
i=1 pq

i

)
1− q

. (4)

It can be shown that

Sq(A + B) = Sq(A) + Sq(B) + (1− q) k−1Sq(A) Sq(B) 6= S(A) + S(B), (5)

where the parameter q is a measure of how far the system deviates from the BG statistics (for which28

q = 1). Note that a number of modifications and improvements of Tsallis’ original formalism are29

available in the literature [10], but the original formalism by Tsallis sufficient for the present discussion.30

An outstanding issue concerns the determination of q parameter from first principles. Chapter 731

of the monograph by Tsallis [9] lists applications of non-extensive statistical method to high-energy32

physics, turbulence, granular matter, geophysics and astrophysics, quantum chaos, etc., where the33

q parameter for each case is determined by empirical fitting method. For plasmas, on the other34

hand, the governing principle is simple enough, that is, laws of electromagnetics, that it is possible to35

compute the value of q parameter from first principles. The space environment is an almost perfect36

natural laboratory for plasma research, so we focus on examples from measurements made in space by37

artificial satellites in order investigate the basic property of space plasmas and possible connection to38

non-extensive statistical concepts.39

In the 1960s in situ spacecraft measurements of charged particles became possible. It was realized
then that the space plasma did not behave according to the laws of thermodynamic equilibrium. Instead
of Maxwell-Boltzmann-Gauss distribution of particles, observed distributions typically featured
suprathermal component, see, e.g., Refs. [11–13], for some early observations. In an attempt to
fit the measured electron distributions, Vasyliunas [14] introduced a phenomenological model known
as the kappa distribution,

f (v) ∼
(

1 +
v2

κv2
T

)−(κ+1)

, (6)
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where vT = (2kBT/m)1/2 is the Maxwellian thermal speed, that is, vT would be thermal speed had
f (v) been given by the Maxwell-Boltzmann distribution, T and m being the temperature and mass
of the charged particles, κ is a free fitting parameter, and f (v) represents the velocity distribution
function. When κ → ∞ the model reduces to the Maxwellian-Boltzmann (or thermal) distribution,

f (v) ∼ exp

(
− v2

v2
T

)
. (7)

The kappa model enjoyed no first principle justification until it was realized that the most probable
state defined in the context of the non-extensive entropic principle is related to the kappa distribution.
For a continuous system, BG entropy can be written as

SBG = −kB

∫
dx
∫

dv f (v) ln f (v), (8)

where integration over space
∫

dx is understood as being normalized with respect to the total volume
of the system, V −1

∫
dx. Upon minimizing the Helmholtz free energy,

F = U − TSBG, (9)

where

U =
∫

dx
∫

dv
mv2

2
f (v) (10)

is the total energy, we find that the Maxwell-Boltzmann distribution naturally emerges as the most
probable state. In contrast, upon making use of the continuous version of the non-extensive (NE), or
Tsallis entropy, to wit,

Sq = − kB
1− q

∫
dx
∫

dv { f (v)− [ f (v)]q} , (11)

and minimize the corresponding Helmholtz free energy, then the solution

f (v) ∼
[

1 +
(1− q) v2

v2
T

]−1/(1−q)

(12)

emerges as the most probable state. Upon defining

κ =
1

1− q
, (13)

it is straightforward to see that this solution is Vasyliunas’ kappa distribution. Note, however, that40

Vasyliunas’ original model has the power index κ + 1 instead of κ. Nonetheless, the two models are41

practically equivalent. This has prompted an explosion of interest in the non-extensive statistical model42

in the framework of space plasmas [15–17].43

Independent of these developments, Ref. [18] uncovered an interesting fact that the quasi steady44

state electrostatic turbulence generated by a weak electron beam propagating in the background plasma45

is characterized by a non-thermal tail population in the electron velocity distribution function, which46

superficially resembles the kappa distribution. Subsequently, Ref. [19] provided further proof that the47

kappa distribution is a unique solution that characterizes steady state electrostatic plasma turbulence.48

