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Abstract: In this paper, we propose a new mathematical model based on the association between1

susceptible and recovered individual, where the association between susceptible and recovered2

individual is disturbed by white noise. This model is based on demographic changes and is used3

for long term behavior. We study the stability of equilibria of the deterministic model and prove the4

conditions for the extinction of diseases. Then, we investigate and obtain the critical condition of the5

stochastic epidemic model for the extinction and the permanence in mean of the disease with the6

white noise. To verify our results, we present some numerical simulations for real data related to7

disease.8

Keywords: extinction; permanence in mean; stability; stochastic epidemic model9

1. Introduction10

Things are connected in the real world, and in the biological world as well. Epidemic diseases11

are commonly established through deterministic models in which populations that transmit disease12

are divided into three categories, such as susceptible, infected, and recovered individuals. In special13

situation, the connection between the three individuals will lead to their dynamic change.14

The Kermark-Mckendrick model [1] is a SIR model for the number of people infected with
infectious diseases in closed populations. It assumes that the size of the population is fixed (such as not
being born, dying from disease, or dying from natural causes), that the incubation period of infectious
factors is immediate. It also assumes closed populations with no age, space or social structure. The
Kermark-Mckendrick model as follows:

dS(t)
dt

= −λS(t)I(t)
dI(t)

dt
=
(
λS(t)I(t)− γI(t)

)
dR(t)

dt
= γI(t)

(1.1)

where t is time, S(t) is the number of susceptible people, I(t) is the number of people infected, R(t)15

is the number of people who have recovered and developed permanence immunity to the infection,16

λ is the infection rate, and γ is the recovery rate. In addition, we know that the constant R0 = λS0
γ ,17

which is called the basic reproduction number, determines the most important quantities of epidemic18

behavior and potential in 1.1. In particular,R0 also determines whether an epidemic occurs or not.19

A mathematical survey was carried out on the progress of the epidemic diseases in the same20

population. Overall, the threshold density of the population has been found, which depends on the21

epidemic’s infectivity, recovery and mortality. If population density is below this threshold, there will22
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be no epidemic. In addition, if population density is slightly above the threshold, the impact of the23

epidemic will be to reduce density below the threshold [1]. Many articles apply this theory such as24

[3,4].25

Some infections, such as those from the common cold and flu, do not confer any lasting immunity.
The infection is not immunized after recovery from infection, and individuals become susceptible to
infection[2]. Thus the model as follows:

dS(t)
dt

= −λS(t)I(t) + γI(t)
dI(t)

dt
=
(
λS(t)I(t)− γI(t)

) (1.2)

This model is called SIS model, also known as the contact process, is one of which has been26

conducted extensively from deterministic to stochastic point of view under a variety of assumptions27

[5–7]. Gray will discuss in this paper the effect of stochastic noise on the well-known SIS epidemic28

model [8]. The dynamics of a stochastic model with vaccination was discussed by [9–11,13]. Usually29

SDE can also be discussed with time delays influenced was discussed by [12–15].30

In addition, there are infectious disease models such as SI(see,e.g.[16,17]), SIRS(see,e.g.[18][19]),31

SEIR(see,e.g.[20,21]), MSIR(see,e.g.[22]). A number of differential equation models were developed to32

describe AIDS(see,e.g.[23]) hepatitis B(see,e.g.[24–29]), and so on. Motivated by this fact, Tahir Khan,33

Amir Khan and Gul Zaman [29] considered the following hepatitis B epidemic model with the aid of34

diagram shown in Fig. 1:35

Figure 1. Transfer diagram of hepatitis B epidemic model

And deterministic epidemic model as follows:
dS(t)

dt
= Λ− βS(t)I(t)− (µ0 + ν)S(t)

dI(t)
dt

= βS(t)I(t)− (µ0 + µ1 + γ1)I(t)
dR(t)

dt
= γ1 I(t) + νS(t)− µ0R(t)

(1.3)

where S(t) denotes the number of members of a population who are susceptible to an infection at36

time t. I(t) denotes the number of members who are infective at time t. R(t) denotes the number of37

members who are recovered with an infection at time t as the result of vaccination. The parameters38

in the model are summarized in the following: β represents transmission rate between S(t) and I(t);39

