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Abstract 
 

The purpose of this paper is to investigate the effect of a varying moment on the 

rotation angle of a large tethered satellite that is orbiting a planet. Two different types of 

orbits were investigated: a simple circular orbit and an elliptical orbit. Cases with zero and 

non-zero initial angular rotation velocity were investigated as well. This investigation will 

assist satellite docking missions. The large rigid tethered satellite is a futuristic concept, 

and this investigation is meant to assist possible docking missions to the satellite. To 

simplify the problem, the rotation is constrained to the orbital plane. 
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1. Introduction 

In the futuristic case of a very large tethered satellite in orbit around a body, different 

parts of the satellite face different gravitational accelerations, causing the center of gravity to 

deviate from the center of mass and vary with time. This causes varying torques on the 

satellite. The satellite discussed in this paper is a very long system consisting of two stations 

and one long rigid tether connecting them. Figure 1 below conveys the satellite system. 

 

Figure 1. Large tethered satellite. The figure conveys the large tethered satellite. L is the total 

length of the tether. The CM symbol conveys the center of mass NOT center of gravity. The location 

of the center of gravity will not be discussed in this paper. mt is the mass of the tether. 
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2. Methods 

The initial conditions to the investigation will define m1, m2, d0 and d3. d1 and d2 2 will 

be found as a first step to the investigation using the equation below. The center of mass is 

calculated from center of station one.  

𝑅𝑐𝑚𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 = (𝑑0 +  
𝐿

2
) 𝑚𝑡 + (𝑑0 + 𝐿 + 𝑑3)𝑚2  

Where 𝑅𝑐𝑚 = (𝑑0 + 𝑑1), and 𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 =  𝑚1 + 𝑚2 + 𝑚𝑡 

The only unknown in this equation is 𝑑1 because all the other terms in the equation will 

be defined in the initial conditions of the investigation. Therefore rearranging equation 1 to solve 

for 𝑑1, we get: 

𝑑1 = ((𝑑0 + 𝐿/2)𝑚𝑡  +  (𝑑0 + 𝐿 + 𝑑3)𝑚2 − 𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑑0)/𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 

The center of mass will be the axis of rotation since the moment of inertia is minimized at 

that point. The diagrams below convey the satellite in circular and elliptical orbits. 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. Tethered Satellite in Circular Orbit. The thick dashed line traces out the locus of the 

center of mass along the orbit. 
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 Figure 3. Tethered Satellite in Elliptical Orbit. The dashed line traces out the locus of the center 

of mass along the orbit. The unit vectors representing different reference frames are also conveyed 

in this figure. The same unit vectors apply to the circular orbit as well. 

3.1 Test Case Introduction 

First, an equation of motion was found for the circular orbit scenario. The single equation 

of motion will describe the behavior of the unknown variable that is 𝜙, the angle of rotation of 

the satellite. Then the state space representation was performed for the equation of motion for 

use in the ode45 program. Numerical results were then obtained for several cases. The cases 

investigated for the circular orbit are given in the list below: 

3.1.1 Zero initial rotational angular velocity (𝜙̇(0) = 0 degrees per second) 

1) 𝜙(0) = 0 degrees, non-symmetric satellite 

2) 𝜙(0) = 30 degrees, non-symmetric satellite 

3) 𝜙(0) = 60 degrees, non-symmetric satellite  

4) 𝜙(0) = 90 degrees, symmetric satellite 

5) 𝜙(0) = 90 degrees, non-symmetric satellite 

3.1.2 Small initial rotational angular velocity (𝜙̇(0) ≠ 0) 

6) 𝜙̇(0) = 0.01 degree/second, 𝜙(0) = 60 degrees, Asymmetric satellite 

7) 𝜙̇(0) = 0.1 degree/second, 𝜙(0) = 60 degrees, Asymmetric satellite 

 

For each of the above cases, the rotational angle time history will be found along with the 

net moment and angular velocity time histories. 