The finding that quasi steady-state plasma turbulence corresponds to the kappa distribution function49

strongly implies the profound inter-relationship with non-extensive statistical equilibrium. Quasi50

equilibrium state of plasma turbulence depict electrons interacting among themselves through51

long-range collective electrostatic fluctuations, which also describes the non-extensive charged-particle52

system interacting with long-range electrostatic force. In this regard, it is no surprise that the53
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approach based upon plasma turbulence theory and that based on non-extensive statistical method54

are equivalent.55

The solar wind electrons [20,21] can be modeled with multi-component velocity distribution56

functions: Maxwellian core; suprathermal halo; highly field-aligned strahl, which is typically associated57

with the high-speed wind; and highly energetic superhalo. As the superhalo electrons [22], which are58

observed in all solar wind conditions with nearly invariant velocity power law index, is at the high59

end of the velocity spectrum, comparing the asymptotic behavior of the kappa distribution with that60

of superhalo component can yield meaningful results, which we will do later in this paper. For the61

moment, we move on to the next section where we discuss the asymptotically steady state electrostatic62

plasma turbulence and the corresponding electron velocity distribution.63

2. Steady State Plasma Turbulence and Electron Kappa Distribution64

We begin the discussion with the kinetic equations of plasma turbulence, which are available in65

standard plasma physics literature [18,23–26]. For plasma in uniform medium free of external fields66

and subject to electrostatic interactions among charged particles including dynamic electrons and67

quasi stationary neutralizing background protons, the electron distribution function fe(v, t) obeys the68

kinetic equation given by69

∂ fe

∂t
=

∂

∂vi

(
AiFe + Dij

∂ fe

∂vj

)
,

Ai =
e2

4πme

∫
dk

ki
k2 ∑

σ=±1
σωL

k δ(σωL
k − k · v),

Dij =
πe2

m2
e

∫
dk

ki k j

k2 ∑
σ=±1

δ(σωL
k − k · v) IσL

k . (14)

In the above e and me stand for unit electric charge and electron mass, respectively, ωL
k =70

ωpe
(
1 + 3

2 k2λ2
De
)

represents the dispersion relation satisfied by high frequency electrostatic wave71

in the plasma known as the Langmuir wave, λDe = T1/2
e /(4πne2)1/2 being the Debye length,72

ωpe = (4πne2/me)1/2 being the plasma oscillation frequency, Te being the electron temperature,73

and IσL
k denotes the spectral electric field intensity associated with the Langmuir wave, E2

k,ω =74

∑σ=±1 IσL
k δ(ω− σωL

k). The symbol σ = ±1 denotes the sign of the wave phase and group velocities.75

The electron particle kinetic equation (14) is given in the form of Fokker-Planck equation where the76

velocity friction represented by coefficient A appears in balanced form against velocity diffusion77

with the associated diffusion coefficient Dij. Since the velocity diffusion is dictated by the Langmuir78

wave spectral intensity IσL
k , the particle equation must be considered in conjunction with the wave79

kinetic equation. When one considers the wave kinetic equation, one must take into account not only80

high-frequency Langmuir (L) wave but also low-frequency wave known as the ion-sound (S) wave,81

since L mode is nonlinear coupled to S mode via wave-wave resonant interaction. In short, the wave82

kinetic equations for L and S mode waves are to be solved as well. These are given by83

∂IσL
k

∂t
=

πω2
pe

k2

∫
dv δ(σωL

k − k · v)
(

ne2

π
fe + σωL

k IσL
k k · ∂ fe

∂v

)
+2 ∑

σ′ ,σ′′=±1
σωL

k

∫
dk′ VLS

k,k′

(
σωL

k Iσ′L
k′ Iσ′′S

k−k′

−σ′ωL
k′ Iσ′′S

k−k′ IσL
k − σ′′ωL

k−k′ Iσ′L
k′ IσL

k

)
(15)

+σωL
k ∑

σ′=±1

∫
dk′

∫
dv ULL

k,k′

[
me

mi
Iσ′L
k′ IσL

k (k− k′) · ∂ fi
∂v
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+
ne2

πω2
pe

(
σωL

k Iσ′L
k′ − σ′ωL

k′ IσL
k

)
( fe + fi)

]
,

84

∂IσS
k

∂t
=

πµkω2
pe

k2

∫
dv δ(σωS

k − k · v)
[

ne2

π
( fe + fi)

+ σωL
k IσS

k

(
k · ∂

∂v

)(
fe +

me

mi
fi

)]
+ ∑

σ′ ,σ′′=±1
σωL

k

∫
dk′ VSL

k,k′

(
σωL

k Iσ′L
k′ Iσ′′L

k−k′

−σ′ωL
k′ Iσ′′L

k−k′ IσS
k − σ′′ωL

k−k′ Iσ′L
k′ IσS

k

)
. (16)