Λ represents the per capita constant birth rate; µ0 and µ1 respectively represent the natural death40

rate and the disease induced death rate; ν represents the vaccination rate; γ1 represents the constant41

recovery rate for the disease infected individual. All parameter values are assumed to be nonnegative,42

and µ0, Λ > 0.43

It is now considered that the recovered individuals do not have permanent immunity. Because of44

environments, specific diseases, malnutritions, fatigue mental pressures and some drugs, the number45
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of recovered classes and susceptible classes can transfer to each other. This rate of transformation is46

assumed to be α, and the new model is shown below and the diagram shown in Fig.2,47

Figure 2. Transfer diagram of epidemic model based on the association between susceptible and
recovered individuals

Based on the infectious disease model we introduced above, we first propose a deterministic
epidemiological model as follows:

dS(t)
dt

= Λ− βS(t)I(t) + αS(t)R(t)− (µ0 + ν)S(t)
dI(t)

dt
= βS(t)I(t)− (µ0 + µ1 + γ1)I(t)

dR(t)
dt

= γ1 I(t) + νS(t)− µ0R(t)− αS(t)R(t)

(1.4)

where α presents transmission rate between S(t) and R(t).48

Taking the effect of randomly fluctuating environment into consideration in real world, we assume
that fluctuations in the environment will manifest themselves mainly as fluctuations transmission
parameter α and β, i.e., β→ η1Ḃ(t) and α→ η2Ḃ(t), where B(t) is standard Brownian motion with the
property B(0) = 0 and with the intensity of white noise η2

1 > 0, η2
2 > 0. Stochastic epidemic model as

follows: 
dS(t) =

(
Λ− βS(t)I(t)− αS(t)R(t)− (µ0 + ν)S(t)

)
dt− η1S(t)I(t)dB1(t)

− η2S(t)R(t)dB2(t)
dI(t) =

(
βS(t)I(t)− (µ0 + µ1 + γ1)I(t)

)
dt + η1S(t)I(t)dB1(t)

dR(t) =
(
γ1 I(t) + νS(t)− µ0R(t) + αS(t)R(t)

)
dt + η2S(t)R(t)dB2(t)

(1.5)

It establishes a stochastic epidemic disease model based on the association between susceptible49

and recovered individuals with a varying population environment for a long term behavior. We50

discuss the disease extinction, the disease persistence in mean and obtain sufficient conditions for51

them.To verify our results, we present some numerical simulations for real data related to disease.52

2. the Dynamics of deterministic system 1.453

From a mathematical point of view, throughout this paper, let (Ω,F , {F}t ≥ 0,P) be a complete54

probability space, R3
+ = {xi > 0, i = 1, 2, 3}. f is an integrable function on [0, ∞), 〈 f (t)〉 = 1

t
∫ t

0 f (θ) dθ.55

Then we have56

Def 2.1. (i) The diseases I(t) are said to be extinctive if lim
t→∞

I(t) = 0.

(ii) The diseases I(t) are said to be permanent in mean if there exist two positive constants C such that

inf lim
t→∞
〈I(t)〉 ≥ C

57
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Lemma 2.2. For any positive solution (S(t), I(t), R(t)) of system 1.1 or 1.2 with initial value
(S(0), I(0), R(0)) ∈ R3

+, we have

max
{

sup lim
t→∞

S(t), sup lim
t→∞

I(t), sup lim
t→∞

R(t)
}
≤ Λ

µ0

58

Proof. From system 1.1 or the system 1.2, we have

d
(
S(t) + I(t) + R(t)

)
dt

= Λ− µ0
(
S(t) + I(t) + R(t)

)
− µ1 I(t)

≤ Λ− µ0
(
S(t) + I(t) + R(t)

)
This implies that

lim
t→∞

(
S(t) + I(t) + R(t)

)
≤ Λ

µ0

Then obviously we have

sup lim
t→∞

S(t) ≤ Λ
µ0

, sup lim
t→∞

I(t) ≤ Λ
µ0

, sup lim
t→∞

R(t) ≤ Λ
µ0

Since S(t) > 0, I(t) > 0, R(t) > 0. This completes the proof of lemma 2.2.59

60

In system 1.1, let

f1 = Λ− βS(t)I(t)− αS(t)R(t)− (µ0 + ν)S(t)
f2 = βS(t)I(t)− (µ0 + µ1 + γ1)I(t)
f3 = γ1 I(t) + νS(t)− µ0R(t) + αS(t)R(t)

Then setting fi = 0 leads to the following equilibria:61

E1 : (S̃, 0, R̃) with

S̃ =
Λ
µ0
− R̃, R̃ =

(
αΛ
µ0
− (ν + µ0)