Planet 

𝜃 
𝑖1̂ 

𝑖̂2 
𝑎̂2 𝑎̂1 
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Next for the elliptical orbit, the same equation of motion can be used with several 

changes. The radius of orbit will vary with the orbit angle from periapsis, 𝜃. However, elliptical 

orbit equations cannot be manipulated to convey 𝜃 explicitly as a function of time. Therefore, a 

process to solve the for the radius of orbit is discussed within the paper, and a numerical solution 

was found for the elliptical orbit of the rotating tethered satellite. 
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4 Theory and Calculations 

Euler’s equation of motion relates the torque faced by the satellite to its moment of 

inertia and its angular acceleration. Using the Euler’s equation of motion (with x pointing out of 

the page) 3:  

𝑀𝑥 =  𝐼𝑥𝜔̇𝑥 + (𝐼𝑍 − 𝐼𝑌)𝜔𝑌𝜔𝑍 

Since the rotation occurs at a single plane, 𝜔𝑌  and 𝜔𝑍 are zero and the equation simplifies to 

𝑀𝑥 =  𝐼𝑥𝜔̇𝑥 or simply 𝑴 =  𝑰𝝎̇ 

This equation will be the basis forming our equation of motion. Expanding the equation: 

𝑀 = 𝑛𝑒𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 =  ∑(𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑠 𝑋 𝑀𝑜𝑚𝑒𝑛𝑡 𝐴𝑟𝑚𝑠) =  𝜙̈ ∑ 𝑚𝑗

3

𝑗

𝑅𝑗
2 

Where R is the distance between satellite CM and the element j. Element j can be either 

of the two stations or the tether. The word element will be used to describe an arbitrary part of 

the satellite. 

Now, the distances between the stations’ CM and Earth center can be found. Then the 

distance between the tether CM and the earth center can be found. These processes are described 

in the equations below: 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛1 =  𝑟𝑎̂1 − (𝑑0 + 𝑑1) 𝑏̂1 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛2 =  𝑟𝑎̂1 + (𝑑2 + 𝑑3) 𝑏̂1 

𝑟𝑂→ 𝑡𝑒𝑡ℎ𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟 =  𝑟𝑎̂1 + (
𝐿

2
− 𝑑1) 𝑏̂1 

 

 

 

 

                                                           
3 See Nomenclature at end of paper 
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Drawing a and b reference frames together: 

 

    

 

Figure 4. Reference frames. Conveys the relationship between the intermediate and satellite 

reference frames 

 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛1 =  𝑟 (𝑏̂1 cos(𝜙) - 𝑏̂2 sin(𝜙))  − (𝑑0 + 𝑑1) 𝑏̂1 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛2 =  𝑟 (𝑏̂1 cos(𝜙) - 𝑏̂2 sin(𝜙))  +  (𝑑2 + 𝑑3) 𝑏̂1 

𝑟𝑂→ 𝑡𝑒𝑡ℎ𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟 =  𝑟 (𝑏̂1 cos(𝜙) - 𝑏̂2 sin(𝜙))  +  (
𝐿

2
− 𝑑1) 𝑏̂1 

 

|𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛1| = √[𝑟cos(𝜙) − (𝑑0 + 𝑑1) ]2 +  𝑟2𝑠𝑖𝑛2𝜙 

|𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛2| = √[𝑟cos(𝜙) + (𝑑2 + 𝑑3) ]2 +  𝑟2𝑠𝑖𝑛2𝜙 

|𝑟𝑂→ 𝑡𝑒𝑡ℎ𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟| = √[𝑟cos(𝜙) + (𝑑1 − (𝐿/2))]2  +  𝑟2𝑠𝑖𝑛2𝜙   

 

The equation for gravitational force is: 

𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = (𝐺𝑀𝑒𝑚𝑒𝑙𝑒𝑚𝑒𝑛𝑡)/(𝑟𝑂→𝑒𝑙𝑒𝑚𝑒𝑛𝑡)2 

We can define the direction of the force on an element as given below: 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =  −𝑟𝑂→ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 / |𝑟𝑂→ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡| 

 

 

 

 

 

𝑎̂1 

𝑎̂2 
𝑏̂1 

𝑏̂2 𝑎̂1 = 𝑏̂1 cos(𝜙) - 𝑏̂2 sin(𝜙) 
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For simplicity, let station1 be represented by s1, and station2 by s2 and tether CM as t. 