These wave kinetic equations have been derived by various authors, and can be found in Refs. [18,23–
26]. For L mode wave equation the first term on the right-hand side represents linear wave-particle
resonant interaction between the electrons and Langmuir wave; the second and third lines collectively
describe three wave or wave-wave nonlinear resonant processes among two Langmuir waves and an
ion sound wave; the fourth and fifth lines together describe nonlinear wave-particle resonance among
two Langmuir waves mediated by quasi stationary protons, whose velocity distribution is given by
fi. For the ion sound mode, the interpretations and designations of various terms are analogous to
those of L mode wave, except that S mode wave kinetic equation does not have the term denoting the
nonlinear wave-particle resonance. The ion sound or S mode enjoys the dispersion relation specified
by

ωS
k =

kcS
√

1 + 3Ti/Te√
1 + k2λ2

De

, (17)

where cS = (Te/mi)
1/2 is the ion sound (or ion acoustic) speed and Ti stands for the ion (proton)85

temperature. Various objects which appear in the wave kinetic equations (15) and (16) are defined by86

µk = k3λ3
De

√
me

mi

√
1 +

3Ti
Te

,

VLS
k,k′ =

π

2
e2

T2
e

µk−k′ (k · k′)2

k2 k′2|k− k′|2 δ(σωL
k − σ′ωL

k′ − σ′′ωS
k−k′),

VSL
k,k′ =

π

4
e2

T2
e

µk [k′ · (k− k′)]2

k2 k′2 |k− k′|2 δ(σωS
k − σ′ωL

k′ − σ′′ωL
k−k′),

ULL
k,k′ =

π

ω2
pe

e2

m2
e

(k · k′)2

k2 k′2
δ[σωL

k − σ′ωL
k′ − (k− k′) · v]. (18)

As is apparent from the definitions, nonlinear coupling coefficients, VLS
k,k′ , VSL

k,k′ , and ULL
k,k′ , dictate the87

various wave-wave and nonlinear wave-particle resonant interactions, which are obvious from the88

delta function arguments.89

Consider the particle kinetic equation for electrons (14). In what follows we assume that the
wave dispersion relation depends only on the magnitude of k, and that the forward- and backward
wave intensities are identical and isotropic, ωL

k = ωL
k and IσL

k = IL(k), which are valid assumptions,
provided the electron distribution function is isotropic, fe(v) = fe(v). We assume the steady state,
∂ fe/∂t = 0, by virtue of the velocity friction and diffusion terms balancing each other out,

0 = Ai fe + Dij
∂ fe

∂vj
. (19)
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Following the basic method pioneered in Ref. [27], the present author [19] demonstrated that the
formal solution to the steady state particle kinetic equation is given by

fe = C exp

− ∫ dv
mev
4π2

∫ ∞

ωpe/v

dk
k∫ ∞

ωpe/v

dk
k

IL(k)

 . (20)

In the above the integral
∫ ∞

ωpe/v dk/k formally diverges for k→ ∞, but if we formally define

H (v) =
∫ ∞

ωpe/v

dk
k

, H (v)I (v) =
∫ ∞

ωpe/v

dk
k

IL(k). (21)

Then we may formally remove the divergence, so that we have

fe = C exp
(
−
∫

dv
mev
4π2

1
I (v)

)
. (22)

This solution show that a suitable model for IL(k), or for that matter, I (k), will lead to the suitable
counterpart for fe and vice versa. Apparently, there exists an infinite choice for coupled solutions
[ fe(v), IL(k)], of which we are interested in a particular form of electron distribution velocity function
that represents a kappa-like solution,

fe(v) =
C

(1 + mev2/2κ′ θe)κ+1 . (23)

The normalization constant C can be obtained by requiring the condition, 1 = 4π
∫ ∞

0 dv v2 fe, and is
thus given by

C =
m3/2

e

(2π θe)3/2
Γ(κ + 1)

κ′3/2 Γ(κ − 1/2)
. (24)

Here Γ(x) is the gamma function. The effective or kinetic temperature for this kappa-like model can be
computed on the basis of definition, Te =

