

1 *Review*

2 **Ricin: an ancient story for a timeless plant toxin**

3 **Letizia Polito^{#,*}, Massimo Bortolotti[#], Maria Giulia Battelli[#], Giulia Calafato and Andrea**
4 **Bolognesi^{*}**

5 Department of Experimental, Diagnostic and Specialty Medicine—DIMES, General Pathology Section, Alma
6 Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy;
7 massimo.bortolotti2@unibo.it (M.B.); mariagiulia.battelli@unibo.it (M.G.B.); giulia.calafato2@unibo.it (G.C.)

8 [#] These authors equally contributed to this work

9 ^{*} Correspondence: letizia.polito@unibo.it, andrea.bolognesi@unibo.it (L.P., A.B.); Tel.: +39-051-209-4700

10

11 **Abstract:** The castor plant (*Ricinus communis* L.) has been known since time immemorial in
12 traditional medicine in the pharmacopeia of Mediterranean and eastern ancient cultures. Moreover,
13 it is still used in folk medicine worldwide. Castor bean has been mainly recommended as anti-
14 inflammatory, anthelmintic, anti-bacterial, laxative, abortifacient, for wounds, ulcers, and many
15 other indications. Many cases of human intoxication occurred accidentally or voluntarily with the
16 ingestion of castor seeds or derivatives. Ricinus toxicity depends on several molecules, among them
17 the most important is ricin, a protein belonging to the family of ribosome-inactivating proteins. Ricin
18 is the most studied of this category of proteins and it is also known to the general public, having
19 been used for biocrimes in several cases. Here, the main steps of ricin research are reported with
20 particular regards to its enzymatic activity, structure and cytotoxicity. Moreover, we discuss ricin
21 toxicity for animals and humans, as well as the relation amongst bioterrorism and ricin and its
22 impact on environmental toxicity. Ricin has also been of great utility to develop a number of
23 immunotoxins specific for the elimination of unwanted cells, mainly cancer cells; some of these
24 immunotoxins gave promising results also in clinical trials.

25 **Keywords:** castor bean; cancer therapy; immunotoxins; plant toxins; ribosome-inactivating
26 proteins; ricin; rRNA N-glycosylase activity; traditional medicine; folk medicine; bioterrorism

27 **Key Contribution:** This manuscript points out the most known plant toxin: ricin. Starting from the
28 use of *Ricinus* plant in traditional and folk medicine; we highlight the milestones of research on ricin;
29 with particular regards to its enzymatic activity; structure; cytotoxicity; toxicity for animals and
30 humans and the double face of its employ, for biocrimes and medicine.

31

32 **1. Castor bean in traditional and folk medicine**

33 The toxin ricin derives from *Ricinus communis* L. (Euphorbiaceae family), also known as castor
34 bean or *palma Christi*. The genus *Ricinus* has only one known species: the castor oil plant. The plant
35 possibly originates from Africa and Asia and now is widespread throughout temperate, subtropical
36 and tropical areas, growing as an invasive plant or being cultivated for different purposes also in
37 Westland.

38 The castor plant has been known since time immemorial and its use in prehistoric era is
39 evidenced by archaeological findings such as that of the Border Cave in South Africa. Traces of wax
40 containing ricinoleic and ricinelaic acids were found on a thin wooden stick, which was suggested
41 to be a poison applicator, dating back to about 24,000 years ago [1]. The castor seeds and other parts
42 of the castor plant were certainly utilized in ancient Egypt for pharmacological purposes. In the Ebers
43 Papyrus., an Egyptian medical treatise dating back to before 1500 BCE, an entire chapter is dedicated
44 to castor bean that is indicated as abortifacient, laxative, for treatment of abscessual illness, for

45 baldness and so on [2]. In the Hearst Papyrus, written approximately in the same period, various
46 castor plant parts are included as ingredients in some prescriptions for internal use with the aim of
47 expelling fluid accumulation or promoting diuresis, as well as for external use as poultices for
48 bandaging [3]. Ancient Egyptians knew the toxicity of castor bean and only small amounts of the
49 seeds pulp were included in drug preparations for oral ingestion, which were prescribed mostly with
50 abortifacient or laxative purposes. In addition, a castor seed-containing concoction was
51 recommended to cure the urinary disease of a possibly diabetic child [4]. Around 400-year BCE, the
52 father of western medicine Hippocrates prescribed castor bean oil for laxative and detoxifying action
53 [5]. The Greek herbalist and physician Pedanius Dioscorides (40–90 CE) in *De Materia Medica* wrote
54 that castor seeds could be used as expectorant, diuretic, emetic, laxative, anti-inflammatory, to cure
55 erysipelas, burns, varicose veins, etc [6]. In the same period, Pliny the Elder (23–79 CE) wrote *Naturalis
56 historia*, comprising the whole area of antique knowledge. In this encyclopedic work there is a place
57 also for castor bean [7].

58 Castor bean was used also in the pharmacopeia of eastern ancient cultures. In Chinese traditional
59 medicine, castor seeds were recommended for their anthelmintic activity; seed poultice and leaf juice
60 were prescribed for external use to treat ulcers and chronic wounds, whereas the latex was instilled
61 in the ear to recover patient from rhinitis (reviewed in [8]). Castor plant is called *erandah* in Sanskrit,
62 because of its reputation of being a remedy for all kind of diseases. In Ayurveda, castor plant is used
63 for rheumatic affections, as well as for gastropathy, constipation, inflammations, fever, ascites,
64 bronchitis, cough, skin diseases, colic and lumbago. In Yunani medicine, castor root is used as
65 purgative and for skin diseases, the leaves are used to increase breastmilk production and for burns,
66 the seeds and the oil from them are purgative, useful in liver troubles, pains, lumbago, boils, piles,
67 ringworm, inflammations, ascites, asthma, rheumatism, dropsy and amenorrhea (reviewed in [9]).
68 Ground castor seeds or leaf paste were applied in veterinary medicine to heal sprains, swellings and
69 wounds [10].

70 Castor bean is used in folk medicine widespread throughout the world and has been reported:
71 (i) as a galactogogue on the Mediterranean coasts of Europe, where fresh leaves or leaf juice are
72 applied on the puerperal breast to promote lactation; (ii) as a remedy for various articular, cutaneous
73 or ocular diseases in Africa, where crushed seeds or oil, sometimes in combination with other plants,
74 are spread or rubbed on the sickling part of the body, or a root decoction is drunk to induce uterine
75 contraction as an abortive; (iii) as a medicament to cure erysipelas, flu, inflammation of the womb
76 and stomach aches in the Caribbean, where a leaf poultice is recommended; (iv) as an anthelmintic
77 or a purgative in Brazil where the seed oil is orally assumed or locally applied with the purpose of
78 contrasting the hair loss or of healing wounds or burns (reviewed in [11]).