)
+
√(

αΛ
µ0
− (ν + µ0)

)2
+ 4ανΛ

µ0

2α

E2 : (S∗, I∗, R∗) with

S∗ =
µ0 + µ1 + µ1

β

I∗ =

(
− νβµ0 − µ0

(
βµ0 − α(µ0 + µ1 + γ1)

)
− αβΛ

)
(µ0 + µ1 + γ1) + Λβ2µ0

β
(

γ1βµ0 + (µ0 + µ1)
(

βµ0 − α(µ0 + µ1 + γ1)
))

R∗ =
Λγ1β− (µ0 + µ1 + γ1)(µ0γ1 − µ0ν− µ1ν)

γ1βµ0 + (µ0 + µ1)
(

βµ0 − α(µ0 + µ1 + γ1)
)

From the expressions of S∗,I∗ and R∗,we know of

S̃ > 0, I∗ > 0, R∗ > 0

System 1.1 has positive equilibrium E∗, furthermore, let

R =
βΛ

(µ0 + µ1 + γ1)µ0
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Theorem 2.3. For system 1.1, the following conclusion are true:62

(i) IfR < 1,then the disease I goes extinct.63

(ii) E2 is a unstable equilibrium.64

Proof. The stability of the equilibrium point (S̃, 0, R̃) of system 1.1 is determined by the Jacobian

J1 =

−αR̃− (µ0 + ν) 0 ν + αR̃
−βS̃ βS− (µ0 + µ1 + γ1) γ1

−αS̃ 0 −µ0 + αS̃


SinceR < 1 , one of three eigenvalues of matrix J1 is given by

λ1 = βS̃− (µ0 + µ1 + γ1) <
βΛ
µ0
− (µ0 + µ1 + γ1) < 0

The other two eigenvalues of matrix J1 are root of the following equation

λ2 + (−a11 − a33)λ + (−a11a33 − a31a13) = 0

With the help of ν > µ0, where65

a11 = −αR̃− (µ0 + ν) = − αΛ
2µ0
− 1

2

√(
αΛ
µ0
− (ν + µ0)

)2
+ 4ανΛ

µ0
< 066

a33 = −µ0 + αS̃

=

−µ0 +
αΛ
µ0

+ ν +

√
α2Λ2

µ2
0

+ (ν + µ0)2 + 2(ν−µ0)αΛ
µ0

2
> 0

67

a13 = ν + αR̃, a31 = −αS̃68

Then −a11 − a33 > 0 and −a11a33 − a31a13 > 0. This implies λ2 < 0 and λ3 < 0. Thus the69

equilibrium E1 is stable. This means the disease with relationship of between susceptible and recovered70

individuals goes extinct.71

Now let us prove instability of the equilibrium point E2. At E2 the Jacobian takes the form of

J2 =

−βI∗ − αR∗ − (µ0 + ν) βI∗ ν + αR
−(µ0 + µ1 + γ1) 0 γ1

α(µ0+µ1+γ1)
β 0 −µ0 + αS


since λ∗1 = βI∗ > 0, E2 is a unstable equilibrium. The proof is completed.72

3. Dynamics of stochastic system 1.573

In the following section, the extinction of the system 1.2 infectious disease under random74

disturbance of white noise will be discussed. In order for SDE model 1.2 to have research value,75

we need to at least prove that this SDE model does have a unique global solution. The existing general76

existence-and-uniqueness theorem on SDEs is not applicable to this particular SDE in order to ensure77

these properties. Therefore, new theories need to be established.78

Theorem 3.1. For an initial value
(
S(0), I(0), R(0)

)
∈ R3

+. The solution
(
S(t), I(t), R(t)

)
of the proposed79

stochastic epidemic model 1.2 is unique, for t ≥ 0, Moreover, the solution remain in R3
+ with probability 1.80

Proof. Our proof is motivated by the works of Mao et al. [30] and [31]. It is clear that the coefficients
of the equation of the model are locally Lipschitz continuous for any given initial size of population(
S(0), I(0), R(0)

)
∈ R3

+. It follows that there is a unique local solution
(
S(t), I(t), R(t)

)
on t ∈ [0, τe],

where τe is the explosion time(for detail see the reference [23]). To show that this solution is global,
we prove that τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large, so that S(t), I(t) and R(t) all lie within the
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interval [ 1
k0

, k0]. For each integer k ≥ k0.
Define the stopping time

τk ={t ∈ [0, τe) : min{S(t), I(t), R(t)}

≤ 1
k

or max{S(t), I(t), R(t)}}
(3.1)

We set inf ∅ = ∞ as usual. According to the definition. τk increases as k → ∞. set τ∞ = limk→∞ τk.
τ∞ ≤ τe a.s.
If we can show that τ∞ = ∞ a.s. then τe = ∞. and (S(0), I(0), R(0)) ∈ R3

+ a.s. ∀ t ≥ 0.We need to show
that τe = ∞ a.s.
If this statement is false. then there exist a pair of constants T ≥ 0 and ε ∈ (0, 1) s.t.