  

[
𝐺𝑀𝑒𝑚1

(𝑟𝑂→𝑠1)2
 . (

−𝑟𝑂→ 𝑠1

|𝑟𝑂→ 𝑠1|
)  X (−(d1 + d0))𝑏̂1 ] + [

𝐺𝑀𝑒𝑚2

(𝑟𝑂→𝑠2)2
 . (

−𝑟𝑂→ 𝑠2

|𝑟𝑂→ 𝑠2|
)  X (d2 + d3)𝑏̂1 ]

+ [
𝐺𝑀𝑒𝑚𝑡

(𝑟𝑂→𝑡)2
 . (

−𝑟𝑂→ 𝑡

|𝑟𝑂→ 𝑡|
)  X ((L/2) − 𝑑1)𝑏̂1 ]  

=  𝜙̈ [𝑚1(𝑑0 + 𝑑1)2 + 𝑚2(𝑑2 + 𝑑3)2 + 𝑚𝑡((𝐿/2) − 𝑑1)] 

The equation above is the general equation of motion for the unknown 𝜙. The expanded 

form is too long to be shown within the paper, but the breakdown of every term is given in the 

previous page. Using this, the EOM can be easily typed into MATLAB’s ode45 function after a 

state space representation is performed. To simplify the state space representation, let: 

𝑀 =  [
𝐺𝑀𝑒𝑚1

(𝑟𝑂→𝑠1)2
 . (

−𝑟𝑂→ 𝑠1

|𝑟𝑂→ 𝑠1|
)  X (−(d1 + d0))𝑏̂1 ] + [

𝐺𝑀𝑒𝑚2

(𝑟𝑂→𝑠2)2
 . (

−𝑟𝑂→ 𝑠2

|𝑟𝑂→ 𝑠2|
)  X (d2 + d3)𝑏̂1 ]

+ [
𝐺𝑀𝑒𝑚𝑡

(𝑟𝑂→𝑡)2
 . (

−𝑟𝑂→ 𝑡

|𝑟𝑂→ 𝑡|
)  X ((𝐿/2) − 𝑑1)𝑏̂1 ] 

And  

𝐼 =  [𝑚1(𝑑0 + 𝑑1)2 + 𝑚2(𝑑2 + 𝑑3)2 + 𝑚𝑡((𝐿/2) − 𝑑1)2] 

The state variable definition is as follows:  

              𝑥1 = 𝜙, 𝑥2 = 𝜙̇, 

Therefore, 

            𝑥1̇ =  𝑥2 

            𝑥2̇ =  𝑀/𝐼 

This can be directly inputted into MATLAB after expansion, and any remaining cross 

products can be computed using MATLAB’s “cross” function. For the circular orbit, since r, the 

radius of orbit, is constant, the computation is fairly straight forward. However, for the elliptical 

orbit, r varies with the angle from periapsis (true anomaly). A method to numerically analyze 

rotation in the elliptical orbit will be discussed later.  
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5 Test Case Parameters 

Relatively arbitrary values were chosen to test the equations of motion and the numerical 

propagation methods. However, a sanity check was performed to ensure the values were within 

reason. The lists below define the parameters in this investigation. 4 

 

5.1 Asymmetrical Satellite 

1) d0 = 10 m 

2) d3 = 10 m 

3) L = 10 km 

4) m1 = 5500 kg 

5) m2 = 1500 kg 

6) mt = 900 kg 

 

5.2 Symmetrical Satellite 

1) d0 = 10 m 

2) d3 = 10 m 

3) L = 10 km 

4) m1 = 1500 kg 

5) m2 = 1500 kg 

6) mt = 900 kg 

 

5.3 Circular Orbit 

1) Radius of orbit = 8.371 km (upper limit of LEO) 

  

5.4 Elliptical Orbit 

1) Eccentricity = 0.5 

2) Semi-major axis = 21113 km 

 

                                                           
4 See Nomenclature at end of paper 
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6 Results 

 

6.1 Circular Orbit Results 

As stated in the objectives section, seven cases were investigated, five with zero initial 

angular velocity and two with varying initial angular velocities. Appendix B(1) contains the code 

used for this analysis. 

6.1.1 Zero initial rotational angular velocity 

 Different initial rotation angles: 0, 30, 60 and 90 degree cases were tested for non-

symmetric satellites. Additionally, one of the 90 degree cases included a symmetrical satellite. 

For certain trivial cases, the plots are shown only in the appendix. 