79 The laxative and abortifacient activities of castor seeds were attributed to the activation of
80 intestinal and uterine smooth-muscle cells via prostaglandin EP3 receptors induced by ricinoleic acid
81 [12]. Castor oil-induced diarrhea can be antagonized by hexane extract of *Citrus limon* peel that
82 activates antisecretory and antimotility mechanisms through the β adrenergic system [13]. The
83 purgative and anthelmintic actions of the oral ingestion of castor seeds, at least in part, could also be
84 ascribed to the irritative effect caused to intestine by ricin, as reported in toxicological studies
85 (reviewed in [14]). In addition, the antiflogistic action of castor bean could be related to the high
86 toxicity of ricin to macrophagic cells, which are responsible of producing inflammatory cytokines
87 (reviewed in [15]). This effect, together with the anti-pathogen activity of ricin, could promote healing
88 of the lesions, thus justifying its use in the treatment of various skin affections.

89 2. The ricin story

90 In the past centuries, castor oil had many uses; it was obtained by crushing the seeds and the
91 process produced a significant amount of residual press cake that was known to contain a highly
92 toxic component. Castor seed toxicity began to be investigated at the end of nineteenth century at

93 Schmiedeberg's laboratory in Strasbourg. The toxic component of Ricinus could be extracted with
94 water and precipitated with alcohol, but it lost its toxic activity through heating, treatment with
95 strong acid or repeated precipitation with alcohol. In 1887, Dixson supposed that the toxicity of
96 Ricinus was due to a protein [16]. However, there were still many doubts whether the seed toxicity
97 was due to a protein or a glycoside (reviewed in [17]). The problem was solved at the Medical Faculty
98 of Dorpat (now Tartu) where an extremely toxic protein was partially purified from castor seed or
99 press cake and named ricin in the doctoral thesis written by Hermann Stillmark under the
100 supervision of Prof. Rudolf Kobert [18]. Stillmark noticed the agglutinating activity of ricin on red
101 blood cells that was mistakenly believed to be the cause of ricin toxicity until the agglutinin was
102 separated from the toxin [19].

103 Paul Ehrlich began his experiments in immunology by feeding mice with small amount of ricin
104 or abrin, another similar plant toxin, until they were accustomed and became resistant to the toxin
105 used, still remaining sensitive to the other toxin. The immunization was strictly specific, started after
106 a few days and persisted at least for several months [20,21]. He was successful in the production of
107 antisera against abrin and ricin and in the determination of antibody titer in serum and milk. Ehrlich
108 drew animal experiments that clarified the transmission of passive immunity from mother to
109 offspring through the transplacental transfer of antibodies and the breastfeeding. He investigated the
110 dynamics of the antibody response and was the first to envisage the presence of binding sites on the
111 cell surface (reviewed in [22]). These studies together with those on the immunity to bacterial toxins
112 led him to formulate his side-chain theory of antibody formation and to win, in 1908, the Nobel Prize
113 [23].

114 Interest in ricin was rekindled when the anticancer activity of this toxin on Ehrlich ascites cells
115 in a mouse model was published [24]. A strong inhibition of protein synthesis by ricin was observed
116 in cultures of both Ehrlich ascites tumour cells and Yoshida ascites hepatoma cells. The inhibition of
117 protein synthesis by ricin requires more time in rat liver than in neoplastic cells [36]. The prospect of
118 a possible use in cancer therapy induced to investigate which part of the proteosynthetic machinery
119 was damaged and how the toxin managed to enter the cell to reach its target. In this paper, we
120 highlight the milestones of research on ricin, with particular regards to its enzymatic activity,
121 structure, cytotoxicity, toxicity for animals and humans and employ as immunotoxins, used in
122 experimental models and in clinical trials. The main milestones are shown in Figure 1.

123 2.1. Ricin structure

124 The first information about the bi-chain nature of ricin structure dates to the early 70s, when it
125 was shown that ricin was composed by two chains, A (active) and B (binding), linked together
126 through a disulphide bond [26,27]. In the same period, the complete primary sequence of the ricin A
127 and B chains was determined [28,29]. Ricin holotoxin structure was solved for the first time at 2.8 Å
128 resolution (Figure 1) [30]. This pioneering work demonstrated that ricin A chain was a globular
129 protein folded into three domains all contributing to the active site, while the B chain lectin folded
130 into two domains, each binding lactose in a shallow cleft. The interface between the A and B chains
131 showed some hydrophobic contacts in which proline and phenylalanine side chains played a
132 prominent role. Four years later, the same researchers refined ricin structure at 2.5 Å (Figure 2a),
133 allowing a more detailed molecular description of the holotoxin and of the separated A and B chains
134 [31-33].

135

136

Figure 1. The main milestones of ricin research.

137 Ricin A chain was described as a globular protein consisting of 267 aminoacids and organized
 138 in 8 α -helices and 8 β -strand structures. Ricin B chain consists of 262 aminoacids and two homologues
 139 domains, each containing a lactose binding site and several areas of aminoacid homology, possibly
 140 derived from a gene duplication. In 1995, after purification of a complex of ricin A chain cross-linked
 141 to the ribosome, it was found the binding of ricin A chain with the ribosomal proteins L9 and L10e
 142 [34,35].

143 The knowledge of tridimensional structure of ricin yielded more information on its active site.
 144 Studies based on the formation of complexes between the A chain, both native and recombinant, and
 145 adenine-containing nucleotides allowed the identification of key residues in enzymatic activity. In
 146 particular, Tyr80, Tyr123, Glu177, Arg180 and Trp211 were found to form the binding site for adenine
 147 (Figure 2b) [30,36]. In the 90s, the molecular mechanism of de-adenylation was hypothesized: adenine
 148 is sandwiched between Tyr80 and Tyr123 in a π stacking interaction; the N3 of adenine is protonated
 149 by Arg180, promoting the C1'-N9 bond breaking thus forming an oxycarbenium moiety on the ribose
 150 (Figure 2c) [36,37]. This transition state is stabilized by Glu177; a water molecule lies on the opposite
 151 side of the sugar ring from adenine, which will be polarized by Arg180 to a hydroxide character
 152 that rapidly attacks the sugar carbon completing the reaction.

153

154 **Figure 2.** (a) Ribbon model of the crystal structure of ricin at 2.5 Å (accession number Protein Data
 155 Bank 2AAI). The A chain domains are colored in green, blue and light blue; the B chain domains are
 156 colored in yellow and orange. (b) Catalytic site of ricin. The key residues are indicated and colored in
 157 blue, whereas adenine substrate is depicted in red. (c) Proposed mechanism of depurination reaction
 158 catalyzed by ricin. The hydrolysis proceeds through a dissociative mechanism forming an
 159 oxocarbenium transition state. Arg180 protonates the leaving group and the N-glycosidic bond is
 160 broken. Glu177 deprotonates the hydrolytic water (highlighted in red dotted rectangle) that attacks
 161 at carbon to complete the depurination reaction. Figure 2a and 2b were produced by PyMOL (version
 162 2.3.1); Figure 2c was produced by ACD/ChemSketch (version 2015.2.5).

