Working Paper Article Version 1 This version is not peer-reviewed

On the Restraint Mechanism between the Earth and Moon

Version 1 : Received: 26 May 2019 / Approved: 29 May 2019 / Online: 29 May 2019 (10:30:43 CEST)

How to cite: Ding, J. On the Restraint Mechanism between the Earth and Moon. Preprints 2019, 2019050347 Ding, J. On the Restraint Mechanism between the Earth and Moon. Preprints 2019, 2019050347

Abstract

The moon always use the same side to face toward the earth, but there is a dead angle in the mainstream theory of explaining this phenomenon. That is, it cannot explain why the moon doesn't rotate around the axis which is a straight line to connect the mass centers of the earth and moon. Because the numerous meteorite impact craters on the lunar surface indicate that the moon is completely possible to obtain external momentums and rotate around this axis. This paper proposes a plain explanation, that is, the universal gravitation between the earth and moon as well as the earth's magnetic field have formed a trinity restraint mechanism on the moon. According to this explanation, the moon's rotation can be locked, and the mechanism of lunar libration has been revealed out, which can also confirm mutually with the natural phenomenon that the moon has sought a balance in the swing. In addition, with the help of all kinds of detection data from the Apollo moon landings and other circumlunar spacecraft, as well as the studies and analysis of lunar soil samples, the conclusion is that as far as a whole for the moon, it belongs to paramagnetic substances, and its relative permeability is between 1.008 and 1.03. Although the magnetic flux density of the earth on the lunar orbit has been dropped below 0.0008125 nT or lower due to the impact of the solar wind, but it can be used as a reason to lock the moon without rotating around the axis which is a straight line to connect the mass centers of the earth and moon. If another main reason to cause the existence of this fact cannot be found, even if the magnetic flux density of the geomagnetism in lunar orbit is very small, it also should not be artificially ignored. In this regard, we can artificially change the intensity of the earth's magnetic field, and carefully observe the lunar libration and in the distance between the earth and the moon, to verify the arguments in this paper.

Subject Areas

Moon; Earth; tidal locking; dipole magnetic field; solar wind; moonfall

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.