P{τ∞ ≤ T} > ε. (3.2)

Hence there is an integer k1 ≥ k0. such that81

P{τk ≤ T} > ε ∀ k ≥ k1.82

Let N(t) = S(t) + I(t) + R(t) for t ≤ τk.

dN(t) = d
(
S(t) + I(t) + R(t)

)
=
(
Λ− αS(t)R(t)− µ0S(t)− (µ0 + µ1)I(t)− µ0R(t)

)
dt

=
(
Λ− αS(t)R(t)− µ0N(t)− µ1 I(t)

)
dt

≤
(
Λ− µ0N(t)

)
dt

(3.3)

N(t) =

 Λ
µ0

, I f N(0) ≤ Λ
µ0

N(0), N(0) ≥ Λ
µ0

:= M (3.4)

Now, we define a C2-function V : R3
+ → R+. Such that

V(S, I, R) = S + I + R− 3− (ln S + ln I + ln R) ≥ 0 (3.5)

which can be seen from y− 1− ln y ≥ 0 ∀ y > 0.
Let ∀ k ≥ k0, ∀ T > 0. The application of Itô f ormula.

dV(S, I, R) =
(

1− 1
S

)
dS +

1
2S2 (dS)2 +

(
1− 1

I

)
dI +

1
2I2 (dI)2+(

1− 1
R

)
dR +

1
2R2 (dR)2

= LV(S, I, R)dt + η(1− S)dB(t)

(3.6)

LV : R3
+ → R+ is defined by the following equation,

LV(S, I, R) =
(

1− 1
S

)(
Λ− βS(t)I(t)− αS(t)R(t)− (µ0 + ν)S(t)

)
+

1
2

η2
1 I2

+
1
2

η2
2 R2 +

(
1− 1

I

)(
βS(t)I(t)− (µ0 + µ1 + γ1)I(t)

)
+

1
2

η2
1S2

+
(

1− 1
R

)(
γ1 I(t) + νS(t)− µ0R(t) + αS(t)R(t)

)
+

1
2

η2
2S2

≤Λ + βI(t) + αR(t) + (µ0 + ν) + (µ0 + µ1 + γ1) + µ0

+
1
2

η2
1
(
S2(t) + I2(t)

)
+

1
2

η2
2
(
S2(t) + R2(t)

)
≤Λ + 3µ0 + ν + µ1 + η2

1 M2 + η2
2 M2 + (β + α)M := K

(3.7)
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For the convenience of reader we cite the generalized Itô f ormula :If V ∈ C2(R3
+ → R+),then for any

stopping times 0 ≤ τ1 ≤ τ2 < ∞

EV(x1(τ2), x2(τ2), x3(τ2)) =EV(x1(τ1), x2(τ1), x3(τ1))

+ E
∫ τ2

τ1

LV(x1(t), x2(t), x3(t))dt

Consequently
E
[
V
(
S(τk ∧ T), I(τk ∧ T), R(τk ∧ T)

)]
≤E[V(S(0), I(0), R(0)))] + E[

∫ τk∧T

0
K dt]

≤V(S(0), I(0), R(0)) + KT

(3.8)

Setting Ωk = τk ≤ T, for k ≥ k1. As a result, reads P(Ωk) ≥ ε. Note that for every ω ∈ Ωk, there exists
at least one S(τk, ω), I(τk, ω), R(τk, ω) that equal k or 1

k , and hence V
(
S(τk), I(τk), R(τk)

)
is not less

than k− 1− ln k or 1
k − 1 + ln k.

V
(
S(τk), I(τk), R(τk)

)
≥ E(k− 1− ln k) ∧ (

1
k
− 1 + ln k) (3.9)

It then follows from 3.2 and 3.8 that

E[V(S(0), I(0), R(0))] + kT ≥E[1Ω(ω)V(S(τk), I(τk), R(τk))]

≥[(k− 1− ln k) ∧ (
1
k
− 1 + ln k)]

(3.10)

1Ω(ω) is the indicator function of Ω, k→ ∞.