163 **2.2. Ricin enzymatic activity**

164 The introduction of a cell-free system utilizing a lysate from rabbit reticulocytes [38] helped to
 165 clarify that ricin inhibited the peptide chain elongation (Figure 1) [27]. The two polypeptides showed
 166 different properties: the A chain possessed the toxic activity, while the B chain was a galactose-
 167 specific lectin binding the cell surface [26]. Treating the toxin with reducing agents, it resulted more
 168 active in inhibiting cell-free protein synthesis [39]. Firstly, the target of the toxic action was identified
 169 as the ribosome (Figure 1), then as the 60 S subunit of eukaryotic ribosome [40], which became
 170 unreactive toward elongation factors [41]. The toxin was found to interfere with the interaction of
 171 elongation factors with the ribosomes and their elongation-factor-dependent GTPase activity [41,42].
 172 The A-chain molecule resulted very active on its substrate and it was calculated that one molecule
 173 can inactivate 2000 ribosomes/min, with a K_m of 0.1–0.2 mM [43].

174 In addition to ricin, several other plant proteins have been identified to possess a similar protein
 175 synthesis inhibiting action. Most of them had a single polypeptide chain similar to the A chain of
 176 ricin. They were called Ribosome-Inactivating Proteins (RIPs) (reviewed in [44,45]).

177 The already supposed enzymatic nature of ricin A chain was finally demonstrated in 1987 by
 178 Endo and Co-workers, which discovered that ricin A-chain cleaved the N-glycosidic bond of an
 179 adenine residue, A4324 in rat 28 S RNA, from the ribose of a highly conserved ribosomal RNA single-
 180 stranded loop involved in the binding of elongation factors (Figure 1). The toxin did not directly
 181 break the RNA chain, but the depurinated RNA was susceptible to hydrolysis [46,47]. Consequently,
 182 ricin activity was identified as an rRNA N-glycosidase [EC 3.2.2.22].

183 After, it was demonstrated that the enzymatic activity of RIPs was broader than previously
184 described. All tested RIPs were able to deadenylate DNA, in addition to rRNA, and some of them
185 were also able to deadenylate different other polynucleotide substrates, releasing adenine from the
186 sugar phosphate backbone of polynucleotide substrates (Figure 1) [48,49]. For this reason, the name
187 of adenine polynucleotide glycosylase was proposed for RIPs. Thus, the ability of acting on various
188 substrates and extensively depurinating some of them suggested that the protein synthesis inhibition
189 could be only one of the ways of RIP-mediated cell killing. Ricin resulted able to deadenylate rRNA,
190 DNA (chromatin and naked) and also poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase, an
191 enzyme involved in DNA repair [48,50]. Furthermore, it was observed that many RIPs were able to
192 cleave more than one adenine; although ricin was able to detach few adenines from the DNA (tens),
193 less than some single-chain RIPs (thousands). The hypothesis that ricin could act directly on DNA in
194 cellular models was strengthened by the evidence that damage to nuclear DNA, consistent with the
195 enzymatic activity (adenine release) on DNA in cell-free systems, was concomitant with protein
196 synthesis inhibition and preceded apoptosis [51].

197 *2.3. Ricin cellular uptake, routing and toxicity*

198 Starting from the mid-70s, several research groups focused on ricin binding and internalization
199 studies, demonstrating that the interaction of ricin with the cell started from the binding of the B
200 chain to galactosyl residues on cell surface, allowing the access to endosomal compartment [52]. Ricin
201 binds to both glycolipids and glycoproteins with terminal galactose. Since ricin binds to a variety of
202 different molecules, it seems to be internalized by different endocytic pathways as well as to use
203 different pathways to reach the Golgi apparatus and to intoxicate the cell. In HeLa cells, about 10^7
204 binding sites were found for ricin, but only small amount of the bound toxin reached the Golgi
205 network and participated to the cell intoxication [52].

206 Firstly, it was reported that ricin entered into cytoplasm through clathrin-dependent endocytosis
207 [53]. Afterwards, it became clear that also clathrin-independent mechanisms were involved [54].
208 After cell uptake, ricin is delivered to early endosomes, from where most of protein molecules are
209 recycled back to the cell surface or delivered, via late endosomes, to lysosomes for proteolytical
210 degradation. A small amount of not degraded ricin is addressed within the trans-Golgi network [55].
211 The involvement of Golgi complex in ricin routing was confirmed using different Golgi-disrupting
212 agents, such as brefeldin A, monensin, etc. In fact, the pretreatment with these agents inhibited the
213 cytotoxic effects of ricin [56]. It was demonstrated that ricin was cycled from Golgi to endoplasmic
214 reticulum via coatomer protein 1 (COP-1)-coated vesicles [57], although it was later proved that also
215 the COP-1-independent pathway could be involved [58].

216 The complete elucidation of intracellular ricin traffic occurred when it was demonstrated that,
217 after reaching the endoplasmic reticulum, the two ricin chains were separated, and the A chain was
218 retro-translocated through the quality control pathway delivering misfolded proteins to cytosol
219 (Figure 1) [59]. Recently it has been demonstrated that cholesterol rafts are required for Golgi
220 transport of ricin; instead, glycosphingolipids seem to be not required (reviewed in [60]).

221 The portion of A chain that quickly refolded, thus avoiding ubiquitination and proteosomal
222 degradation, was able to reach its intracellular target (reviewed in [61]). It was estimated that one
223 molecule of active ricin that arrives to its substrate is enough to kill one cell [62].

224 The discovery that ricin and some related toxins may be retrogradely transported along neuronal
225 processes (Figure 1) [63] opened a new field of research in neurobiology and this property has been
226 exploited for the selective destruction of neuron bodies.

227 Different cell types showed variable levels of sensitivity to ricin (reviewed in [14]), possibly
228 because of the mannose receptor expression on cell surface and the endocytosis efficacy. Ricin results
229 one of the most toxic plant toxins on cell lines with IC_{50} s (concentration inhibiting protein synthesis
230 by 50%) ranging from less than 0.1 to 1 pM [26,64-66]. However, it must be taken into account that it

231 is very difficult to make a direct comparison of the data available in literature about ricin cytotoxicity,
232 because of the differences in the experimental approaches and technical conditions.

233 The polynucleotide depurinating activity of RIPs suggests the possibility of a wider toxic action
234 on many biological substrates, not excluding the induction of oxidative stress, all together justifying
235 the existence of more than one death mechanism induced by ricin and other RIPs, such as apoptosis
236 and necrosis (Figure 1) [64,67].

237 **3. Ricin toxicity in humans and animals**

238 On one hand, ricin has been studied for bio-medical applications, exploiting the ability of the A-
239 chain to kill target cells once linked to a monoclonal antibody, as below described in the
240 immunotoxins chapter. On the other hand, ricin has attracted nefarious interests, with a history of
241 military, criminal and terroristic uses [68].

