Article

Dynamic of stochastic epidemic model based on the association between susceptible and recovered individuals

Luyao Xin ^{1,†},^[], Yingxin Guo ^{1,*} and Quanxin Zhu ^{2,‡}

- ¹ School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China
- ² MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, Hunan, China
- * The corresponding author is Professor Yingxin Guo with an email:yxguo312@zju.edu.cn
- + Luyao Xin's e-mail: xinluyao9601@163.com
- ‡ Quanxin Zhu's e-mail: zqx22@126.com

Version May 30, 2019 submitted to Preprints

- Abstract: In this paper, we propose a new mathematical model based on the association between
- ² susceptible and recovered individual, where the association between susceptible and recovered
- individual is disturbed by white noise. This model is based on demographic changes and is used
- 4 for long term behavior. We study the stability of equilibria of the deterministic model and prove the
- 5 conditions for the extinction of diseases. Then, we investigate and obtain the critical condition of the
- 6 stochastic epidemic model for the extinction and the permanence in mean of the disease with the
- 7 white noise. To verify our results, we present some numerical simulations for real data related to
- disease.
- Keywords: extinction; permanence in mean; stability; stochastic epidemic model

10 1. Introduction

¹¹ Things are connected in the real world, and in the biological world as well. Epidemic diseases

¹² are commonly established through deterministic models in which populations that transmit disease

- are divided into three categories, such as susceptible, infected, and recovered individuals. In special
- ¹⁴ situation, the connection between the three individuals will lead to their dynamic change.

The Kermark-Mckendrick model [1] is a SIR model for the number of people infected with infectious diseases in closed populations. It assumes that the size of the population is fixed (such as not being born, dying from disease, or dying from natural causes), that the incubation period of infectious factors is immediate. It also assumes closed populations with no age, space or social structure. The Kermark-Mckendrick model as follows:

$$\begin{cases} \frac{\mathrm{d}S(t)}{\mathrm{d}t} = -\lambda S(t)I(t) \\ \frac{\mathrm{d}I(t)}{\mathrm{d}t} = (\lambda S(t)I(t) - \gamma I(t)) \\ \frac{\mathrm{d}R(t)}{\mathrm{d}t} = \gamma I(t) \end{cases}$$
(1.1)

where *t* is time, S(t) is the number of susceptible people, I(t) is the number of people infected, R(t)

¹⁶ is the number of people who have recovered and developed permanence immunity to the infection,

- λ is the infection rate, and γ is the recovery rate. In addition, we know that the constant $\mathcal{R}_0 = \frac{\lambda S_0}{\gamma}$,
- ¹⁸ which is called the basic reproduction number, determines the most important quantities of epidemic
- ¹⁹ behavior and potential in 1.1. In particular, \mathcal{R}_0 also determines whether an epidemic occurs or not.

A mathematical survey was carried out on the progress of the epidemic diseases in the same population. Overall, the threshold density of the population has been found, which depends on the epidemic's infectivity, recovery and mortality. If population density is below this threshold, there will

- ²³ be no epidemic. In addition, if population density is slightly above the threshold, the impact of the
- ²⁴ epidemic will be to reduce density below the threshold [1]. Many articles apply this theory such as

25 [3,4].

Some infections, such as those from the common cold and flu, do not confer any lasting immunity. The infection is not immunized after recovery from infection, and individuals become susceptible to infection[2]. Thus the model as follows:

$$\begin{cases} \frac{\mathrm{d}S(t)}{\mathrm{d}t} = -\lambda S(t)I(t) + \gamma I(t) \\ \frac{\mathrm{d}I(t)}{\mathrm{d}t} = \left(\lambda S(t)I(t) - \gamma I(t)\right) \end{cases}$$
(1.2)

This model is called SIS model, also known as the contact process, is one of which has been conducted extensively from deterministic to stochastic point of view under a variety of assumptions [5–7]. Gray will discuss in this paper the effect of stochastic noise on the well-known SIS epidemic model [8]. The dynamics of a stochastic model with vaccination was discussed by [9–11,13]. Usually

³⁰ SDE can also be discussed with time delays influenced was discussed by [12–15].

In addition, there are infectious disease models such as SI(see,e.g.[16,17]), SIRS(see,e.g.[18][19]), SIRS(see,e.g.[18][19]),

³² SEIR(see,e.g.[20,21]), MSIR(see,e.g.[22]). A number of differential equation models were developed to

describe AIDS(see,e.g.[23]) hepatitis B(see,e.g.[24-29]), and so on. Motivated by this fact, Tahir Khan,

- Amir Khan and Gul Zaman [29] considered the following hepatitis B epidemic model with the aid of
- ³⁵ diagram shown in Fig. 1:

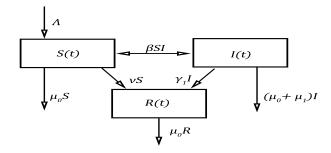


Figure 1. Transfer diagram of hepatitis B epidemic model

And deterministic epidemic model as follows:

$$\begin{cases} \frac{dS(t)}{dt} = \Lambda - \beta S(t)I(t) - (\mu_0 + \nu)S(t) \\ \frac{dI(t)}{dt} = \beta S(t)I(t) - (\mu_0 + \mu_1 + \gamma_1)I(t) \\ \frac{dR(t)}{dt} = \gamma_1 I(t) + \nu S(t) - \mu_0 R(t) \end{cases}$$
(1.3)

where S(t) denotes the number of members of a population who are susceptible to an infection at 36 time t. I(t) denotes the number of members who are infective at time t. R(t) denotes the number of 37 members who are recovered with an infection at time t as the result of vaccination. The parameters 38 in the model are summarized in the following: β represents transmission rate between S(t) and I(t); 39 A represents the per capita constant birth rate; μ_0 and μ_1 respectively represent the natural death 40 rate and the disease induced death rate; ν represents the vaccination rate; γ_1 represents the constant 41 recovery rate for the disease infected individual. All parameter values are assumed to be nonnegative, 42 and μ_0 , $\Lambda > 0$. 43 It is now considered that the recovered individuals do not have permanent immunity. Because of 44

environments, specific diseases, malnutritions, fatigue mental pressures and some drugs, the number

- ⁴⁶ of recovered classes and susceptible classes can transfer to each other. This rate of transformation is
- assumed to be α , and the new model is shown below and the diagram shown in Fig.2,

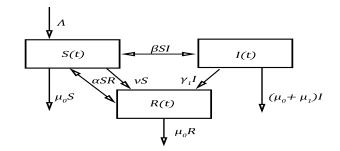


Figure 2. Transfer diagram of epidemic model based on the association between susceptible and recovered individuals

Based on the infectious disease model we introduced above, we first propose a deterministic epidemiological model as follows:

$$\begin{cases} \frac{dS(t)}{dt} = \Lambda - \beta S(t)I(t) + \alpha S(t)R(t) - (\mu_0 + \nu)S(t) \\ \frac{dI(t)}{dt} = \beta S(t)I(t) - (\mu_0 + \mu_1 + \gamma_1)I(t) \\ \frac{dR(t)}{dt} = \gamma_1 I(t) + \nu S(t) - \mu_0 R(t) - \alpha S(t)R(t) \end{cases}$$
(1.4)

where α presents transmission rate between S(t) and R(t).