∞ > V(S(0), I(0), R(0)) + MT = ∞

Which implies τ∞ = ∞ a.s.83

Lemma 3.2. Let (S(t), I(1), R(t)) be a solution of system 1.2 with initial value (S(0), I(0), R(0)) ∈ R3
+.

Then

lim
t→∞

∫ t
0 η1S(s)I(s)dB1(s)

t
= 0, lim

t→∞

∫ t
0 η1S(s)R(s)dB2(s)

t
= 0

84

Proof. Let

X(t) =
∫ t

0
η1S(s)I(s)dB1(s)

Y(t) =
∫ t

0
η1S(s)R(s)dB2(s)

By the Burkholder-Davis-Gundy inequality in [30] and Lemma 2.3, we have

E[ sup
0≤s≤t

| X(s) |θ ] ≤CθE[
∫ t

0
S2(s)I2(s)dB1(s)]

θ
2

≤Cθt
θ
2 E[ sup

0≤s≤t
Sθ(s)Iθ(s)]

≤MθCθt
θ
2
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where Mθ = Λθ

µθ
0

Let ε be an arbitrary positive constant. Then

P{ω : sup
kδ≤t≤(k+1)δ

| X(t) |θ> (kδ)1+ε+ θ
2 }

≤E(| X((k + 1)δ) |θ)
(kδ)1+ε+ θ

2

≤2
θ
2 MθCθ

(kδ)1+ε

By Doob’s martingale inequality and the Borel-Cantelli lemma in [30], for almost all ω ∈ Ω. We get
that

sup
1<δ≤t≤(k+1)δ

| X(t) |θ≤ (kδ)1+ε+ θ
2 (3.11)

hold for all but finitely many k. Thus, there exists a positive k0(ω). Hence, if k ≥ k0(ω) and
1 < δ ≤ t ≤ (k + 1)δ. for almost all ω ∈ Ω, then

ln | X(t) |θ
ln t

≤
(1 + ε + θ

2 ) ln(kδ)

ln(kδ)
= 1 + ε +

θ

2

so, we have

lim sup
t→∞

ln | X(t) |
ln t

≤
1 + ε + θ

2
θ

Let ε→ 0, then we obtain that

lim sup
t→∞

ln | X(t) |
ln t

≤ 1
2
+

1
θ

Then, for arbitrary small positive constant ε(ε ≤ 1
2 −

1
θ )

There exist a constant T(ω) and a set Ωε, such that P(Ωε) ≥ 1− ε and for t ≥ T(ω). ω ∈ Ωε.

ln | X(t) |≤ (
1
2
+

1
θ
+ ε) ln t

Therefore

lim sup
t→∞

ln | X(t) |
t

≤ lim sup
t→∞

t
1
2+

1
θ +ε

t
= 0

Notice that

lim inf
t→∞

ln | X(t) |
t

≥ 0

Then we have

lim
t→∞

ln | X(t) |
t

= 0

i.e.

lim
t→∞

ln | X(t) |
t

= lim
t→∞

∫ t
0 η1S(s)I(s)dB1(s)

t
= 0

By the same argument, we can also obtain

lim
t→∞

∫ t
0 η2S(s)R(s)dB2(s)

t
= 0
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Lemma 3.3. [9] Let M = Mt≥0 be a real valued continuous local martingale vanishing at t = 0, then85

lim
t→∞
〈M, M〉t = ∞ a.s. implies that lim

t→∞
Mt

〈M,M〉t = 0 a.s.and also86

lim sup
t→∞

〈M,M〉t
t < 0 a.s. implies that lim

t→∞
Mt
t = 0 a.s.87

Lemma 3.4. [32] Let f ∈⊂ [0, ∞)×Ω(0, ∞) and F(t) ∈⊂
(
[0, ∞]×Ω, R

)
, If there exist positive constants88

λ0, λ and T such that89

ln f (t) ≤ λt− λ0
∫ t

0 f (s)ds + F(t) a.s. for all t ≥ T and90

lim
t→∞

F(t)
t = 0 a.s. then lim sup

t→∞

1
t
∫ t

0 f (s)ds ≤ λ
λ0

a.s.91

3.1. Extinct92

Theorem 3.5. Let (S(t), I(t), R(t)) be the solution of 1.2. with any initial value (S(0), I(0), R(0)) ∈ R3
+. if