242 The acute toxicity of ricin is highly variable depending on the animal species and the strain. The
243 pathological effects and subsequent clinical signs of ricin intoxication depend also on the route of
244 exposure, as this dictates the subsequent tissue distribution of the toxin. Following intravenous or
245 intramuscular administration, lesions eventually develop in the spleen, liver and kidney whilst the
246 lung remains unaffected. After oral ingestion, the gastrointestinal tract is severely affected.
247 Inhalational exposure produces effects that are mainly confined to the respiratory tract [69].

248 Main data on animal toxicity derived from laboratory experiments in rodents, principally rat
249 and mouse. Oral administration of ricin was reported to give Lethal Dose for 50% of animals (LD₅₀s)
250 of 20-30 mg/kg in rat and 15-35 mg/kg in mouse [70-72]. For intravenous, inhalation and
251 intraperitoneal routes, toxicity is approximately 1000-fold higher than for oral route, with LD₅₀ values
252 in mouse of 2-10 µg/kg, 3-5 µg/kg and 22 µg/kg, respectively [70,73]. The lower toxicity of ricin after
253 oral exposure is due to the protein destruction in the lumen of the intestinal tract [74,75]. Ricin acts
254 in a time- and concentration-dependent manner. Notably, there is a time delay of about 10 h before
255 death occurs even when very high doses are applied [76].

256 *Oral toxicity.* In human, most intoxications occurred accidentally or voluntarily with the
257 ingestion of castor seeds; only few cases of intentional absorption of castor bean extracts have been
258 documented in suicide attempts [76]. Whole-ingested beans can pass intact through the
259 gastrointestinal tract, whereas chewing facilitates ricin release. Also, it has been reported that the seed
260 can act as “timed-release” capsule for the toxin, allowing its release in the lower bowel, where it
261 causes more damage [72]. After ingestion, vomiting, diarrhea and abdominal pain are common
262 symptoms. Massive gastrointestinal fluid and electrolyte loss are described, often complicated by
263 hematemesis or melaena. Finally, hypovolemic shock and multiorgan failure occur, which
264 particularly involves spleen, liver and kidney [77,78].

265 Despite the high number of intoxicated subjects with castor beans, it is quite difficult to calculate
266 LD values for ricin in humans. In fact, the effective ingested ricin dose can only be supposed, because
267 of ricin content variations depending on size, weight and moisture of seeds, as well as on cultivar,
268 region, season and plant growth stage. Moreover, in intoxicated subjects, it must be taken into
269 account the degree of mastication, stomach content, age and comorbidities, parameters that are
270 obviously more heterogeneous compared to experimental poisoning of animals. Considering all
271 these parameters, the fatal oral dose of ricin in humans has been estimated to range from 1 to 20
272 mg/kg (approx. 5-10 beans) [70,79].

273 *Inhalation toxicity.* No data are available for human ricin uptake by inhalation. In non-human
274 primates, LD₅₀ has been estimated 5-15 µg/kg depending on aerosol particle size. Inhalation of
275 particles that are able to penetrate deeply into the lungs (1-5 µm diameter) displays much more
276 toxicity than larger particles [72,80]. Inhalation of ricin causes slow onset of respiratory distress
277 (difficulty breathing), coughing, fever, pulmonary lesions and edema. Intoxicated animals develop
278 fibrinopurulent necrotizing pneumonia accompanied by necrotizing lymphadenitis, typically after a
279 dose-dependent delay of 8-24 hours. Death occurs for respiratory failure due to massive alveolar fluid

280 accumulation. Liver, kidney and small intestines appear congested although little histologic changes
281 are shown [72,80,81].

282 *Parenteral toxicity.* Data regarding parenteral ricin intoxication derive mainly from animal lab.
283 By injection, mice had an LD₅₀ of 3-5 µg/kg by intravenous and 22 µg/kg by subcutaneous route [82],
284 rabbits had LD₅₀ 0.5 µg/kg by intravenous and 0.1 µg/kg by intramuscular route, while guinea pigs
285 had LD₅₀ <1.1 µg/kg by intravenous and 0.8 µg/kg by intramuscular route [83]. Human data derive
286 from few cases of suicide or murder, or their attempt; the most known episode is the assassination of
287 the Bulgarian dissident Georgi Markov who in 1978 died 3 days after being stabbed probably with
288 an umbrella loaded with a ricin-containing pellet (Figure 1) [84].

289 By parenteral administration, immediate local pain at the injection site is reported, followed by
290 general weakness within 5 hours. The following symptoms, that are general and maybe similar to
291 sepsis (fever, headache, dizziness, anorexia, nausea, vomiting, hypotension, abdominal pain), can be
292 delayed for as much as 10 to 12 hours, even with high doses. Usually local tissue damage at the site
293 of the injection was observed. Laboratory abnormalities included elevated liver transaminases,
294 amylase and creatinine kinase, hyperbilirubinemia, myoglobinuria and renal insufficiency. The
295 clinical course may progress to multisystem organ failure. Preterminal complications included
296 gastrointestinal hemorrhage, hypovolemic shock and renal failure [78,84].

297 4. Bioterrorism and environmental toxicity

298 Ricin is currently monitored as a Schedule 1A of the Chemical Weapons Convention (CWC) and
299 is a Category B substance under the Biological and Toxins Weapons Convention (BTWC) [80]. Despite
300 its toxicity, ricin is less potent than other agents such as botulinum neurotoxin or anthrax. It has been
301 estimated that eight tons of ricin would have to be aerosolized over a 100 km² area to achieve about
302 50% casualty, whereas only kilogram quantities of anthrax spores would cause the same effect [85].
303 Thus, deploying an agent such as ricin over a wide area, although possible, becomes impractical from
304 a logistics standpoint. However, the availability of castor beans and the quite simple procedure for
305 rough ricin purification have attracted criminal and terrorist interest for small scale biocrimes or to
306 cause collective media-driven alarm [80].

307 From castor seeds a nontoxic oil can be extracted that find a multitude of uses in many sectors,
308 including cosmetic, pharmaceutic, mechanical and chemical industry. The castor oil production is
309 increasing worldwide because of its versatile application, low cost, availability and biodegradability.
310 In addition, the oil-free seed pulp can be used in agriculture as a natural fertilizer [86], although the
311 processing of castor seeds requires great caution due to the high allergenicity [87,88] and extreme
312 toxicity [76] of their protein fraction, represented above all by ricin. World production of castor oil
313 increased from 0.8 million tons in 2000 [89] to 1.21 million tons in 2014 [90], with a castor seed
314 production of 1.49 million tons in 2017 [91]. Leading producing countries are India, with over 80% of
315 the global yield, Mozambique, China, Brazil, Myanmar, Ethiopia, Paraguay and Vietnam [92]. The
316 oil makes up about 50% of the weight of the seeds and is mostly constituted of ricinoleic acid (90%),
317 with minor amounts of dihydroxystearic, linoleic, oleic and stearic acids. Ricin isoforms and the
318 alkaloid ricinine, are not transferred to the oil fraction during extraction, which can be performed by
319 cold or warm pressing, but remain in the seed cake [93,94].