1) 𝜙(0) = 0 degrees, Asymmetric satellite 

When the satellite is oriented in the vertical axis relative to earth (𝜙 = 0) with no angular 

velocity, the satellite is observed to stay at that orientation throughout its circular orbit. In other 

words, no rotation occurs throughout the orbit. Since this is a relatively trivial case, the plots are 

given in Appendix A(1). Since the satellite does not rotate, angular velocity also stays at zero 

(𝜙̇ = 0). Additionally, there are no moments faced by the satellite. 

2) 𝜙(0) = 30 degrees, Asymmetric satellite 

Figure 5 below shows the oscillations that take place in this situation. The satellite 

rotation occurs as oscillations about the mean of 90.016 degrees and has an amplitude of 60 

degrees. The amplitude does not decay with time and the oscillation continues indefinitely. 

Figure 6 shows the moment time history faced by the satellite. The moment oscillates about 0 

Nm and has an amplitude of 127200 Nm. The moment oscillations are not trivially sinusoidal; it 

is more complex as seen in figure 6. 
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Figure 5. Angle time history. Shows the oscillating nature of the rotation angle for 

𝜙(0) = 30 degrees 

 

Figure 6. Moment time history. Shows the nontrivial oscillating nature of the moment for  

𝜙(0) = 30 degrees 
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The angular velocity plot for this case is given in Appendix A(2). As expected, the 

angular velocity also oscillates about a set mean and has a non-decaying amplitude.  

 

3) 𝜙(0) = 60 degrees, Asymmetric satellite 

The rotation angle oscillates about a mean (or equilibrium point) of 90.016 degrees but 

having a non-decaying amplitude of 30 degrees. This recurring equilibrium point which is 

slightly offset from 90 degrees is due to the asymmetry of the satellite. The amplitude of this 

case is analogous to the previous case when 𝜙(0) = 30 degrees. A generalization can now be 

made for the amplitude of the oscillations for a non-zero initial rotational angle. The equation 

given below describes the relationship. Neglecting possible air/particle resistance and external 

forces other than gravity, the amplitude does not decay. 
 

 

Figure 7. Rotation angle time history. Shows the oscillating nature of the rotation angle for 

ϕ(0) = 60 degrees 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝐴𝑛𝑔𝑙𝑒 −  𝜙(0) 

 

Additional plots are given within Appendix A(3). As expected the angular velocity also 

oscillates as a derivative trend to the above plot. The moment oscillates in a more trivial fashion 

as opposed to the previous case. 
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4) 𝜙(0) = 90 degrees, Symmetric satellite 

All the plots in this relatively trivial case is given within Appendix A(4). For a symmetric 

satellite, the equilibrium angle is 90 degrees. Therefore, using the Amplitude equation (24) given 

above, the Amplitude comes out to be 0 degrees. In other words, the rotation angle will remain 

90 degrees throughout the orbit. The plots in A(4) show this case. Net moment comes out to be 

zero as seen in Appendix A(4). 

5) 𝜙(0) = 90 degrees, Asymmetric satellite 

For an asymmetric satellite, the equilibrium point was determined to be 90.016 degrees. 

Therefore, using the Amplitude equation (24), the Amplitude was expected to be 0.016 degrees. 

And this was proven by the numerical result in Figure 8 shown below: 

 

Figure 8. Angle time history. Shows the oscillating nature of the rotation angle for 

𝜙(0) = 90 degrees Asymmetric Satellite. 

 

Additional plots are given in Appendix A(5). The value of the moments are small (with a 

max magnitude of 70 Nm) due to the fact that 𝜙(0) was only slightly perturbed from the 

equilibrium angle of 90.016 degrees. 
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B. Non-zero initial rotational angular velocity, 𝜙̇(0) ≠ 0 (With 𝜙(0) constant at 60 degrees) 

1)  𝜙̇(0) = 0.01 degrees/second, Asymmetric satellite 

The rotations in this case (and for lower 𝜙̇(0) values) also occur as oscillations about 

90.016 degrees as seen in Figure 9. However, the amplitude is greater than the difference 

between the equilibrium angle and 𝜙(0) due to the non-zero initial angular velocity.  

 

Figure 9. Angle time history. Shows the oscillating nature of the rotation angle for 

𝜙̇(0) = 0.01 degrees per second Asymmetric Satellite. 
 

The angular velocity and moment also have oscillatory trends as seen in previous cases. 