R0 −
η2

1Λ2

2µ2
0(µ0 + µ1 + γ1)

< 1

η2
1Λ
µ0

< β

hold, then the disease goes to extinction almost surely, i.e.

lim
t→∞

I(t)→ 0

.93

Proof. The integration of the proposed stochastic epidemic model leads to be following system of
equations

S(t)− S(0)
t

=Λ− β〈S(t)I(t)〉 − α〈S(t)R(t)〉 − (µ0 + ν)〈S(t)〉

− η1

t

∫ t

0
S(s)I(s)dB1(s)−

η2

t

∫ t

0
S(s)R(s)dB2(s)

I(t)− I(0)
t

=β〈S(t)I(t)〉 − (µ0 + µ1 + γ1)〈I(t)〉+
η1

t

∫ t

0
S(s)I(s)dB1(s)

R(t)− R(0)
t

=γ1〈I(t)〉+ ν〈S(t)〉 − µ0〈R(t)〉+ α〈S(t)R(t)〉

+
η2

t

∫ t

0
S(s)R(s)dB2(s)

(3.12)

Therefore
S(t)− S(0)

t
+

I(t)− I(0)
t

+
R(t)− R(0)

t
=Λ− µ0〈S(t)〉 − (µ0 + µ1)〈I(t)〉 − µ0〈R(t)〉

so
〈S(t)〉 = 1

µ0

(
Λ− (µ0 + µ1)〈I(t)〉 − µ0〈R(t)〉

)
+ Φ(t) (3.13)

where Φ(t) = − 1
µ0
( S(t)−S(0)

t + I(t)−I(0)
t + R(t)−R(0)

t ) Obviously Φ(t)→ 0 a.s. t→ ∞. Applying to Itô
formula to the second equation of 1.2, we arrive at

d ln I(t) = βS(t)− (µ0 + µ1 + γ1)−
η2

1S2(t)
2

dt + η1S(t)dB1(t) (3.14)
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The integration of 3.13 form 0 to t and division by t leads to the following equation

ln I(t)− ln I(0)
t

=β〈S(t)〉 − (µ0 + µ1 + γ1)−
η2

1〈S2(t)〉
2

+
η1
∫ t

0 S(s)dB1(s)
t

≤β〈S(t)〉 − (µ0 + µ1 + γ1)−
η2

1〈S(t)〉2
2

+
η1
∫ t

0 S(s)dB1(s)
t

(3.15)

Substituting 3.12 in 3.13 and by the use of the local continuous martingale M1(t) = η1
∫ t

0 S(s)dB1(s)
with M1(0) = 0.
We obtain

ln I(t)− ln I(0)
t

=β
( Λ

µ0
− (µ0 + µ1)〈I(t)〉

µ0
− 〈R(t)〉

µ0
+ Φ(t)

)
− (µ0 + µ1 + γ1)

− 1
2

η2
1

( Λ
µ0
− (µ0 + µ1)〈I(t)〉

µ0
− 〈R(t)〉+ Φ(t)

)2
+

M1(t)
t

=
βΛ
µ0
− β(µ0 + µ1)〈I(t)〉

µ0
− β〈R(t)〉

µ0
− (µ0 + µ1 + γ1)−

η2
1Λ2

2µ2
0

−
η2

1(µ0 + µ1)
2〈I(t)〉2

2µ2
0

−
η2

1〈R(t)〉2

2µ2
0

+
η2

1Λ(µ0 + µ1)〈I(t)〉
µ2

0

+
η2

1Λ〈R(t)〉
µ2

0
− η1(µ0 + µ1)〈I(t)R(t)〉

µ2
0

+
M1(t)

t
+ ϕ(t)

≤ βΛ
µ0
−

η2
1Λ2

2µ2
0
− (µ0 + µ1 + γ1) +

(η2
1Λ
µ0
− β

) 〈R(t)〉
µ0

+
(η2

1Λ
µ0
− β

) (µ0 + µ1)〈I(t)〉
µ0

+
M1(t)

t
+ ϕ(t)

≤(µ0 + µ1 + γ1)
(
R−

η2
1Λ2

2µ2
0(µ0 + µ1 + γ1)

)
+
(η2

1Λ
µ0
− β

) 〈R(t)〉
µ0

+
(η2

1Λ
µ0
− β

) (µ0 + µ1)〈I(t)〉
µ0

+
M1(t)

t
+ ϕ(t)

(3.16)

where

ϕ(t) = −
η2

1φ2(t)
2

+ βΦ(t)− η2
1φ(t)

( Λ
µ0
− (µ0 + µ1)〈I(t)〉

µ0
− 〈R(t)〉

µ0

)
Moreover, lim sup

t→∞

〈M1,M1〉t
t ≤ η2

1 Λ2

µ0
< ∞ a.s.