320 Castor bean meal press cake or other residues of the castor oil production have been employed
321 as a protein source for feed or fertilizer, but their use is very limited by the ricin toxicity [76]. In 2008,
322 the European Food Safety Agency defined ricin as undesirable substance in animal feed. Ricinus
323 derived material should be appropriately inactivated through physical and/or chemical methods to
324 guarantee animal and human health [95]. Nevertheless, many accidental poisonings are still reported
325 for animals eating improperly detoxified fertilizer or other agricultural products containing castor
326 derived material [76,94].

327 In order to block the toxic action of ricin, different strategies have been evaluated: vaccines,
328 inhibitors and passive immunity. Vaccines against ricin with the consequent production of
329 neutralizing antibodies did not give satisfactory results *in vivo* (reviewed in [96]). Inhibitors of ricin
330 can act blocking the active site or as substrate analogue; also in this case, the available data are limited
331 to *in vivo* experiments [97]. More recently, inhibitors of cell routing have been developed, sometimes
332 giving promising results also *in vivo* [98,99].

333 To date passive immunity has been proven the only effective strategy for treating intoxications
334 caused by ricin. The delay in the appearance of signs of intoxication makes confirmation of exposure,
335 diagnosis of intoxication and the subsequent medical response technically and logically
336 challenging. The development of anti-ricin sera or antibodies, effective even when used several hours
337 after toxin exposure, represents a step forward in treatment of ricin intoxication, as it increases the
338 time window of intervention (WOO, window of opportunity). Many authors described effective post-
339 exposure treatment of ricin intoxication with specific antibodies, but with a limited WOO (~8 h) [100-
340 103]. Other authors reported a survival between 50 and 89% of mice treated with anti-sera 24 hours
341 after intoxication [104-106]. Once internalized into the cells, ricin cannot be neutralized by antibodies,
342 thus limiting the therapeutic window. However, Whitfield et al. in 2017 reported 100% protection in
343 aerosolized ricin-treated mice with a single administration of a F(ab')2 polyclonal ovine antitoxin
344 given 24 h post-exposure [107]. Even when performed in the same animal species, comparison
345 between diverse experiments is often difficult, due to the different toxin dose and route of
346 administration utilized. Moreover, there are few data about correlation between the antitoxin dose
347 required for protection and the WOO.

348 5. Ricin-containing immunotoxins

349 Many researchers tried to exploit the high ricin cytotoxicity for medical purposes to eliminate
350 pathological cells. Although ricin possesses highly efficient cell killing mechanisms, it lacks selectivity
351 towards cell targets. In order to increase selectivity, it has been explored the possibility of linking
352 ricin to carriers specific for targets on unwanted cells. The most widely used carriers are antibodies
353 and the corresponding conjugates are referred to as immunotoxins (ITs).

354 The first IT, created in 1976 by Moolten and co-workers, was made by Ricin Toxin-A chain (RTA)
355 linked to a rat tumor-specific antibody against a rat lymphoma, namely (C58NT)D (Figure 1) [108].
356 So far, a multitude of pre-clinical and clinical studies have shown the potential use of several ricin-
357 ITs towards different cancer types, from hematological to solid ones, and towards normal cells,
358 unwanted because responsible of a pathological state (reviewed in [109,110]). Different approaches
359 have been used, over time, to generate ITs. In the first strategy, ITs were composed by the antibody
360 chemically linked to the entire RIP that were used for *in vitro* and *in vivo* studies showing high
361 cytotoxicity [111]. Despite the high *in vitro* efficiency, the relevant non-specific toxicity reported in
362 *in vivo*, due to the characteristics of the lectin chain, brought researchers to sterically block, chemically
363 modify or remove the B chain, thus balancing toxicity and specificity. In 1985, Weil-Hillman and
364 colleagues tested an anti-Mr 67,000 protein linked to either blocked-chain B ricin or RTA, in a nude
365 mouse model reporting interesting results *in vitro* but not *in vivo* [112]. The 80s were years of great
366 ferment for molecular biology and genetic engineering, paving the way for the second generation of
367 ITs. Many researchers tried to improve the IT penetration in tumor mass by reducing the antibody
368 size, using antigen-binding (Fab) or variable (Fv) fragments instead of entire antibodies. In 1988,
369 Ghetie and colleagues created a new IT composed by Fab' fragments conjugated to chemically
370 deglycosylated RTA (dgA) [113]. Few years later, they used an anti-CD122-dgA IT in SCID-Daudi
371 mice, showing promising results since the IT was able to specifically kill tumor cells *in vivo*,
372 extending the mean survival time up to 57.9 +/- 3.8 days [114]. Moreover, Fitzgerald and co-workers
373 described the antitumor activity of recombinant RTA (rRTA) linked to anti-mouse transferrin
374 receptor in a nude mouse model of human ovarian cancer. Animals treated with IT extended life span

375 from 45 (lower doses) to 70/80 days (higher doses) [115]. Finally, in 1997 the first ricin-containing
376 recombinant immunotoxin (rIT) was obtained through the expression of a fusion gene composed by
377 sequences encoding anti-CD19-FVS191 (single-chain Fv), cathepsin D proteinase digestion site and
378 rRTA. In this work, authors compared the cytotoxicity of the rIT with the chemical linked IT,
379 evidencing that only the latter was toxic in target cells [116]. About 20 ricin-ITs have been tested in
380 Phase I, II and III clinical trials to treat patients with either hematological or solid tumors, transplant
381 rejection and GvHD. One of the first Phase I clinical trials has been conducted by Spitzer and
382 colleagues in 1987 (Figure 1), in which they obtained promising results by treating 22 metastatic
383 malignant melanoma patients with an IT composed by murine monoclonal anti-melanoma antibody
384 coupled to RTA (XOMAZYME-MEL) [117-119]. Additionally, ITs were also exploited for the
385 treatment of autoimmune disease. Indeed, anti-CD5/RTA was the first IT to be used in clinical trials
386 for therapy of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus and
387 insulin-dependent diabetes mellitus [120,121].

388 A different approach can be represented by the construction of nanoparticles, in which ricin is
389 genetically fused to carrier peptides that are able not only to recognize specific cellular target, but
390 also to auto assemble, as stable nanoparticles, thus increasing the toxin-concentration into the
391 targeted site [110,122,123].

392 6. Conclusions

393 In conclusion, ricin is a highly cytotoxic plant protein and has been of great utility to develop a
394 number of anti-cancer immunotoxins. The ability of ricin, and of some other RIPs, to act on multiple
395 molecular target inside the cell, thus triggering different death pathways, makes it more attractive
396 for cancer treatment than conventional chemotherapy, in which one of the major problems is the rise
397 of resistant cells [67,124]. However, ricin-containing ITs also exhibited many limitations like
398 unspecific toxicity, organ toxicity (mainly liver, kidney and vasculature), immunogenicity, fast
399 removal from blood stream, and lysosomal degradation inside cells. As a result, despite of the
400 significant efforts made over the past few years, ricin as therapeutic agent has not been achieved
401 much impact at the clinical level. The challenge is still open, and the frontline research is directed
402 towards "recombinant immunotoxins" and nanocarriers, or, probably, by other novel techniques
403 represented by expressing active plant toxin genes in vector specific for tumor cells [110,125].