∫
dv(mev2/3) fe, and the result is

Te = θe
κ′

κ − 3/2
. (25)

If we impose the model fe given by (23), then it follows from (20) or (22) that the corresponding
wave spectrum IL(k) can be deduced. First, it can be shown that the choice of

I (v) =
θe

4π2
κ′

κ + 1

(
1 +

mev2

2κ′θe

)
, (26)

satisfies (22) with fe given by (23). Then from (21), it follows that IL(k) is given by90

IL(k) =
θe

4π2
κ′

κ + 1

(
1 +

meω2
pe

2κ′k2θe
[1 + 2H (k)]

)
,

H (k) =
∫ ∞

k

dk
k

. (27)

We reiterate that the distribution (23) and the corresponding spectrum (27) are not unique, and that91

the indices κ and κ′ are free parameters at this point. In order to prove the uniqueness as well as to92

determine the values for κ and κ′, we next turn to the steady-state wave equations.93

Consider the wave kinetic equations (15) and (16). We assume isotropic spectrum as in the94

above discussion on formal particle equation. We may ignore the S mode contribution as well as95
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contributions from the three wave interaction process. Reference [19] discusses these assumptions96

and approximations in detail. The same reference also presents detailed modifications of nonlinear97

coupling coefficient when the underlying electron distribution is given by the kappa-like model (23).98

Consequently, by omitting the intermediate steps, we simply present the steady-state Langmuir wave99

equation without the wave-wave resonant interaction term,100

0 =
πω2

pe

k2

∫
dv δ(ωk − k · v)

(
ne2

π
fe + ωk IL(k) k · ∂ fe

∂v

)
−
(

κ − 1/2
κ′

)2 ωk
4πnTi

∑
+,−

∫
dk′

∫
dv

(k · k′)2

k2 k′2
δ[ωk ∓ωk′ − (k− k′) · v]

×
(

Ti
4π2

[
±ωk′ IL(k)−ωk IL(k′)

]
+ IL(k′) IL(k) (ωk ∓ωk′)

)
fi, (28)

where we have taken advantage of the fact that the ion distribution is assumed to remain stationary101

and given by the Maxwellian form. Reference [19] shows that the first term on the right-hand side,102

which is dictated by the linear wave-particle resonance delta function condition, vanishes if fe and103

IL(k) are chosen by (23) and (27), respectively. As a consequence, only the nonlinear wave-particle104

resonance term needs to be considered in the wave equation, which provides the necessary constraint,105

with which, we will be able to demonstrate that the kappa-like model (23) is indeed, a unique solution,106

and that κ and κ′ can be determined. Thus, we consider the nonlinear term in (28), which upon setting107

equal to zero, reduces to108

0 =
∫

dk′
∫

dv
(k · k′)2

k2 k′2
δ[ωk −ωk′ − (k− k′) · v]

×
(

Ti
4π2

[
ωk′ IL(k)−ωk IL(k′)

]
+ IL(k′) IL(k) (ωk −ωk′)

)
fi. (29)

As discussed in Ref. [19], the nonlinear resonance speed satisfying the condition ωk −ωk′ − (k−109

k′) · v = 0 is given by vres ∼ 3 (k− k′) θe/(2meωpe) ∼ vTi � vTe. Consequently, k and k′ must be110

sufficiently close to each other, or |k− k′| ∼ |δk| � 1. We thus employ the Taylor series expansion to111

obtain112

0 =
∫

d(δk)
∫

dv
(k · k′)2

k2 k′2
δ[ωk −ωk′ − (k− k′) · v]

× (δk)
(

ω(k)
dIL(k)

dk
+

4π2

Ti

dω(k)
dk

[IL(k)]2 −
dω(k)

dk
IL(k)

)
fi. (30)

The necessary condition for equality leads to the spectrum,

IL(k) =
Ti

4π2

(
1 +

2
3

κ − 3/2
κ′ k2θe/meω2

pe

)
, (31)

which is alternative to the earlier solution (27). Obviously the two expressions must be identical. If we
identify

κ =
9
4
+

3
2

H = 2.25 + 1.5H , κ′θe = (κ + 1) Ti, (32)

then we may reconcile the two expressions, where we have treated H as constant. Such a reconciliation113

between (27) and (31) would not have been possible had we chosen fe other than the kappa-like model114