Now by Lemma 3.3 and using Φ(t) = 0 a.s. t→ ∞. It may be verified that

lim sup
t→∞

M1(t)
t

= 0 and lim
t→∞

ϕ(t) = 0 a.s. (3.17)

If the assumption is satisfied, then

lim sup
t→∞

ln I(t)
t
≤(µ0 + µ1 + γ1)

(
R−

η2
1Λ2

2µ2
0(µ0 + µ1 + γ1)

)
+
(η2

1Λ
µ0
− β

) 〈R(t)〉
µ0

+
(η2

1Λ
µ0
− β

) (µ0 + µ1)〈I(t)〉
µ0

+
I(0)

t

<0 a.s.

(3.18)

Now, 3.18 implies that
lim
t→∞

I(t) = 0 a.s.
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We observe from the proposed model that

dN(t) =
(
Λ− µ0N(t)− µ1 I(t)

)
dt

N(t) = e−µ0t(N(0) +
∫ t

0
(Λ− µ1 I(s))e−µ0s ds

)
lim
t→∞

(
S(t) + R(t)

)
= lim

t→∞

( (N(0) +
∫ t

0 (Λ− µ1 I(s))e−µ0s ds
eµ0t − I(t)

)
=

Λ
µ0

Thus, we have

lim
t→∞

(
S(t) + R(t)

)
=

Λ
µ0

a.s.

lim
t→∞

S(t) = S̃ lim
t→∞

R(t) = R̃

3.2. Permanence in mean94

theorem 3.6. Let (S(t), I(t), R(t)) be the solution of 1.2 with any initial value (S(0), I(0), R(0)) ∈ R3
+. If

R− βΛν

µ0(µ0 + ν)(µ0 + µ1 + γ1)
−

2β3Λ2α + η2
1Λ2(µ0 + ν)

2(µ0 + ν)2(µ0 + µ1 + γ1)
> 1

hold, then the solution has the following property:

lim inf
t→∞
〈I(t)〉 ≥ C a.s.

then the diseases are said to be permanent in mean. a.s. where

C =
(µ0 + ν)(µ0 + µ1 + γ1)(R− βΛν

µ0(µ0+ν)(µ0+µ1+γ1)
− 2β3Λ2α+η2

1 Λ2(µ0+ν)

2(µ0+ν)2(µ0+µ1+γ1)
− 1)

β(µ0 + µ1 + γ1)

Proof. By the theorem 3.5 and the equality of 3.12 we arrived

S(t)− S(0)
t

+
I(t)− I(0)

t

=Λ− α〈S(t)R(t)〉 − (µ0 + ν)S(t)− (µ0 + µ1 + γ1)〈I(t)〉 −
M2(t)

t

〈S(t)〉

=
1

µ0 + ν

(
Λ− α〈S(t)R(t)〉 − (µ0 + ν)S(t)− (µ0 + µ1 + γ1)〈I(t)〉 −

M2(t)
t

)
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ln I(t)− ln I(0)
t

=β〈S(t)〉 − (µ0 + µ1 + γ1)−
1
2

η2
1〈S2(t)〉+ M1(t)

t

≥ β

µ0 + ν

(
Λ− α〈S(t)R(t)〉 − (µ0 + ν)S(t)− (µ0 + µ1 + γ1)〈I(t)〉

− M2(t)
t

)
− (µ0 + µ1 + γ1)−

η2
1Λ2

2(µ0 + ν)2 +
M1(t)

t

≥ βΛ
µ0 + ν

− β3Λ2α

(µ0 + ν)3 −
η2

1Λ2

2(µ0 + ν)2 −
β(µ0 + µ1 + γ1)

µ0 + ν
〈I(t)〉

− (µ0 + µ1 + γ1)−
βM2(t)
(µ0 + ν)t

+
M1(t)

t

≥(µ0 + µ1 + γ1)
(
R− βΛν

µ0(µ0 + ν)(µ0 + µ1 + γ1)

−
2β3Λ2α + η2

1Λ2(µ0 + ν)

2(µ0 + ν)2(µ0 + µ1 + γ1)
− 1
)
− β(µ0 + µ1 + γ1)