The next case will involve an initial angular velocity that has been increased by a magnitude of 

ten. 

2) 𝜙̇(0) = 0.10 degrees/second, Asymmetric satellite 

This case involves a much greater initial angular velocity, one that causes the satellite to 

stop having oscillatory rotations and to spin. As seen in Figure 10, the satellite now begins to 

spin without an equilibrium point. In other words, the quantity 𝜙 continually increases. Despite 

the appearance in Figure 10, the line is not straight and has some fluctuations. This is due to the 

oscillating angular velocity shown in figure 11.   
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Figure 10. Angle time history. Shows the increasing rotation angle for 

𝜙̇(0) = 0.1 degrees per second Asymmetric Satellite. (Spinning) 

 

From Figure 11 in the next page, it can be seen that angular velocity oscillates between 

0.071 to 1.08 degrees per second at a very high frequency. Since angular velocity stays positive, 

the direction of rotation does not change and no rotation angle oscillations take place. 
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Figure 11. Angular Velocity time history. Shows the high frequency angular velocity for 

𝜙̇(0) = 0.1 degrees per second Asymmetric Satellite. (Spinning) 
 

Figure 12 shows the net moment faced by the satellite in the circular orbit. Because the 

satellite is spinning, the moment oscillates about 0 Nm at a much higher frequency than in 

previous cases. 

 

 

 

 

 

 

 

 

 

Figure 12 (left). Moment time history. Shows the high frequency net moment for 𝜙̇(0) = 0.1 

degrees per second Asymmetric Satellite. (Spinning) 
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6.2 Elliptical Orbit Numerical Results 

 

6.2.1 Elliptical Orbit Method Introduction 

For the elliptical orbit, the radius of orbit changes with the orbit angle, 𝜃. The complexity 

for the elliptical orbit lies in the fact that the orbit angle 𝜃, is not an explicit function of time. 

Therefore in ODE function being iterated, the value of 𝜃 cannot be found at different times. 

However, one work around was to get time in terms of 𝜃. Therefore, in a separate function, 

varying theta from 0 to 360 degrees, values of times can be calculated at which each orbit angle 

would occur. This array of time would then be inputted as the “time span” field of the ode45 

function in MATLAB. Within the ODE function being iterated, the orbit angle can now be found 

by relating the 𝜃 array to the time array. Once θ is known, r can be found and the EOM derived 

can be used.  

According to the fundamentals of astrodynamics, the set of equations stated below will be 

used to relate r to 𝜃 and 𝜃 to time.  

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒 cos(𝜃)
 

cos(𝐸) =  
𝑒 +  𝑐𝑜𝑠(𝜃)

1 +  𝑒 𝑐𝑜𝑠(𝜃)
 

𝑀𝑒𝑎𝑛𝐴𝑛𝑜𝑚𝑎𝑙𝑦 =  𝐸 −  𝑒 𝑠𝑖𝑛(𝐸) 

𝑡 = (
𝑎3

𝑘
)

0.5

 .   𝑀𝑒𝑎𝑛𝐴𝑛𝑜𝑚𝑎𝑙𝑦 

Appendix B(2) contains the codes used for this investigation. Figure 13 shows the orbit 

angle time history θ(t) for one revolution around earth with e = 0.5, and a = 2111.3 km. 
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Figure 13. Orbit angle time history. Shows the orbit angle time history for the elliptical orbit. 

 

The figure above shows one revolution; 10 of these revolutions are performed in the 

following numerical analysis. With this method, an initial rotation angle and angular velocity can 

be specified and the program will perform the numerical analysis to estimate rotation angle time 

history. The results of the numerical analysis with a variety of initial condition choices show that 

an elliptical orbit is a lot more complex to generalize into a trend. No specific oscillations or 

patterns occur other than the fact that ϕ̇(0) = 0.05 or greater would cause constant one 

directional spinning as seen previously with high initial angular velocities. Other than the 

spinning observed for high initial angular velocities, the results were more complex. For 

example, for 𝜙(0) = 30 degrees and ϕ̇(0) = 0, Figure 14 shows fluctuation in angle of rotation 

but with no specific amplitude or mean. 
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Figure 14. Orbit angle time history. Shows the rotation angle time history for the elliptical 

orbit 𝜙(0) = 30 degrees and 𝜙̇(0) = 0. No notable pattern or specific oscillation 