Taking the effect of randomly fluctuating environment into consideration in real world, we assume that fluctuations in the environment will manifest themselves mainly as fluctuations transmission parameter α and β , i.e., $\beta \rightarrow \eta_1 \dot{B}(t)$ and $\alpha \rightarrow \eta_2 \dot{B}(t)$, where B(t) is standard Brownian motion with the property B(0) = 0 and with the intensity of white noise $\eta_1^2 > 0$, $\eta_2^2 > 0$. Stochastic epidemic model as follows:

$$\begin{aligned}
dS(t) &= \left(\Lambda - \beta S(t)I(t) - \alpha S(t)R(t) - (\mu_0 + \nu)S(t)\right) dt - \eta_1 S(t)I(t) dB_1(t) \\
&- \eta_2 S(t)R(t) dB_2(t) \\
dI(t) &= \left(\beta S(t)I(t) - (\mu_0 + \mu_1 + \gamma_1)I(t)\right) dt + \eta_1 S(t)I(t) dB_1(t) \\
dR(t) &= \left(\gamma_1 I(t) + \nu S(t) - \mu_0 R(t) + \alpha S(t)R(t)\right) dt + \eta_2 S(t)R(t) dB_2(t)
\end{aligned}$$
(1.5)

It establishes a stochastic epidemic disease model based on the association between susceptible and recovered individuals with a varying population environment for a long term behavior. We discuss the disease extinction, the disease persistence in mean and obtain sufficient conditions for them.To verify our results, we present some numerical simulations for real data related to disease.

⁵³ 2. the Dynamics of deterministic system 1.4

From a mathematical point of view, throughout this paper, let $(\Omega, \mathcal{F}, \{\mathcal{F}\}_t \ge 0, \mathcal{P})$ be a complete probability space, $R^3_+ = \{x_i > 0, i = 1, 2, 3\}$. f is an integrable function on $[0, \infty)$, $\langle f(t) \rangle = \frac{1}{t} \int_0^t f(\theta) \, d\theta$. Then we have

Def 2.1. (*i*) The diseases I(t) are said to be extinctive if $\lim_{t \to \infty} I(t) = 0$.

(ii) The diseases I(t) are said to be permanent in mean if there exist two positive constants C such that

$$\inf \lim_{t \to \infty} \langle I(t) \rangle \ge \mathcal{C}$$

57

$$max\left\{\sup\lim_{t\to\infty}S(t),\sup\lim_{t\to\infty}I(t),\sup\lim_{t\to\infty}R(t)\right\}\leq\frac{\Lambda}{\mu_0}$$

58

Proof. From system 1.1 or the system 1.2, we have

$$\frac{d(S(t) + I(t) + R(t))}{dt} = \Lambda - \mu_0 (S(t) + I(t) + R(t)) - \mu_1 I(t)$$
$$\leq \Lambda - \mu_0 (S(t) + I(t) + R(t))$$

This implies that

$$\lim_{t \to \infty} \left(S(t) + I(t) + R(t) \right) \le \frac{\Lambda}{\mu_0}$$

Then obviously we have

$$\sup \lim_{t \to \infty} S(t) \le \frac{\Lambda}{\mu_0}, \sup \lim_{t \to \infty} I(t) \le \frac{\Lambda}{\mu_0}, \sup \lim_{t \to \infty} R(t) \le \frac{\Lambda}{\mu_0}$$

Since S(t) > 0, I(t) > 0, R(t) > 0. This completes the proof of lemma 2.2.

60

In system 1.1, let

$$f_{1} = \Lambda - \beta S(t)I(t) - \alpha S(t)R(t) - (\mu_{0} + \nu)S(t)$$

$$f_{2} = \beta S(t)I(t) - (\mu_{0} + \mu_{1} + \gamma_{1})I(t)$$

$$f_{3} = \gamma_{1}I(t) + \nu S(t) - \mu_{0}R(t) + \alpha S(t)R(t)$$

Then setting $f_i = 0$ leads to the following equilibria: $E_1 : (\tilde{S}, 0, \tilde{R})$ with

$$\tilde{S} = \frac{\Lambda}{\mu_0} - \tilde{R}, \tilde{R} = \frac{\left(\frac{\alpha\Lambda}{\mu_0} - (\nu + \mu_0)\right) + \sqrt{\left(\frac{\alpha\Lambda}{\mu_0} - (\nu + \mu_0)\right)^2 + \frac{4\alpha\nu\Lambda}{\mu_0}}}{2\alpha}$$

 $E_2: (S^*, I^*, R^*)$ with

$$S^{*} = \frac{\mu_{0} + \mu_{1} + \mu_{1}}{\beta}$$
$$I^{*} = \frac{\left(-\nu\beta\mu_{0} - \mu_{0}(\beta\mu_{0} - \alpha(\mu_{0} + \mu_{1} + \gamma_{1})) - \alpha\beta\Lambda\right)(\mu_{0} + \mu_{1} + \gamma_{1}) + \Lambda\beta^{2}\mu_{0}}{\beta\left(\gamma_{1}\beta\mu_{0} + (\mu_{0} + \mu_{1})(\beta\mu_{0} - \alpha(\mu_{0} + \mu_{1} + \gamma_{1}))\right)}$$
$$R^{*} = \frac{\Lambda\gamma_{1}\beta - (\mu_{0} + \mu_{1} + \gamma_{1})(\mu_{0}\gamma_{1} - \mu_{0}\nu - \mu_{1}\nu)}{\gamma_{1}\beta\mu_{0} + (\mu_{0} + \mu_{1})(\beta\mu_{0} - \alpha(\mu_{0} + \mu_{1} + \gamma_{1}))}$$

From the expressions of S^* , I^* and R^* , we know of

 $\tilde{S} > 0, I^* > 0, R^* > 0$

System 1.1 has positive equilibrium E^* , furthermore, let

$$\mathcal{R} = rac{eta\Lambda}{(\mu_0+\mu_1+\gamma_1)\mu_0}$$

- **Theorem 2.3.** For system 1.1, the following conclusion are true:
- (*i*) If $\mathcal{R} < 1$, then the disease I goes extinct.
- $(ii) E_2$ is a unstable equilibrium.