µ0 + ν
〈I(t)〉

− (µ0 + µ1 + γ1)−
βM2(t)
(µ0 + ν)t

+
M1(t)

t

(3.19)

then

〈I(t)〉 ≥
(µ0 + ν)(R− βΛν

µ0(µ0+ν)(µ0+µ1+γ1)
− 2β3Λ2α+η2

1 Λ2(µ0+ν)

2(µ0+ν)2(µ0+µ1+γ1)
− 1)

β)

+
µ0 + ν

β(µ0 + µ1 + γ1)

(M1(t)
t
− βM2(t)

(µ0 + ν)t

) (3.20)

Solving the 3.19 and 3.20 with the help of inequality 3.17 and taking the limit inferior of both side, we
get

lim inf
t→∞
〈I(t)〉 ≥

(µ0 + ν)(R− βΛν
µ0(µ0+ν)(µ0+µ1+γ1)

− 2β3Λ2α+η2
1 Λ2(µ0+ν)

2(µ0+ν)2(µ0+µ1+γ1)
− 1)

β

=C

(3.21)

4. Conclusion and simulations95

In this section, we use the stochastic Euler method, we next present the computer simulations to96

support these results, illustrating extinction and persistence of the disease.97

To verifies our analytical results, we take the paraments value as follows:98

99

Paraments Value
Λ 0.5
β 0.3
α 0.4
µ0 0.1
µ1 0.2
ν 0.4

γ1 0.6
η1 0.22
η2 0.45

100

It is easy to ensure the conditions R− η2
1 Λ2

2µ2
0(µ0+µ1+γ1)

= 0.9994 < 1 , η2
1 Λ
µ0

= 0.242 < 0.3 = β, see101

Figure:3 and Figure:4. This indiecates the extinction of epidemic disease.102
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Figure 3. ODE Computer simulation Λ = 0.5, β = 0.3, α = 0.4, µ0 = 0.1, µ1 = 0.2, ν = 0.4, γ1 = 0.6,
η1 = 0.22, η2 = 0.45,(S(0), I(0), R(0)) = (0.9, 0.6, 0.5).

Figure 4. SDE Computer simulation Λ = 0.5, β = 0.3, α = 0.4, µ0 = 0.1, µ1 = 0.2, ν = 0.4, γ1 = 0.6,

η1 = 0.22, η2 = 0.45,(S(0), I(0), R(0)) = (0.9, 0.6, 0.5),R0 −
η2

1 Λ2

2µ2
0(µ0+µ1+γ1)

< 1, η2
1 Λ
µ0

< β.

To verifies our analytical results, we take the paraments value as follows:103

104

Paraments Value
Λ 0.5
β 0.6
α 0.01
µ0 0.1
µ1 0.2
ν 0.15

γ1 0.4
η1 0.01
η2 0.45

105

It is easy to ensure the conditionsR− βΛν
µ0(µ0+ν)(µ0+µ1+γ1)

− 2β3Λ2α+η2
1 Λ2(µ0+ν)

2(µ0+ν)2(µ0+µ1+γ1)
= 1.7016 > 1, see106

Figure: 5 and Figure:6. This indicates the permanence in mean of epidemic disease.107
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Figure 5. ODE Computer simulation Λ = 0.5, β = 0.6, α = 0.01, µ0 = 0.1, µ1 = 0.2, ν = 0.15, γ1 = 0.4,
η1 = 0.01, η2 = 0.45,(S(0), I(0), R(0)) = (0.9, 0.6, 0.5).

Figure 6. SDE Computer simulation Λ = 0.5, β = 0.6, α = 0.01, µ0 = 0.1, µ1 = 0.2, ν = 0.15, γ1 = 0.4,

η1 = 0.01, η2 = 0.45,(S(0), I(0), R(0)) = (0.9, 0.6, 0.5),R− βΛν
µ0(µ0+ν)(µ0+µ1+γ1)

− 2β3Λ2α+η2
1 Λ2(µ0+ν)

2(µ0+ν)2(µ0+µ1+γ1)
=

1.7016 > 1.

Most real-world problems tend not to be deterministic, but to have stochastic effects. Based on the108

epidemic diseases of hepatitis B, this paper also considers the effects of environmental noise between109

susceptible individuals and recovered individuals. The dynamics of the model is given and sufficient110

conditions for its extinction and permanence in mean are discussed. Through numerical simulations,111

we clearly observed the behavior of infectious diseases. However, the critical condition of the model112

still needs to be proved and discussed.113
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