 

Figure 15. Net Moment time history. Shows the Net Moment time history for the elliptical orbit 

𝜙(0) = 30 degrees and 𝜙̇(0) = 0. No notable pattern or oscillations. 
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7 Conclusion 

For circular orbit, specific patterns were found for the cases investigated. However, for 

the elliptical orbit, specific patterns were not found. The conclusions from this investigation are 

listed below: 

7.1 Circular Orbit 

1) With zero initial angular velocity 𝜙̇(0) = 0 and 𝜙(0) = 0, the satellite remains at 𝜙(0) 

= 0 indefinitely. 

2) With zero initial angular velocity 𝜙̇(0) = 0 and 𝜙(0) ≠ 0, the satellite will oscillate 

about its equilibrium angle (around 90 degrees) indefinitely with a constant 

Amplitude equal to the difference between the equilibrium angle and the initial 

rotation angle 𝜙(0). 

a. This implies that 𝜙 = 0 is an unstable equilibrium.  

3) The equilibrium angle is 90 degrees for a symmetric satellite but slightly different for 

an Asymmetric satellite (90.016 degrees for the asymmetric satellite in this paper). 

4) A small angular velocity will cause the satellite to have an amplitude that is greater 

than the difference between the equilibrium (or mean) angle and the initial rotation 

angle 𝜙(0). 

5) A large angular velocity will result in a constant, unidirectional spin, leading to very 

high frequency moment oscillations; this could lead to fatigue in the tethered satellite 

structure.  

a. For this asymmetric satellite in circular orbit, spinning occurs when          

𝜙̇(0) > 0.075 deg/s. 

 

7.2 Elliptical Orbit 

1) The paper outlines a method for numerically estimating the rotation angle of a 

tethered satellite in elliptic orbit. However, no specific or conclusive pattern was 

observed within the investigation. 

2) A large angular velocity will result in a constant, unidirectional spin, leading to very 

high frequency moment oscillations; this could lead to fatigue in the tethered satellite 

structure.  
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a. For this asymmetric satellite in elliptical orbit, spinning occurs when              

𝜙̇(0) > 0.043 deg/s. 

The numerical estimation given in this paper outlines time histories of the angular 

rotations which would help with docking missions to a futuristic tethered satellite. Certain 

limitations apply with the methods outlined in the paper.  

1) Numerical integration will have increasing error with propagation of time, especially 

if the time step provided is large. 

2) The region of orbit is assumed to be perfectly free of air/particle resistance 

3) Further research should be done into the elliptical orbit methods in order to account 

for more revolutions and refine the current method. 

However, overall the investigation introduces a new futuristic topic and ways it can be 

handled or studied. 
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8 Appendix 

Appendix A. Nomenclature 

𝜙       =  satellite rotation angle relative to the radial direction 

𝜃       =  angle between periapsis and satellite center of mass 

𝑖̂       =  unit vectors in the Inertial reference frame (Earth) 

𝑎̂       =  intermediate unit vectors between Inertial and Satellite reference frames 

𝑏̂       =  unit Vectors in the Satellite reference frame 

m1        =  mass of station one 

mt       =  mass of the tether 

m2       =  mass of station two 

𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒      =  total mass of satellite 

𝑀𝑒       =  mass of the earth 

L       =  length of tether 

d0       =  half length of station one 

d1       =  distance between edge of station one to CM 

d2       =  distance between CM and edge of station two 

d3       =  radius of station 2 

M        =  total moment faced by satellite 

𝐼       =  satellite moment of inertia 

𝜔       =  angular velocity of the satellite 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛1      =  vector distance between station 1 and center of earth 

𝑟𝑂→ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛2      =   vector distance between station 2 and center of earth 

𝑟𝑂→ 𝑡𝑒𝑡ℎ𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟    =  vector distance between tether CM and center of earth 
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Appendix B. Excess plots/plots of relatively trivial cases (ϕ̇(0) = 0 degrees per second) 

1) 𝜙(0) = 0 degrees, Asymmetric satellite 
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2) 𝜙(0) = 30 degrees, Asymmetric satellite (Additional Plot) 
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3) 𝜙(0) = 60 degrees, Asymmetric satellite (Additional Plots) 
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4) 𝜙(0) = 90 degrees, Symmetric satellite (All Plots) 
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5) 𝜙(0) = 90 degrees, Asymmetric satellite (Additional Plots) 
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Appendix C. Codes Used 