Proof. The stability of the equilibrium point $(\tilde{S}, 0, \tilde{R})$ of system 1.1 is determined by the Jacobian

$$J_1 = \begin{pmatrix} -\alpha \tilde{R} - (\mu_0 + \nu) & 0 & \nu + \alpha \tilde{R} \\ -\beta \tilde{S} & \beta S - (\mu_0 + \mu_1 + \gamma_1) & \gamma_1 \\ -\alpha \tilde{S} & 0 & -\mu_0 + \alpha \tilde{S} \end{pmatrix}$$

Since $\mathcal{R} < 1$, one of three eigenvalues of matrix J_1 is given by

$$\lambda_1 = \beta \tilde{S} - (\mu_0 + \mu_1 + \gamma_1) < \frac{\beta \Lambda}{\mu_0} - (\mu_0 + \mu_1 + \gamma_1) < 0$$

The other two eigenvalues of matrix J_1 are root of the following equation

$$\lambda^2 + (-a_{11} - a_{33})\lambda + (-a_{11}a_{33} - a_{31}a_{13}) = 0$$

⁶⁵ With the help of $\nu > \mu_0$, where

$$a_{11} = -\alpha \tilde{R} - (\mu_0 + \nu) = -\frac{\alpha \Lambda}{2\mu_0} - \frac{1}{2} \sqrt{\left(\frac{\alpha \Lambda}{\mu_0} - (\nu + \mu_0)\right)^2 + \frac{4\alpha \nu \Lambda}{\mu_0}} < 0$$

$$a_{33} = -\mu_0 + \alpha \tilde{S}$$

$$= \frac{-\mu_0 + \frac{\alpha \Lambda}{\mu_0} + \nu + \sqrt{\frac{\alpha^2 \Lambda^2}{\mu_0^2} + (\nu + \mu_0)^2 + \frac{2(\nu - \mu_0)\alpha \Lambda}{\mu_0}}}{2}$$

$$> 0$$

 $a_{13} = \nu + \alpha \tilde{R}, a_{31} = -\alpha \tilde{S}$

Then $-a_{11} - a_{33} > 0$ and $-a_{11}a_{33} - a_{31}a_{13} > 0$. This implies $\lambda_2 < 0$ and $\lambda_3 < 0$. Thus the equilibrium E_1 is stable. This means the disease with relationship of between susceptible and recovered individuals goes extinct.

Now let us prove instability of the equilibrium point E_2 . At E_2 the Jacobian takes the form of

$$J_{2} = \begin{pmatrix} -\beta I^{*} - \alpha R^{*} - (\mu_{0} + \nu) & \beta I^{*} & \nu + \alpha R \\ -(\mu_{0} + \mu_{1} + \gamma_{1}) & 0 & \gamma_{1} \\ \frac{\alpha(\mu_{0} + \mu_{1} + \gamma_{1})}{\beta} & 0 & -\mu_{0} + \alpha S \end{pmatrix}$$

since $\lambda_1^* = \beta I^* > 0$, E_2 is a unstable equilibrium. The proof is completed.

73 3. Dynamics of stochastic system 1.5

In the following section, the extinction of the system 1.2 infectious disease under random disturbance of white noise will be discussed. In order for SDE model 1.2 to have research value, we need to at least prove that this SDE model does have a unique global solution. The existing general existence-and-uniqueness theorem on SDEs is not applicable to this particular SDE in order to ensure these properties. Therefore, new theories need to be established.

Theorem 3.1. For an initial value $(S(0), I(0), R(0)) \in R^3_+$. The solution (S(t), I(t), R(t)) of the proposed stochastic epidemic model 1.2 is unique, for $t \ge 0$, Moreover, the solution remain in R^3_+ with probability 1.

Proof. Our proof is motivated by the works of Mao et al. [30] and [31]. It is clear that the coefficients of the equation of the model are locally Lipschitz continuous for any given initial size of population $(S(0), I(0), R(0)) \in R^3_+$. It follows that there is a unique local solution (S(t), I(t), R(t)) on $t \in [0, \tau_e]$, where τ_e is the explosion time(for detail see the reference [23]). To show that this solution is global, we prove that $\tau_e = \infty a.s.$ Let $k_0 \ge 0$ be sufficiently large, so that S(t), I(t) and R(t) all lie within the

interval $[\frac{1}{k_0}, k_0]$. For each integer $k \ge k_0$. Define the stopping time

$$\tau_{k} = \{t \in [0, \tau_{e}) : \min\{S(t), I(t), R(t)\} \\ \leq \frac{1}{k} \text{ or } \max\{S(t), I(t), R(t)\}\}$$
(3.1)

We set inf $\emptyset = \infty$ as usual. According to the definition. τ_k increases as $k \to \infty$. set $\tau_{\infty} = \lim_{k \to \infty} \tau_k$. $\tau_{\infty} \leq \tau_e a.s.$

If we can show that $\tau_{\infty} = \infty a.s.$ then $\tau_e = \infty$. and $(S(0), I(0), R(0)) \in R^3_+ a.s. \forall t \ge 0.$ We need to show that $\tau_e = \infty a.s.$

If this statement is false, then there exist a pair of constants $T \ge 0$ and $\varepsilon \in (0, 1)$ s.t.

$$P\{\tau_{\infty} \le T\} > \varepsilon. \tag{3.2}$$

Hence there is an integer $k_1 \ge k_0$. such that

$$P\{\tau_k \leq T\} > \varepsilon \ \forall \ k \geq k_1.$$

Let N(t) = S(t) + I(t) + R(t) for $t \le \tau_k$.

82

$$dN(t) = d(S(t) + I(t) + R(t))$$

= $(\Lambda - \alpha S(t)R(t) - \mu_0 S(t) - (\mu_0 + \mu_1)I(t) - \mu_0 R(t)) dt$
= $(\Lambda - \alpha S(t)R(t) - \mu_0 N(t) - \mu_1 I(t)) dt$
 $\leq (\Lambda - \mu_0 N(t)) dt$ (3.3)

$$N(t) = \begin{cases} \frac{\Lambda}{\mu_0}, & If N(0) \le \frac{\Lambda}{\mu_0}\\ N(0), & N(0) \ge \frac{\Lambda}{\mu_0} \end{cases} := M$$
(3.4)

Now, we define a C^2 -function $V : \mathcal{R}^3_+ \to \mathcal{R}_+$. Such that

$$V(S, I, R) = S + I + R - 3 - (\ln S + \ln I + \ln R) \ge 0$$
(3.5)

which can be seen from $y - 1 - \ln y \ge 0 \forall y > 0$. Let $\forall k \ge k_0, \forall T > 0$. The application of *Itô formula*.