404 Although ricin is not enough toxic to hypothesize a use over a wide area for terrorist purposes,
405 the availability of castor beans and the quite simple procedure for rough ricin purification have
406 stimulated the interest of criminals and terrorists for small-scale biocrimes. This justifies the
407 researchers' efforts to obtain always more fast and sensitive ricin detection tests. In addition, the
408 study of inhibiting or neutralizing molecules and the timing of clinical events in case of ricin
409 intoxication could lead to the definition of one or more validated therapies.

410 Finally, the use of castor bean derivatives should be carefully monitored because of the potential
411 presence of active ricin. In fact, the large use of these products in agriculture, without an effective
412 ricin inactivation, caused several cases of animal intoxication and can be hazardous for human health.

413 **Author Contributions:** All the authors contribute to collect the literature, write and revise the paper.

414 **Acknowledgments:** This work was supported by funds for selected research topics from the Alma Mater
415 Studiorum—University of Bologna and by the Pallotti Legacies for Cancer Research.

416 **Conflicts of Interest:** The authors declare no conflict of interest.

417 References

- 418 1. D'Errico, F.; Backwell, L.; Villa, P.; Degano, I.; Lucejko, J.J.; Bamford, M.K.; Higham, T.F.; Colombini, M.P.;
419 Beaumont, P.B. Early evidence of San material culture represented by organic artifacts from Border Cave,
420 South Africa. *Proc. Natl. Acad. Sci. USA*, **2012**, *109*, 13214-13219.

421 2. Ebers, G. *Papyros Ebers: Das Hermetische Buch über die Arzneimittel der Alten Ägypter*; Hinrichs, J.C., Ed.;
422 Wilhelm Engelmann: Leipzig, Germany, 1875.

423 3. Leake, C.D. *The Old Egyptian Medical Papyri*; University of Kansas Press: Lawrence, KS, USA, 1952.

424 4. Carpenter, S.; Rigaud, M.; Barile, M.; Priest, T.J.; Perez, L.; Ferguson, J.B. *An Interlinear Transliteration and*
425 *English Translation of Portions of the Ebers Papyrus Possibly Having to do with Diabetes Mellitus*; Bard College:
426 Annandale-on-Hudson, NY, USA, 1998.

427 5. Totelin, L.M.V. *Hippocratic Recipes: Oral and Written Transmission of Pharmacological Knowledge in Fifth- and*
428 *Fourth-Century Greece*; Brill: Leiden, The Netherlands; Boston, MA, USA, 2009.

429 6. Gunther, R.T. *The Greek herbal of Dioscorides/illustrated by a Byzantine, A.D. 512; Englished by John Goodyer,*
430 *A.D. 1655; edited and first printed, A.D. 1933*; Robert T. Gunther Ed., Oxford University Press, New York,
431 USA, 1934.

432 7. Bostock, J.; Riley, H.T. *The Natural History of Pliny*, 1st ed.; Taylor and Francis, Red Lion Court, Fleet Street,
433 London, UK, 1855.

434 8. Scarpa, A.; Guerci, A. Various uses of the castor oil plant (*Ricinus communis* L.). A review. *J. Ethnopharmacol.*
435 **1982**, *5*, 117-137.

436 9. Ladda, P.L.; Kamthane R.B. *Ricinus communis* (castor): An overview. *Int. J. Res. Pharmacol. Pharmacother.*
437 **2014**, *3*, 136-144.

438 10. Quattrocchi, U. *CRC World dictionary of medicinal and poisonous plants: common names, scientific names,*
439 *eponyms, synonyms, and etymology*; Routledge: Abingdon-on-Thames, UK, 2012.

440 11. Polito, L.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Bolognesi, A. Plants producing Ribosome-Inactivating
441 Proteins in traditional medicine. *Molecules* **2016**, *21*, E1560.

442 12. Tunaru, S.; Althoff, T.F.; Nüsing, R.M.; Diener, M.; Offermanns, S. Castor oil induces laxation and uterus
443 contraction via ricinoleic acid activating prostaglandin EP3 receptors. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109*,
444 9179-9184.

445 13. Adeniyi, O.S.; Omale, J.; Omeje, S.C.; Edino, V.O. Antidiarrheal activity of hexane extract of *Citrus limon*
446 peel in an experimental animal model. *J. Integr. Med.* **2017**, *15*, 158-164.

447 14. Battelli, M.G. Cytotoxicity and toxicity to animals and humans of ribosome-inactivating proteins. *Mini Rev.*
448 *Med. Chem.* **2004**, *4*, 513-521.

449 15. Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. *Biochim. Biophys. Acta* **1993**,
450 *1154*, 237-282.

451 16. Dixson, T. *Ricinus communis. Aust. Med. Gazz.* **1887**, *6*, 137-138.

452 17. Hartmut, F. The ricin story. In: *Advances In Lectin Research, Volume 1*, Hartmut Franz Ed.; Springer-Verlag:
453 Heidelberg, Germany, 1988; pp. 10-25.

454 18. Stillmark, H. Über Ricin, ein giftiges Ferment aus den Samen von *Ricinus communis* L. und einigen
455 anderen Euphorbiaceen. M.D. Dissertation Thesis, University of Dorpat, Dorpat, Estonia, 1888.

456 19. Takahashi, T.; Funatsu, G.; Funatsu, M. Biochemical studies on castor bean hemagglutinin. I. Separation
457 and purification. *J. Biochem.* **1962**, *51*, 288-292.

458 20. Ehrlich, P. Experimentelle Untersuchungen über Immunität I. Über Ricin. *Dtsch. Med. Wochenschr.* **1891**, *17*,
459 976-979.

460 21. Ehrlich, P. Experimentelle Untersuchungen über Immunität II. Über Abrin. *Dtsch. Med. Wochenschr.* **1891**,
461 *17*, 1218-1219.

462 22. Silverstein, A.M. Paul Ehrlich: the founding of pediatric immunology. *Cell Immunol.* **1996**, *174*, 1-6.

463 23. Ehrlich, P. Partial Cell Functions. In: *Nobel Lectures, Physiology or Medicine 1901-1921*; Elsevier Publishing
464 Company: Amsterdam, Netherlands, 1967.

465 24. Lin, J.Y.; Tserng, K.Y.; Chen, C.C.; Lin, L.T.; Tung, T.C. Abrin & Ricin: New anti-tumour substances. *Nature*
466 1970, 227, 292-293.

467 25. Lin, J.Y.; Liu, K.; Chen, C.C.; Tung, T.C. Effect of crystalline ricin on the biosynthesis of protein, RNA, and
468 DNA in experimental tumor cells. *Cancer Res.* 1971, 31, 921-924.

469 26. Olsnes, S.; Pihl, A. Different biological properties of the two constituent peptide chains of ricin, a toxic
470 protein inhibiting protein synthesis. *Biochemistry* 1973, 12, 3121-3126.