1) Circular Orbit 

function main 

  
close all 
clear all 

  
global a num time 
time = 0; 
num = 1; 

  

r = 8371000; 

  
phi0 = deg2rad(60); 
phidot0 = deg2rad(0.08); 

  
options = odeset('RelTol',1e-13,'AbsTol',1e-13) 
[t,phi] = ode45(@odefun,[0:1:100000],[phi0 phidot0],options); 
angle = phi(:,1)*180/pi; %angle 
angle2 = phi(:,2)*180/pi; %angular velocity 

  
omegaSat = sqrt((6.67408*10^-11)*(5.972*10^24)/(r^3)); 
omegaSat = rad2deg(omegaSat); 

  
figure 
plot(t, angle,'LineWidth',1.5) 
title('Satellite rotation angle time history, \phi(t) (Narayan Iyer)') 
xlabel('Time (seconds)') 
ylabel('Rotation angle (degrees)') 
grid on 

  
mean(angle) 

  
figure 
plot(t,angle2,'LineWidth',1.5) 
title('Satellite rotation angular velocity time history (Narayan Iyer)') 
xlabel('Time (seconds)') 
ylabel('Rotation angular velocity (degrees per second)') 
grid on 

  
figure 
inertAngle = angle + t*omegaSat; 
plot(t,inertAngle) 
grid on 

  
figure 
plot(time, a, 'LineWidth', 1.5) 
title('Moment time history') 
xlabel('Time (seconds)') 
ylabel('Moment faced by the satellite (Nm)') 
grid on 
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end 

  
function xdot = odefun(t,x) 

  
r = 8371000; 

  
d0 = 10; 
d3 = 10; 
L = 10000; 
m1 = 5500; 
m2 = 1500; 
mt = 900; 
M = m1 + mt + m2; 

  
d1 = (mt*(d0+(L/2)) + m2*(d0+L+d3) - M*d0)/M; 
d2 = L-d1; 
I = m1*(d0+d1)^2 + m2*(d2+d3)^2 + mt*((L/2)-d1)^2; %moment of inertia 

  
phi = x(1); 

  
r0s1 = [r*cos(phi)-(d0+d1); -r*sin(phi)]; %distance to station one from O 
r0s2 = [r*cos(phi)+(d2+d3); -r*sin(phi)]; %distance to station two from O 
r0th = [r*cos(phi)+((L/2)-d1); -r*sin(phi)]; %%distance to tether center from 

) 

  
magR1 = norm(r0s1); %magnitude of the position vectors 
magR2 = norm(r0s2); 
magRth = norm(r0th); 

  
dirR1 = -r0s1/magR1; %direction definition 
dirR2 = -r0s2/magR2; 
dirRth = -r0th/magRth; 

  
Force1 = ((6.67408*10^-11)*(5.972*10^24)*m1/(magR1^2)).*dirR1; 
Force2 = ((6.67408*10^-11)*(5.972*10^24)*m2/(magR2^2)).*dirR2; 
Forceth = ((6.67408*10^-11)*(5.972*10^24)*mt/(magRth^2)).*dirRth; 

  
M = cross([Force1;0],[-(d1+d0);0;0]) + cross([Force2;0],[(d2+d3);0;0]) + 

cross([Forceth;0],[(L/2)-d1;0;0]); 

  
xdot1 = x(2); 
xdot2 = M/I; 
xdot2 = xdot2(3); 
xdot = [xdot1;xdot2]; 

  
global a num time 
a(num) = M(3); %moment 
time(num) = t;  
num = num+1; 

  
end 
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2) Elliptical Orbit 

%This function finds time for different theta values 
function [finalT,thetaFin] = ellipse() 

  
theta = 0:(2*pi()/1000):2*pi(); 
e = 0.5; 
cE = (e+cos(theta))./(1+e*cos(theta)); 
E = acos(cE); 
M = E-e.*sin(E); 

  
k = 3.987*10^14; 
P = 2*pi()*(((1000000^3)./k)^0.5).*M; 
t = M.*P/(2*pi); 
thet = rad2deg(theta); 

  
figure 
plot(t(1:501),thet(1:501)) 
hold on 
plot(1000-t(501:1000),thet(501:1000)) 
grid on 
xlabel('Time (s)') 
ylabel('Orbit Angle (degrees)') 
title('Ellipse orbit angle time history for one revolution (Narayan Iyer)') 