$$dV(S, I, R) = \left(1 - \frac{1}{S}\right) dS + \frac{1}{2S^2} (dS)^2 + \left(1 - \frac{1}{I}\right) dI + \frac{1}{2I^2} (dI)^2 + \left(1 - \frac{1}{R}\right) dR + \frac{1}{2R^2} (dR)^2 = LV(S, I, R) dt + \eta (1 - S) dB(t)$$
(3.6)

 $\mathit{LV}:\mathcal{R}^3_+ \to \mathcal{R}_+$ is defined by the following equation,

$$LV(S, I, R) = \left(1 - \frac{1}{S}\right) \left(\Lambda - \beta S(t)I(t) - \alpha S(t)R(t) - (\mu_0 + \nu)S(t)\right) + \frac{1}{2}\eta_1^2 I^2 + \frac{1}{2}\eta_2^2 R^2 + \left(1 - \frac{1}{I}\right) \left(\beta S(t)I(t) - (\mu_0 + \mu_1 + \gamma_1)I(t)\right) + \frac{1}{2}\eta_1^2 S^2 + \left(1 - \frac{1}{R}\right) \left(\gamma_1 I(t) + \nu S(t) - \mu_0 R(t) + \alpha S(t)R(t)\right) + \frac{1}{2}\eta_2^2 S^2 \leq \Lambda + \beta I(t) + \alpha R(t) + (\mu_0 + \nu) + (\mu_0 + \mu_1 + \gamma_1) + \mu_0 + \frac{1}{2}\eta_1^2 \left(S^2(t) + I^2(t)\right) + \frac{1}{2}\eta_2^2 \left(S^2(t) + R^2(t)\right) \leq \Lambda + 3\mu_0 + \nu + \mu_1 + \eta_1^2 M^2 + \eta_2^2 M^2 + (\beta + \alpha)M := K$$

$$(3.7)$$

7 of 15

For the convenience of reader we cite the generalized *Itô formula* : If $V \in C^2(\mathcal{R}^3_+ \to \mathcal{R}_+)$, then for any stopping times $0 \le \tau_1 \le \tau_2 < \infty$

$$EV(x_1(\tau_2), x_2(\tau_2), x_3(\tau_2)) = EV(x_1(\tau_1), x_2(\tau_1), x_3(\tau_1)) + E \int_{\tau_1}^{\tau_2} LV(x_1(t), x_2(t), x_3(t)) dt$$

Consequently

$$E[V(S(\tau_{k} \wedge T), I(\tau_{k} \wedge T), R(\tau_{k} \wedge T))]$$

$$\leq E[V(S(0), I(0), R(0))] + E[\int_{0}^{\tau_{k} \wedge T} K dt]$$

$$\leq V(S(0), I(0), R(0)) + KT$$
(3.8)

Setting $\Omega_k = \tau_k \leq T$, for $k \geq k_1$. As a result, reads $P(\Omega_k) \geq \varepsilon$. Note that for every $\omega \in \Omega_k$, there exists at least one $S(\tau_k, \omega)$, $I(\tau_k, \omega)$, $R(\tau_k, \omega)$ that equal k or $\frac{1}{k}$, and hence $V(S(\tau_k), I(\tau_k), R(\tau_k))$ is not less than $k - 1 - \ln k$ or $\frac{1}{k} - 1 + \ln k$.

$$V(S(\tau_k), I(\tau_k), R(\tau_k)) \ge E(k - 1 - \ln k) \wedge \left(\frac{1}{k} - 1 + \ln k\right)$$
(3.9)

It then follows from 3.2 and 3.8 that

$$E[V(S(0), I(0), R(0))] + kT \ge E[1_{\Omega(\omega)}V(S(\tau_k), I(\tau_k), R(\tau_k))] \\\ge [(k - 1 - \ln k) \land (\frac{1}{k} - 1 + \ln k)]$$
(3.10)

 $1_{\Omega(\omega)}$ is the indicator function of Ω , $k \to \infty$.

$$\infty > V(S(0), I(0), R(0)) + MT = \infty$$

⁸³ Which implies $\tau_{\infty} = \infty a.s.$

Lemma 3.2. Let (S(t), I(1), R(t)) be a solution of system 1.2 with initial value $(S(0), I(0), R(0)) \in R^3_+$. Then

$$\lim_{t \to \infty} \frac{\int_0^t \eta_1 S(s) I(s) \, \mathrm{d}B_1(s)}{t} = 0, \lim_{t \to \infty} \frac{\int_0^t \eta_1 S(s) R(s) \, \mathrm{d}B_2(s)}{t} = 0$$

84

Proof. Let

$$X(t) = \int_0^t \eta_1 S(s) I(s) dB_1(s)$$
$$Y(t) = \int_0^t \eta_1 S(s) R(s) dB_2(s)$$

By the Burkholder-Davis-Gundy inequality in [30] and Lemma 2.3, we have

$$E[\sup_{0 \le s \le t} | X(s) |^{\theta}] \le C_{\theta} E[\int_{0}^{t} S^{2}(s) I^{2}(s) dB_{1}(s)]^{\frac{\theta}{2}}$$
$$\le C_{\theta} t^{\frac{\theta}{2}} E[\sup_{0 \le s \le t} S^{\theta}(s) I^{\theta}(s)]$$
$$\le M_{\theta} C_{\theta} t^{\frac{\theta}{2}}$$

where $M_{\theta} = \frac{\Lambda^{\theta}}{\mu_0^{\theta}}$ Let ε be an arbitrary positive constant. Then

$$P\{\omega: \sup_{k\delta \le t \le (k+1)\delta} | X(t) |^{\theta} > (k\delta)^{1+\varepsilon+\frac{\theta}{2}} \}$$
$$\le \frac{E(| X((k+1)\delta) |^{\theta})}{(k\delta)^{1+\varepsilon+\frac{\theta}{2}}}$$
$$\le \frac{2^{\frac{\theta}{2}}M_{\theta}C_{\theta}}{(k\delta)^{1+\varepsilon}}$$

By Doob's martingale inequality and the Borel-Cantelli lemma in [30], for almost all $\omega \in \Omega$. We get that

$$\sup_{1<\delta\leq t\leq (k+1)\delta} \mid X(t)\mid^{\theta}\leq (k\delta)^{1+\varepsilon+\frac{\theta}{2}}$$
(3.11)

hold for all but finitely many k. Thus, there exists a positive $k_0(\omega)$. Hence, if $k \ge k_0(\omega)$ and $1 < \delta \le t \le (k+1)\delta$. for almost all $\omega \in \Omega$, then

$$\frac{\ln |X(t)|^{\theta}}{\ln t} \leq \frac{(1+\varepsilon+\frac{\theta}{2})\ln(k\delta)}{\ln(k\delta)} = 1+\varepsilon+\frac{\theta}{2}$$

so, we have

$$\limsup_{t \to \infty} \frac{\ln |X(t)|}{\ln t} \le \frac{1 + \varepsilon + \frac{\theta}{2}}{\theta}$$