(23). This amounts to the uniqueness proof for the kappa distribution as being associated with the115

steady state Langmuir turbulence.116
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To summarize the findings, the electron kappa distribution function represents a plasma state117

in quasi equilibrium with weak Langmuir turbulence, and the desired final form of fe and IL(k) are118

given by119

fe(v) =
m3/2

e

(2πTe)3/2
Γ(κ + 1)

(κ − 3/2)3/2Γ(κ − 1/2)

(
1 +

1
κ − 3/2

mev2

2Te

)−κ−1

,

IL(k) =
Te

4π2
κ − 3/2

κ + 1

(
1 +

1 + 2H

κ − 3/2
2πne2

k2Te

)
, (33)

κ =
9
4
+

3H

2
= 2.25 + 1.5H ,

Ti
Te

=
κ − 3/2

κ + 1
=

3 + 6H

13 + 6H
.

This solution is an indirect evidence that the turbulent equilibrium in plasmas may be equivalent to120

the non-extensive statistical state. As we have pointed out in the Introduction, the most probable state121

that maximizes the Tsallis non-extensive entropy is the kappa distribution function. The steady state122

of plasma turbulence is also characterized by the same kappa distribution, which thus indicates that123

the two approaches are describing the same statistical state.124

The kappa electron velocity distribution function may also characterize the solar wind. For
suprathermal velocity range, v� vTe, the kappa electron distribution (33) behaves as an inverse power
law distribution,

fe ∼ v−6.5, (34)

since κ ≈ 9/4 = 2.25, assuming H can be ignored. If we recall that, while the solar wind electrons
can be modeled by a combination of Maxwellian core, suprathermal halo, and superhalo, it is the
comparison with superhalo, which is most useful, since these electrons are at the high end of the
velocity spectrum [20,21]. Observation near Earth orbit shows that superhalo electrons behave as
fe ∼ v−5.0 to v−8.7 with average behavior [22]

f obs
e ∼ v−6.69, v� vTe. (35)

This agrees quite well with (34). There exists further evidence to support our interpretation that the125

solar wind electrons are in turbulent equilibrium state with high-frequency Langmuir fluctuations, or126

equivalently, they can be characterized by the non-extensive statistical state. Reference [28] analyzed127

the solar wind halo electrons, and analyzed Helios, Cluster, and Ulysses spacecraft data. The authors128

show that the value of observed κ decreases from ∼ 9 near 0.3 AU to ∼ 4 near 1 AU, to ∼ 2.25 near129

∼ 5 AU. This strongly implies that as the solar wind evolves radially and thus approaches the quasi130

equilibrium state, the distinction between the halo and superhalo electrons disappear, and the κ index131

approaches closer and closer to the theoretically predicted value.132

3. The Question of True Thermodynamic Equilibrium for Space Plasma133

We have thus far argued that the space plasma in the heliosphere may be in the state of quasi134

equilibrium in which the particles constantly exchange momentum and energy with the long-ranged135

collective fluctuations, thus maintaining the kappa distribution function. By inference with the136

non-extensive entropic principle, we have also made a conjecture that the turbulent quasi equilibrium137

for space plasma may be alternatively described within the framework of non-extensive statistical138

concept. The question that naturally arises is the problem of true thermodynamic equilibrium, and139

whether the space plasma can ever attain such a state. For collision-poor space plasmas the true140

thermodynamic equilibrium state may be reached, but from a theoretical point of view, turbulent141

quasi equilibrium state must eventually relax to the true thermodynamic equilibrium state through142

binary collisions. The road to true thermodynamic equilibrium can be discussed on the basis of kinetic143

plasma theory, but the analysis requires the knowledge of the time scales associated with the collisional144

relaxation, as opposed to the time scales that govern the formation of turbulent quasi equilibrium state.145
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In general it is expected that the collisional relaxation time scale is much longer than that of turbulent146

equilibrium formation time scale, but the quantitative estimate is not so easy.147