471 27. Olsnes, S.; Pihl A. Inhibition of peptide chain elongation. *Nature* 1972, 238, 459-461.

472 28. Funatsu, G.; Yoshitake, S.; Funatsu, M. Primary Structure of Ile Chain of Ricin D. *Agric. Biol. Chem.* 1978,
473 42, 501-503.

474 29. Funatsu, G.; Kimura, M.; Funatsu, M. Primary Structure of Ala Chain of Ricin D. *Agric. Biol. Chem.* 1979, 43,
475 2221-2224.

476 30. Montfort, W.; Villafranca, J.E.; Monzingo, A.F.; Ernst, S.R.; Katzin, B.; Rutenber, E.; Xuong, N.H.; Hamlin,
477 R.; Robertus, J.D. The three-dimensional structure of ricin at 2.8 Å. *J. Biol. Chem.* 1987, 262, 5398-5403.

478 31. Rutenber, E.; Katzin, B.J.; Ernst, S.; Collins, E.J.; Mlsna, D.; Ready, M.P.; Robertus, J.D. Crystallographic
479 refinement of ricin to 2.5 Å. *Proteins* 1991, 10, 240-250.

480 32. Katzin, B.J.; Collins, E.J.; Robertus, J.D. Structure of ricin A-chain at 2.5 Å. *Proteins* 1991, 10, 251-259.

481 33. Rutenber, E.; Robertus, J.D. Structure of ricin B-chain at 2.5 Å resolution. *Proteins* 1991;10, 260-269.

482 34. Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Paupit, R.A. X-ray structure of recombinant
483 ricin A-chain at 1.8 Å resolution. *J. Mol. Biol.* 1994, 244, 410-422.

484 35. Vater, C.A.; Bartle, L.M.; Leszyk, J.D.; Lambert, J.M.; Goldmacher, V.S. Ricin A chain can be chemically
485 cross-linked to the mammalian ribosomal proteins L9 and L10e. *J. Biol. Chem.* 1995, 270, 12933-12940.

486 36. Monzingo, A.F.; Robertus, J.D. X-ray analysis of substrate analogs in the ricin A-chain active site. *J. Mol.*
487 *Biol.* 1992, 227, 1136-1145.

488 37. Ready, M.P.; Kim, Y.; Robertus, J.D. Site-directed mutagenesis of ricin A-chain and implications for the
489 mechanism of action. *Proteins* 1991, 10, 270-278.

490 38. Olsnes, S.; Pihl, A. Ricin - a potent inhibitor of protein synthesis. *FEBS Lett.* 1972, 20, 327-329.

491 39. Sperti, S.; Montanaro, L.; Mattioli, A.; Stirpe, F. Inhibition by ricin of protein synthesis in vitro: 60 S
492 ribosomal subunit as the target of the toxin. *Biochem. J.* 1973, 136, 813-815.

493 40. Montanaro, L.; Sperti, S.; Stirpe, F. Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target
494 of the toxin. *Biochem. J.* 1973, 136, 677-683.

495 41. Sperti, S.; Montanaro, L.; Mattioli, A.; Testoni, G. Relationship between elongation factor I- and elongation
496 factor II- dependent guanosine triphosphatase activities of ribosomes. Inhibition of both activities by ricin.
497 *Biochem. J.* 1975, 148, 447-451.

498 42. Benson, S.; Olsnes, S.; Pihl, A.; Skorve, J.; Abraham, A.K. On the mechanism of protein-synthesis inhibition
499 by abrin and ricin. Inhibition of the GTP-hydrolysis site on the 60-S ribosomal subunit. *Eur. J. Biochem.* 1975,
500 59, 573-580.

501 43. Olsnes, S.; Fernandez-Puentes, C.; Carrasco, L.; Vazquez, D. Ribosome inactivation by the toxic lectins abrin
502 and ricin. Kinetics of the enzymic activity of the toxin A-chains. *Eur. J. Biochem.* 1975, 60, 281-288.

503 44. Barbieri, L.; Stirpe, F. Ribosome-inactivating proteins from plants: properties and possible uses. *Cancer Surv.*
504 1982, 1, 489-52.

505 45. Bolognesi, A.; Bortolotti, M.; Maiello, S.; Battelli, M.G.; Polito, L. Ribosome-Inactivating Proteins from
506 Plants: A Historical Overview. *Molecules* **2016**, *21*, E1627.

507 46. Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin
508 ricin on eukaryotic ribosomes. *J. Biol. Chem.* **1987**, *262*, 8128-8130.

509 47. Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on
510 eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by
511 the toxins. *J. Biol. Chem.* **1987**, *262*, 5908-5912.

512 48. Barbieri, L.; Valbonesi, P.; Bonora, E.; Gorini, P.; Bolognesi, A.; Stirpe, F. Polynucleotide:adenosine
513 glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). *Nucleic Acids Res.*
514 **1997**, *25*, 518-522.

515 49. Barbieri, L.; Bolognesi, A.; Valbonesi, P.; Polito, L.; Olivieri, F.; Stirpe, F. Polynucleotide: adenosine
516 glycosidase activity of immunotoxins containing ribosome-inactivating proteins. *J. Drug Target.* **2000**, *8*, 281-
517 288.

518 50. Barbieri, L.; Brigotti, M.; Perocco, P.; Carnicelli, D.; Ciani, M.; Mercatali, L.; Stirpe, F. Ribosome-inactivating
519 proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and have transforming activity
520 for 3T3 fibroblasts. *FEBS Lett.* **2003**, *538*, 178-182.

521 51. Brigotti, M.; Alfieri, R.; Sestili, P.; Bonelli, M.; Petronini, P.G.; Guidarelli, A.; Barbieri, L.; Stirpe, F.; Sperti, S.
522 Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. *FASEB J.* **2002**, *16*,
523 365-372.

524 52. Sandvig, K.; Olsnes, S.; Pihl, A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors
525 of human cells. *J. Biol. Chem.* **1976**, *251*, 3977-3984.

526 53. van Deurs, B.; Petersen, O.W.; Sundan, A.; Olsnes, S.; Sandvig, K. Receptor-mediated endocytosis of a ricin-
527 colloidal gold conjugate in Vero cells: intracellular routing to vacuolar and tubulo-vesicular portions of the
528 endosomal system. *Exp. Cell Res.* **1985**, *159*, 287-304.

529 54. Moya, M.; Dautry-Varsat, A.; Goud, B.; Louvard, D.; Boquet, P. Inhibition of coated pit formation in Hep2
530 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin. *J. Cell Biol.* **1985**, *101*, 548-559.

531 55. van Deurs, B.; Sandvig, K.; Petersen, O.W.; Olsnes, S.; Simons, K.; Griffiths, G. Routing of internalised ricin
532 and ricin conjugates to the Golgi complex. *J. Cell Biol.* **1986**, *102*, 37-47.

533 56. Sandvig, K.; van Deurs, B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin.
534 *Physiol. Rev.* **1996**, *76*, 949-966.