Let $\varepsilon \to 0$, then we obtain that

$$\limsup_{t \to \infty} \frac{\ln |X(t)|}{\ln t} \le \frac{1}{2} + \frac{1}{\theta}$$

Then, for arbitrary small positive constant $\varepsilon(\varepsilon \leq \frac{1}{2} - \frac{1}{\theta})$ There exist a constant $T(\omega)$ and a set Ω_{ε} , such that $P(\Omega_{\varepsilon}) \geq 1 - \varepsilon$ and for $t \geq T(\omega)$. $\omega \in \Omega_{\varepsilon}$.

$$\ln \mid X(t) \mid \leq (\frac{1}{2} + \frac{1}{\theta} + \varepsilon) \ln t$$

Therefore

$$\limsup_{t \to \infty} \frac{\ln \mid X(t) \mid}{t} \leq \limsup_{t \to \infty} \frac{t^{\frac{1}{2} + \frac{1}{\theta} + \varepsilon}}{t} = 0$$

Notice that

$$\lim \inf_{t \to \infty} \frac{\ln |X(t)|}{t} \ge 0$$

Then we have

$$\lim_{t \to \infty} \frac{\ln |X(t)|}{t} = 0$$

i.e.

$$\lim_{t \to \infty} \frac{\ln |X(t)|}{t} = \lim_{t \to \infty} \frac{\int_0^t \eta_1 S(s) I(s) \, \mathrm{d}B_1(s)}{t} = 0$$

By the same argument, we can also obtain

$$\lim_{t \to \infty} \frac{\int_0^t \eta_2 S(s) R(s) \, \mathrm{d}B_2(s)}{t} = 0$$

- 85
- 86
- **Lemma 3.3.** [9] Let $M = M_{t\geq 0}$ be a real valued continuous local martingale vanishing at t = 0, then $\lim_{t\to\infty} \langle M, M \rangle_t = \infty \text{ a.s. implies that } \lim_{t\to\infty} \frac{M_t}{\langle M, M \rangle_t} = 0 \text{ a.s.and also}$ $\lim_{t\to\infty} \sup_{t\to\infty} \frac{\langle M, M \rangle_t}{t} < 0 \text{ a.s. implies that } \lim_{t\to\infty} \frac{M_t}{t} = 0 \text{ a.s.}$ 87
- **Lemma 3.4.** [32] Let $f \in \subset [0,\infty) \times \Omega(0,\infty)$ and $F(t) \in \subset ([0,\infty] \times \Omega, R)$, If there exist positive constants 88
- λ_0 , λ and T such that 89
- 90
- $\ln f(t) \le \lambda t \lambda_0 \int_0^t f(s) \, ds + F(t) \text{ a.s. for all } t \ge T \text{ and}$ $\lim_{t \to \infty} \frac{F(t)}{t} = 0 \text{ a.s. then } \limsup_{t \to \infty} \frac{1}{t} \int_0^t f(s) \, ds \le \frac{\lambda}{\lambda_0} \text{ a.s.}$ 91

3.1. Extinct 92

Theorem 3.5. Let (S(t), I(t), R(t)) be the solution of 1.2. with any initial value $(S(0), I(0), R(0)) \in \mathbb{R}^3_+$. if

$$\mathcal{R}_0 - rac{\eta_1^2 \Lambda^2}{2 \mu_0^2 (\mu_0 + \mu_1 + \gamma_1)} < 1$$
 $rac{\eta_1^2 \Lambda}{\mu_0} < eta$

hold, then the disease goes to extinction almost surely, i.e.

$$\lim_{t\to\infty}I(t)\to 0$$

93

Proof. The integration of the proposed stochastic epidemic model leads to be following system of equations

$$\frac{S(t) - S(0)}{t} = \Lambda - \beta \langle S(t)I(t) \rangle - \alpha \langle S(t)R(t) \rangle - (\mu_0 + \nu) \langle S(t) \rangle
- \frac{\eta_1}{t} \int_0^t S(s)I(s) dB_1(s) - \frac{\eta_2}{t} \int_0^t S(s)R(s) dB_2(s)
\frac{I(t) - I(0)}{t} = \beta \langle S(t)I(t) \rangle - (\mu_0 + \mu_1 + \gamma_1) \langle I(t) \rangle + \frac{\eta_1}{t} \int_0^t S(s)I(s) dB_1(s)$$

$$\frac{R(t) - R(0)}{t} = \gamma_1 \langle I(t) \rangle + \nu \langle S(t) \rangle - \mu_0 \langle R(t) \rangle + \alpha \langle S(t)R(t) \rangle
+ \frac{\eta_2}{t} \int_0^t S(s)R(s) dB_2(s)$$
(3.12)

Therefore

$$\frac{S(t) - S(0)}{t} + \frac{I(t) - I(0)}{t} + \frac{R(t) - R(0)}{t}$$
$$= \Lambda - \mu_0 \langle S(t) \rangle - (\mu_0 + \mu_1) \langle I(t) \rangle - \mu_0 \langle R(t) \rangle$$

so

$$\langle S(t) \rangle = \frac{1}{\mu_0} \left(\Lambda - (\mu_0 + \mu_1) \langle I(t) \rangle - \mu_0 \langle R(t) \rangle \right) + \Phi(t)$$
(3.13)

where $\Phi(t) = -\frac{1}{\mu_0} \left(\frac{S(t) - S(0)}{t} + \frac{I(t) - I(0)}{t} + \frac{R(t) - R(0)}{t} \right)$ Obviously $\Phi(t) \to 0$ *a.s.* $t \to \infty$. Applying to $It\hat{o}$ formula to the second equation of 1.2, we arrive at

$$d\ln I(t) = \beta S(t) - (\mu_0 + \mu_1 + \gamma_1) - \frac{\eta_1^2 S^2(t)}{2} dt + \eta_1 S(t) dB_1(t)$$
(3.14)

The integration of 3.13 form 0 to t and division by t leads to the following equation

$$\frac{\ln I(t) - \ln I(0)}{t} = \beta \langle S(t) \rangle - (\mu_0 + \mu_1 + \gamma_1) - \frac{\eta_1^2 \langle S^2(t) \rangle}{2} + \frac{\eta_1 \int_0^t S(s) \, dB_1(s)}{t}$$

$$\leq \beta \langle S(t) \rangle - (\mu_0 + \mu_1 + \gamma_1) - \frac{\eta_1^2 \langle S(t) \rangle^2}{2} + \frac{\eta_1 \int_0^t S(s) \, dB_1(s)}{t}$$
(3.15)

Substituting 3.12 in 3.13 and by the use of the local continuous martingale $M_1(t) = \eta_1 \int_0^t S(s) dB_1(s)$ with $M_1(0) = 0$.