At the moment, we are not able to address the issue of time scales of collisional relaxation148

process. However, it is possible to discuss the theoretical framework that includes both turbulent149

quasi equilibrium state and collisionally relaxed thermodynamic state within a single framework of150

steady-state plasma equation. It is done by generalizing the particle kinetic equation (14) through151

addition of collisional operator. The basic theory may be developed on the basis of the electron kinetic152

equation that includes the influence of collective (Langmuir wave) fluctuations and binary collisions,153

which can be found in Ref. [29],154

∂ fe

∂t
=

1
v2

∂

∂v

[
v2 (Av + Ac

v) fe

]
+

1
v2

∂

∂v

(
v2 (Dvv + Dc

vv)
∂ fe

∂v

)
+

1
v2

∂

∂µ

((
1− µ2

) (
Dµµ + Dc

µµ

) ∂ fe

∂µ

)
, (36)

where the particle kinetic equation that generalizes (14) for the electrons is now expressed in spherical155

velocity coordinate. The velocity space friction and diffusion coefficients, A and Dij, respectively,156

are the same those defined in (14), and the additional coefficients Ac and Dc
ij, respectively, pertain157

to collisional effects. Non-vanishing elements of these coefficients are given in spherical coordinate158

variables as follows:159

Av =
e2ω2

pe

mev2

∫ ∞

ωpe/v

dk
k

,

Dvv =
4π2e2ω2

pe

m2
e v3

∫ ∞

ωpe/v

dk
k

IL(k),

Dµµ =
4π2e2(k2v2 −ω2

pe)

m2
e v

∫ ∞

ωpe/v

dk
k

IL(k),

Ac
v =

4πne4 ln Λ
m2

e

2
v2

Te

(
G(xe) +

Te

Ti
G(xi)

)
,

Dc
vv =

4πne4 ln Λ
m2

e

G(xe) + G(xi)

v
,

Dc
µµ =

4πne4 ln Λ
m2

e

1√
πv

(
e−x2

e

xe
+

e−x2
i

xi

)
,

xe =
v

vTe
, xi =

v
vTi

, Λ = 4πnλ3
De,

G(x) =
erf(x)− (2/

√
π) x e−x2

2x2 . (37)

In the collisional coefficients defined here, we took the approach of treating the collisional processes160

that involves electrons scattering off Maxwellian distribution of charged particles via Rosenbluth161

potential approximation [30].162

If we assume that fe is isotropic, then the steady-state solution is given by163

fe = const exp
(
−
∫

dv
Av + Ac

v
Dvv + Dc

vv

)

= C exp

− ∫ dv
v
∫ ∞

ωpe/v

dk
k

+
mev3

Te
ln Λ

(
G(xe) +

Te

Ti
G(xi)

)
4π2

me

∫ ∞

ωpe/v

dk
k

IL(k) + v2 ln Λ [G(xe) + G(xi)]

 . (38)
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This solution can be used to discuss either thermal equilibrium that is attained by collisional process,164

or turbulent quasi equilibrium state attained through collective fluctuations. If we ignore contribution165

from the collective fluctuations, that is, if we ignore the k integral terms in the numerator and166

denominator, then we have167

fe = C exp

−me

Te

∫
dvv

G(xe) +
Te

Ti
G(xi)

G(xe) + G(xi)


= C exp

(
−mev2

2T

)
, (39)

where in going from the first to second equality, we have assumed Te = Ti = T. This is the thermal
equilibrium distribution, as expected. On the other hand, if we ignore the collisional part dictated by
ln Λ, then we have

fe = C exp

− me

4π2

∫
dvv

∫ ∞

ωpe/v

dk
k∫ ∞

ωpe/v

dk
k

IL(k)

 , (40)

which is the same as (20). As we already saw, this formal solution leads to the kappa distribution,168

provided the fluctuation spectrum is specified by the mathematical form given in (33).169

4. Discussion170

To summarize the essential findings of the present paper, we have argued for an inter-relationship171

that may exist between the non-extensive statistical description of plasma, in which long-ranged172

electromagnetic force is involved, and the quasi steady state plasma turbulent state. Both descriptions173

share a common feature in that the equilibrium distribution function corresponds to the kappa174

distribution, or equivalently, the q distribution. In the non-extensive statistical approach, the q175

parameter is undetermined, but the plasma turbulence theory can be invoked in order to determine176

its value via the relationship q = (κ − 1)/κ. If we adopt κ = 9/4 = 2.25, then we find that q = 5/9.177

We have also verified the theoretical prediction of κ = 9/4 = 2.25 against spacecraft observations and178

found reasonable agreement. Finally, we have also briefly addressed the issue of including the effects179

of collisional relaxation in the general formalism.180
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