  

  
T = [t(1:501) (1000-t(501:1000))]; 
finalT = T; 
THETA = [theta(1:501) theta(501:1000)]; 
thetaFin = THETA; 
for i = 1:1:10 % for loop used to build the time array 
    k = i*1000; 
    finalT = [finalT k+T]; 
    thetaFin = [thetaFin THETA]; 
end 

  
end 

 

%This function performs numerical integration to find rotational parameters 
%for elliptical orbits 
function ellipsePhi 

  
close all 
clear all 

  
global a num time 
time = 0; 
num = 1; 

  
aAxis = 21113000; 

  
phi0 = deg2rad(30); 
phidot0 = deg2rad(0); 
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global theta tim 

  
[tim,theta] = ellipse(); 

  
options = odeset('RelTol',1e-6,'AbsTol',1e-6) 
[t,phi] = ode45(@odefun, tim, [phi0 phidot0],options); 
angle = phi(:,1)*180/pi; %angle 
angle2 = phi(:,2)*180/pi; %angular velocity 

  
omegaSat = sqrt((6.67408*10^-11)*(5.972*10^24)/(aAxis^3)); 
omegaSat = rad2deg(omegaSat); 

  
figure 
plot(t,angle,'LineWidth',1.5) 
title('Satellite rotation angle time history, \phi(t) (Narayan Iyer)') 
xlabel('Time (seconds)') 
ylabel('Rotation angle (degrees)') 
grid on 

  
figure 
plot(t,angle2,'LineWidth',1.5) 
title('Rotational angular velocity time history (Narayan Iyer)') 
xlabel('Time (seconds)') 
ylabel('Angular Velocity (degrees)') 
grid on 

  
figure 
plot(time,a,'LineWidth',2) 
title('Moment time history (Narayan Iyer)') 
xlabel('Time (seconds)') 
ylabel('Net Moment (degrees)') 
grid on 

  
end 

  
function xdot = odefun(t,x) 
t 
global theta tim num 

  
satAngle = theta(num) 
aAxis = 21113000; 
e = 0.5; 
p = aAxis*(1-e^2); 
r = p./(1+e.*cos(satAngle)) 

  
e = 0.5; 
d0 = 10; 
d3 = 10; 
L = 10000; 
m1 = 5500; 
m2 = 1500; 
mt = 100; 
M = m1 + mt + m2; 

  
d1 = (mt*(d0+(L/2)) + m2*(d0+L+d3) - M*d0)/M; 
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d2 = L-d1; 
I = m1*(d0+d1)^2 + m2*(d2+d3)^2 + mt*((L/2)-d1)^2; 

  
phi = x(1); 

  
r0s1 = [r*cos(phi)-(d0+d1); -r*sin(phi)]; 
r0s2 = [r*cos(phi)+(d2+d3); -r*sin(phi)]; 
r0th = [r*cos(phi)+((L/2)-d1); -r*sin(phi)]; %to tether center 

  
magR1 = norm(r0s1); 
magR2 = norm(r0s2); 
magRth = norm(r0th); 

  
dirR1 = -r0s1/magR1; 
dirR2 = -r0s2/magR2; 
dirRth = -r0th/magRth; 

  
Force1 = ((6.67408*10^-11)*(5.972*10^24)*m1/(magR1^2)).*dirR1; 
Force2 = ((6.67408*10^-11)*(5.972*10^24)*m2/(magR2^2)).*dirR2; 
Forceth = ((6.67408*10^-11)*(5.972*10^24)*mt/(magRth^2)).*dirRth; 

  
M = cross([Force1;0],[-(d1+d0);0;0]) + cross([Force2;0],[(d2+d3);0;0]) + 

cross([Forceth;0],[(L/2)-d1;0;0]); 

  
xdot1 = x(2); 
xdot2 = M/I; 
xdot2 = xdot2(3); 
xdot = [xdot1;xdot2]; 

  
global a time 
a(num) = M(3); 
time(num) = t; 
num = num+1; 

  
end 
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