We obtain

$$\begin{aligned} \frac{\ln I(t) - \ln I(0)}{t} &= \beta \Big(\frac{\Lambda}{\mu_0} - \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} - \frac{\langle R(t) \rangle}{\mu_0} + \Phi(t) \Big) - (\mu_0 + \mu_1 + \gamma_1) \\ &- \frac{1}{2} \eta_1^2 \Big(\frac{\Lambda}{\mu_0} - \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} - \langle R(t) \rangle + \Phi(t) \Big)^2 + \frac{M_1(t)}{t} \\ &= \frac{\beta \Lambda}{\mu_0} - \frac{\beta (\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} - \frac{\beta \langle R(t) \rangle}{\mu_0} - (\mu_0 + \mu_1 + \gamma_1) - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2} \\ &- \frac{\eta_1^2 (\mu_0 + \mu_1)^2 \langle I(t) \rangle^2}{2\mu_0^2} - \frac{\eta_1^2 \langle R(t) \rangle^2}{2\mu_0^2} + \frac{\eta_1^2 \Lambda (\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0^2} \\ &+ \frac{\eta_1^2 \Lambda \langle R(t) \rangle}{\mu_0^2} - \frac{\eta_1 (\mu_0 + \mu_1) \langle I(t) R(t) \rangle}{\mu_0^2} + \frac{M_1(t)}{t} + \varphi(t) \end{aligned} \tag{3.16} \\ &\leq \frac{\beta \Lambda}{\mu_0} - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2} - (\mu_0 + \mu_1 + \gamma_1) + \Big(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \Big) \frac{\langle R(t) \rangle}{\mu_0} \\ &+ \Big(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \Big) \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} + \frac{M_1(t)}{t} + \varphi(t) \\ &\leq (\mu_0 + \mu_1 + \gamma_1) \Big(\mathcal{R} - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2 (\mu_0 + \mu_1 + \gamma_1)} \Big) + \Big(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \Big) \frac{\langle R(t) \rangle}{\mu_0} \\ &+ \Big(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \Big) \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} + \frac{M_1(t)}{t} + \varphi(t) \end{aligned}$$

where

$$\varphi(t) = -\frac{\eta_1^2 \phi^2(t)}{2} + \beta \Phi(t) - \eta_1^2 \phi(t) \Big(\frac{\Lambda}{\mu_0} - \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} - \frac{\langle R(t) \rangle}{\mu_0}\Big)$$

Moreover, $\limsup_{t\to\infty} \frac{\langle M_1, M_1 \rangle_t}{t} \leq \frac{\eta_1^2 \Lambda^2}{\mu_0} < \infty \ a.s.$ Now by Lemma 3.3 and using $\Phi(t) = 0 \ a.s. \ t \to \infty$. It may be verified that

$$\lim \sup_{t \to \infty} \frac{M_1(t)}{t} = 0 \text{ and } \lim_{t \to \infty} \varphi(t) = 0 \text{ a.s.}$$
(3.17)

If the assumption is satisfied, then

$$\limsup_{t \to \infty} \frac{\ln I(t)}{t} \leq (\mu_0 + \mu_1 + \gamma_1) \left(\mathcal{R} - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2(\mu_0 + \mu_1 + \gamma_1)} \right) + \left(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \right) \frac{\langle R(t) \rangle}{\mu_0} \\
+ \left(\frac{\eta_1^2 \Lambda}{\mu_0} - \beta \right) \frac{(\mu_0 + \mu_1) \langle I(t) \rangle}{\mu_0} + \frac{I(0)}{t} \\
< 0 \text{ a.s.}$$
(3.18)

Now, 3.18 implies that

$$\lim_{t\to\infty}I(t)=0 \text{ a.s.}$$

We observe from the proposed model that

$$dN(t) = (\Lambda - \mu_0 N(t) - \mu_1 I(t)) dt$$
$$N(t) = e^{-\mu_0 t} (N(0) + \int_0^t (\Lambda - \mu_1 I(s)) e^{-\mu_0 s} ds)$$
$$\lim_{t \to \infty} (S(t) + R(t)) = \lim_{t \to \infty} \left(\frac{(N(0) + \int_0^t (\Lambda - \mu_1 I(s)) e^{-\mu_0 s} ds}{e^{\mu_0 t}} - I(t) \right) = \frac{\Lambda}{\mu_0}$$

Thus, we have

$$\lim_{t \to \infty} \left(S(t) + R(t) \right) = \frac{\Lambda}{\mu_0} a.s.$$
$$\lim_{t \to \infty} S(t) = \tilde{S} \lim_{t \to \infty} R(t) = \tilde{R}$$

94 3.2. Permanence in mean

theorem 3.6. Let (S(t), I(t), R(t)) be the solution of 1.2 with any initial value $(S(0), I(0), R(0)) \in \mathbb{R}^3_+$. If

$$\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0 (\mu_0 + \nu) (\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2 (\mu_0 + \nu)}{2(\mu_0 + \nu)^2 (\mu_0 + \mu_1 + \gamma_1)} > 1$$

hold, then the solution has the following property:

$$\lim \inf_{t \to \infty} \langle I(t) \rangle \geq \mathcal{C} \text{ a.s.}$$

then the diseases are said to be permanent in mean. a.s. where

$$\mathcal{C} = \frac{(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)(\mathcal{R} - \frac{\beta\Lambda\nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3\Lambda^2\alpha + \eta_1^2\Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} - 1)}{\beta(\mu_0 + \mu_1 + \gamma_1)}$$

Proof. By the theorem 3.5 and the equality of 3.12 we arrived

$$\begin{aligned} \frac{S(t) - S(0)}{t} + \frac{I(t) - I(0)}{t} \\ = &\Lambda - \alpha \langle S(t)R(t) \rangle - (\mu_0 + \nu)S(t) - (\mu_0 + \mu_1 + \gamma_1) \langle I(t) \rangle - \frac{M_2(t)}{t} \\ \langle S(t) \rangle \\ = &\frac{1}{\mu_0 + \nu} \Big(\Lambda - \alpha \langle S(t)R(t) \rangle - (\mu_0 + \nu)S(t) - (\mu_0 + \mu_1 + \gamma_1) \langle I(t) \rangle - \frac{M_2(t)}{t} \Big) \end{aligned}$$

$$\frac{\ln I(t) - \ln I(0)}{t} = \beta \langle S(t) \rangle - (\mu_0 + \mu_1 + \gamma_1) - \frac{1}{2} \eta_1^2 \langle S^2(t) \rangle + \frac{M_1(t)}{t} \\
\geq \frac{\beta}{\mu_0 + \nu} \left(\Lambda - \alpha \langle S(t)R(t) \rangle - (\mu_0 + \nu)S(t) - (\mu_0 + \mu_1 + \gamma_1) \langle I(t) \rangle \right. \\
\left. - \frac{M_2(t)}{t} \right) - (\mu_0 + \mu_1 + \gamma_1) - \frac{\eta_1^2 \Lambda^2}{2(\mu_0 + \nu)^2} + \frac{M_1(t)}{t} \\
\geq \frac{\beta \Lambda}{\mu_0 + \nu} - \frac{\beta^3 \Lambda^2 \alpha}{(\mu_0 + \nu)^3} - \frac{\eta_1^2 \Lambda^2}{2(\mu_0 + \nu)^2} - \frac{\beta(\mu_0 + \mu_1 + \gamma_1)}{\mu_0 + \nu} \langle I(t) \rangle \\
\left. - (\mu_0 + \mu_1 + \gamma_1) - \frac{\beta M_2(t)}{(\mu_0 + \nu)t} + \frac{M_1(t)}{t} \right] \\
\geq (\mu_0 + \mu_1 + \gamma_1) \left(\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} \right) \\
\left. - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} - 1 \right) - \frac{\beta(\mu_0 + \mu_1 + \gamma_1)}{\mu_0 + \nu} \langle I(t) \rangle \\
\left. - (\mu_0 + \mu_1 + \gamma_1) - \frac{\beta M_2(t)}{(\mu_0 + \nu)t} + \frac{M_1(t)}{t} \right]$$
(3.19)

then

$$\langle I(t) \rangle \geq \frac{(\mu_0 + \nu)(\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} - 1)}{\beta} + \frac{\mu_0 + \nu}{\beta(\mu_0 + \mu_1 + \gamma_1)} \Big(\frac{M_1(t)}{t} - \frac{\beta M_2(t)}{(\mu_0 + \nu)t}\Big)$$

$$(3.20)$$

Solving the 3.19 and 3.20 with the help of inequality 3.17 and taking the limit inferior of both side, we get $2t^{2} + 2t^{2} +$

$$\lim \inf_{t \to \infty} \langle I(t) \rangle \ge \frac{(\mu_0 + \nu)(\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} - 1)}{\beta}$$
(3.21)
= \mathcal{C}

95 4. Conclusion and simulations

In this section, we use the stochastic Euler method, we next present the computer simulations to support these results, illustrating extinction and persistence of the disease.

To verifies our analytical results, we take the paraments value as follows:

Paraments	Value
Λ	0.5
β	0.3
α	0.4
μ_0	0.1
μ_1	0.2
ν	0.4
γ_1	0.6
η_1	0.22
η_2	0.45

100

It is easy to ensure the conditions $\mathcal{R} - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2(\mu_0 + \mu_1 + \gamma_1)} = 0.9994 < 1$, $\frac{\eta_1^2 \Lambda}{\mu_0} = 0.242 < 0.3 = \beta$, see Figure:3 and Figure:4. This indicates the extinction of epidemic disease.

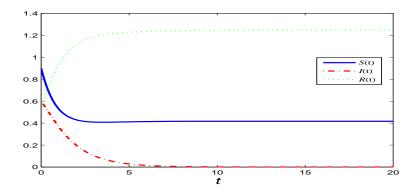


Figure 3. ODE Computer simulation $\Lambda = 0.5$, $\beta = 0.3$, $\alpha = 0.4$, $\mu_0 = 0.1$, $\mu_1 = 0.2$, $\nu = 0.4$, $\gamma_1 = 0.6$, $\eta_1 = 0.22$, $\eta_2 = 0.45$, (S(0), I(0), R(0)) = (0.9, 0.6, 0.5).

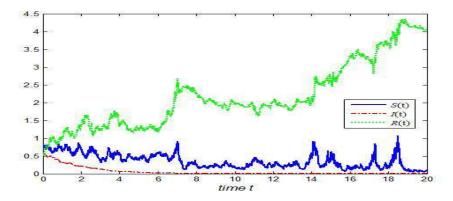


Figure 4. SDE Computer simulation $\Lambda = 0.5$, $\beta = 0.3$, $\alpha = 0.4$, $\mu_0 = 0.1$, $\mu_1 = 0.2$, $\nu = 0.4$, $\gamma_1 = 0.6$, $\eta_1 = 0.22$, $\eta_2 = 0.45$, (S(0), I(0), R(0)) = (0.9, 0.6, 0.5), $\mathcal{R}_0 - \frac{\eta_1^2 \Lambda^2}{2\mu_0^2(\mu_0 + \mu_1 + \gamma_1)} < 1$, $\frac{\eta_1^2 \Lambda}{\mu_0} < \beta$.

¹⁰³ To verifies our analytical results, we take the paraments value as follows:

104

105

Paraments	Value
Λ	0.5
β	0.6
α	0.01
μ_0	0.1
μ_1	0.2
ν	0.15
γ_1	0.4
η_1	0.01
η_2	0.45

It is easy to ensure the conditions $\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} = 1.7016 > 1$, see Figure: 5 and Figure: 6. This indicates the permanence in mean of epidemic disease.

14 of 15

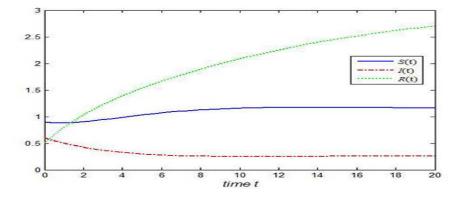


Figure 5. ODE Computer simulation $\Lambda = 0.5$, $\beta = 0.6$, $\alpha = 0.01$, $\mu_0 = 0.1$, $\mu_1 = 0.2$, $\nu = 0.15$, $\gamma_1 = 0.4$, $\eta_1 = 0.01$, $\eta_2 = 0.45$, (S(0), I(0), R(0)) = (0.9, 0.6, 0.5).

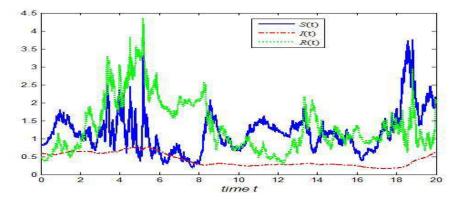


Figure 6. SDE Computer simulation $\Lambda = 0.5$, $\beta = 0.6$, $\alpha = 0.01$, $\mu_0 = 0.1$, $\mu_1 = 0.2$, $\nu = 0.15$, $\gamma_1 = 0.4$, $\eta_1 = 0.01$, $\eta_2 = 0.45$, (S(0), I(0), R(0)) = (0.9, 0.6, 0.5), $\mathcal{R} - \frac{\beta \Lambda \nu}{\mu_0(\mu_0 + \nu)(\mu_0 + \mu_1 + \gamma_1)} - \frac{2\beta^3 \Lambda^2 \alpha + \eta_1^2 \Lambda^2(\mu_0 + \nu)}{2(\mu_0 + \nu)^2(\mu_0 + \mu_1 + \gamma_1)} = 1.7016 > 1$.

Most real-world problems tend not to be deterministic, but to have stochastic effects. Based on the epidemic diseases of hepatitis B, this paper also considers the effects of environmental noise between susceptible individuals and recovered individuals. The dynamics of the model is given and sufficient conditions for its extinction and permanence in mean are discussed. Through numerical simulations, we clearly observed the behavior of infectious diseases. However, the critical condition of the model still needs to be proved and discussed.

114 Acknowledgment

Supported financially by the Natural Science Foundation of Shandong Province under Grant No.ZR2017MA045.

117 References

- Kermack WO, McKendrick AG. A contributions to the mathematical theory of epidemics. Part I. Proceedings of the Royal Society Series A 1927,115(772),700-721.
- Kermack M, Mckendrick A. Contributions to the mathematical theory of epidemics:PartII. Proceedings of the Royal Society. Series A 1932,138,55-83.
- Ji C, Jiang D. Threshold behaviour of a stochastic SIR model, Applied Mathematical Modelling
 2014;38(21-22):5067-5079.
- Zhao D. Study on the threshold of a stochastic SIR epidemic model and its extensions. Communications in
 Nonlinear Science and Numerical Simulation 2016,38,172-177.
- Gray A, Pan J. A Stochastic Differential Equation SIS Epidemic Model. Siam Journal on Applied Mathematics
 2011,71(3),876-902.

128

129		double epidemic hypothesis. Journal of Mathematical Analysis and Applications 2016 ,433,227-242.
130	7.	Zhu Q, Wang H. Output feedback stabilization of stochastic feedforward systems with unknown control
131		coefficients and unknown output function. Automatica 2018,87,166-175.
132	8.	Gray A, Greenhalgh D, Mao X, Pan JF. The SIS epidemic model with Markovian switching. Journal of
133		Mathematical Analysis and Applications 2012,394(2),496-516.
134	9.	Zhao Y, Jiang D, O'Regan D. The extinction and persistence of the stochastic SIS epidemic model with
135		vaccination, Physica A Statistical Mechanics and Its Applications 2013 ,392(20),4916-4927.
136	10.	Zhao Y, Jiang D. Dynamics of stochastically perturbed SIS epidemic model with vaccination. Abstract and
137		Applied Analysis 2013 ,2013,1-12.
138	11.	Liu Q, Jiang D, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. The threshold of a stochastic SIS epidemic
139		model with imperfect vaccination. Mathematics and Computers in Simulation 2018 ,144,78-90.
140	12.	Beretta E, Kolmanovskii V, and Shaikhet L. Stability of epidemic model with time delays influenced by
141		stochastic perturbations. Mathematics and Computers in Simulation 1998,45(3-4),269-277.
142	13.	Gao S, Chen L, Nieto JJ and Torres A. Analysis of a delayed epidemic model with pulse vaccination and
143		saturation incidence. Vaccine 2006 ,24(35-36),6037-6045.
144	14.	Guo Y. Mean square global asymptotic stability of stochastic recurrent neural networks with distributed
145		delays. Applied Mathematics and Computation 2009, 215(2),791-795.
146	15.	Guo Y, Xu C. Controllability of Stochastic Delay Systems with Impulse in a Separable Hilbert Space. Asian
147		Journal of Control 2015 ,18(2),779-783.
148	16.	Chen L, Sun J. Global stability of an SI epidemic model with feedback controls. Applied Mathematics Letters
149		2014;28:53-55.
150	17.	Liu B, Duan Y, Luan S. Dynamics of an SI epidemic model with external effects in a polluted environment.
151		Nonlinear Analysis: Real World Application 2012 ,13(1),27-38.
152	18.	Lahrouz A, Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with
153		non-linear incidence. Statistics and Probability Letters 2013 ,83(4),960-968.
154	19.	Zhao H, Lin Y, Dai Y. An SIRS epidemic model incorporating media coverage with time delay. Computational
155		and Mathematical Methods in Medicine 2014 ,(2014),680743.
156	20.	Cooke K, P.van den Driessche. Analysis of an SEIRS epidemic model with two delays. Journal of
157		Mathematical Biology 1996 ,35,240-260.
158	21.	Nita H. Shah, Jyoti Gupta. SEIR Model and Simulation for Vector Borne Diseases, Applied Mathematics
159		2013 ,4,13-17.
160	22.	Mafuta P, Mushanyu J, Nhawu G. Extension of the analysis of the MISR model by applying the
161		laplace-adomiandecomposition method. World Journal of Modelling and Simulation 2014 ,10(3),185-192.
162	23.	Dalal N, Greenhalgh D, and Mao X. A stochastic model of AIDS and condom use. Journal of Mathematical
163		Analysis and Applications 2007;325(1):36-53.
164	24.	Zhu Q, Stability analysis of stochastic delay differential equations with Lévy noise. Systems and Control
165		Letters 2018 ,118,62-68.
166	25.	Edmunds WJ, Medley GF, Nokes DJ. The transmission dynamics and control of hepatitis b virus in the
167		Gambia. Statistics in medicine 1996 ,15(20),2215-2533.
168	26.	Zou L, Zhang W, Ruan S. Modeling the transmission dynamics and control of hepatitis B virus in China.
169		Journal of Theoretical Biology 2017 ,262(2),330-338.
170	27.	Zhu Q, Cao J, Rakkiyappan R. Exponential input-to-state stability of stochastic Cohen-Grossberg neural
171		networks with mixed delays. Nonlinear Dynamics 2015 ,79(2),1085-1098.
172	28.	Khan T, Zaman G. Classification of different hepatitis B infected individuals with saturated incidence rate.
173		SpringerPlus 2016, 5(1),1082.
174	29.	Khan T, Khan A and Zaman G. The extinction and persistence of the stochastic hepatitis B epidemic. Chaos,
175	_/.	Solitons and Fractals 2018 ,108,123-128.
176	30.	Mao X. Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, UK, 2008.
177	31.	Mao X, Marion G and Renshaw E. Environmental Brownian noise suppresses explosions in population dyna
178		mics. Stochastic Processes and their Applications 2002 ,97(1),95-110.
179	32.	Zhao Y, Jiang D. The threshold of a stochastic SIRS epidemic model with saturated incidence. Applied
180		Mathematics Letters 2014 ,34,90-93.

6. Meng X, Zhao S, Feng T and Zhang T. Dynamics of a novel nonlinear stochastic SIS epidemic model with