535 57. Cosson, P.; Letourneur, F. Coatamer interaction with di-lysine endoplasmic reticulum retention motifs,
536 *Science* **1994**, *263*, 1629-1631.

537 58. Chen, A.; Hu, T.; Mikoryak, C.; Draper, R.K. Retrograde transport of protein toxins under conditions of
538 COPI dysfunction. *Biochim. Biophys. Acta* **2002**, *1589*, 124-139.

539 59. Wesche, J.; Rapak, A.; Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the
540 endoplasmic reticulum to the cytosol. *J. Biol. Chem.* **1999**, *274*, 34443-34449.

541 60. Sandvig, K.; Bergan, J.; Kavaliauskienė, S.; Skotland, T. Lipid requirements for entry of protein toxins into
542 cells. *Prog. Lipid Res.* **2014**, *54*, 1-13.

543 61. Roberts, L.M.; Smith, D.C. Ricin: the endoplasmic reticulum connection. *Toxicon* **2004**, *44*, 469-472.

544 62. Eiklid, K.; Olsnes, S.; Pihl, A. Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa
545 cells. *Exp. Cell. Res.* **1980**, *126*, 321-326.

546 63. Harper, C.G.; Gonatas, J.O.; Mizutani, T.; Gonatas, N.K. Retrograde transport and effects of toxic ricin in

547 the autonomic nervous system. *Lab. Invest.* **1980**, *42*, 396–404.

548 64. Polito, L.; Bortolotti, M.; Farini, V.; Battelli, M.G.; Barbieri, L.; Bolognesi, A. Saporin induces multiple death
549 pathways in lymphoma cells with different intensity and timing as compared to ricin. *Int. J. Biochem. Cell
550 Biol.* **2009**, *41*, 1055–1061.

551 65. Tazzari, P.L.; Bolognesi, A.; de Totero, D.; Falini, B.; Lemoli, R.M.; Soria, M.R.; Pileri, S.; Gobbi, M.; Stein,
552 H.; Flenghi, L.; Martelli, M.F.; Stirpe, F. Ber-H2 (anti-CD30)-saporin immunotoxin: a new tool for the
553 treatment of Hodgkin's disease and CD30+ lymphoma: in vitro evaluation. *Br. J. Haematol.* **1992**, *81*, 203–
554 211.

555 66. Ngo, T.N.; Nguyen, T.T.; Bui D.T-T.; Hoang N.T-M.; Nguyen, T.D. Effects of ricin extracted from seeds of
556 the castor bean (*ricinus communis*) on cytotoxicity and tumorigenesis of melanoma cells. *Biomed. Res. Ther.*
557 **2016**, *3*, 633–644.

558 67. Polito, L.; Bortolotti, M.; Pedrazzi, M.; Mercatelli, D.; Battelli, M.G.; Bolognesi, A. Apoptosis and necroptosis
559 induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition
560 plus catalase or necrostatin-1. *Phytomedicine* **2016**, *23*, 32–41.

561 68. Roxas-Duncan, V.I.; Smith L.A. Of Beans and Beads: Ricin and abrin in bioterrorism and biocrime. *J. Bioterr.
562 Biodef.* **2012**, *S2*, 002.

563 69. Whitfield, S.J.C.; Griffiths, G.D.; Jenner, D.C.; Gwyther, R.J.; Stahl, F.M.; Cork, L.J.; Holley, J.L.; Green, A.C.;
564 Clark, G.C. Production, characterisation and testing of an ovine antitoxin against ricin; efficacy, potency
565 and mechanisms of action. *Toxins (Basel)* **2017**, *9*, E329.

566 70. Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning – a comprehensive review. *JAMA* **2005**,
567 *294*, 2342–2351.

568 71. Cook, D.L.; David, J.; Griffiths, G.D. Retrospective identification of ricin in animal tissues following
569 administration by pulmonary and oral routes. *Toxicology* **2006**, *223*, 61–70.

570 72. Roy, C.J.; Song, K.; Sivasubramani, S.K.; Gardner, D.J.; Pincus, S.H. Animal models of ricin toxicosis. *Curr.
571 Top. Microbiol. Immunol.* **2012**, *357*, 243–257.

572 73. He, X.; Carter, J.M.; Brandon, D.L.; Cheng, L.W.; McKeon, T.A. Application of a real time polymerase chain
573 reaction method to detect castor toxin contamination in fluid milk and eggs. *J. Agric. Food Chem.* **2007**, *55*,
574 6897–6902.

575 74. Olsnes, S. The history of ricin, abrin and related toxins. *Toxicon* **2004**, *44*, 361–370.

576 75. Wedin, G.P.; Neal, J.S.; Everson, G.W.; Krenzelok, E.P. Castor bean poisoning. *Am. J. Emerg. Med.* **1986**, *4*,
577 259–261.

578 76. Worbs, S.; Köhler, K.; Pauly, D.; Avondet, M.A.; Schaer, M.; Dorner, M.B.; Dorner, B.G. *Ricinus communis*
579 intoxications in human and veterinary medicine—a summary of real cases. *Toxins (Basel)* **2011**, *3*, 1332–1372.

580 77. Grimshaw, B.; Wennike, N.; Dayer, M. Ricin poisoning: a case of internet-assisted parasuicide. *Br. J. Hosp.
581 Med. (Lond)* **2013**, *74*, 532–533.

582 78. Bradberry, S. Ricin and abrin. *Medicine* **2016**, *44*, 109–110.

583 79. Bradberry, S.M.; Dickers, K.J.; Rice, P.; Griffiths, G.D.; Vale, J.A. Ricin poisoning. *Toxicol. Rev.* **2003**, *22*, 65–
584 70.

585 80. OPCW - Organisation for the Prohibition of Chemical Weapons. Ricin Fact Sheet (2014). Available online:
586 https://www.opcw.org/sites/default/files/documents/SAB/en/sab-21-wp05_e.pdf (accessed on 15 April
587 2019).

588 81. Pincus, S.H.; Bhaskaran, M.; Brey, R.N.3rd; Didier, P.J.; Doyle-Meyers, L.A.; Roy, C.J. Clinical and
589 Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin. *Toxins (Basel)* **2015**, *7*,
590 2121–2133.

591 82. Franz, D.R.; Jaax, N.K. Ricin Toxin. In: *Medical Aspects of Chemical and Biological Warfare*; Sidell F.R., Takafuji,
592 E.T. & Franz, D.R., Eds.; Walter Reed Army Medical Center, Borden Institute, Washington DC, USA, 1997;
593 Volume 3, pp. 631-642

594 83. Millard, C.; LeClaire, R. Ricin and related toxins: review and perspective. In: *Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics*, 2nd ed.; Brian J. Lukey, James A. Romano Jr., James A.
595 Romano, Harry Salem, Brian J Lukey, Harry Salem Eds.; CRC Press, Taylor & Francis Group, Boca Raton
596 FL, USA, 2007; pp. 424-452.

597 84. Crompton, R.; Gall, D. Georgi Markov- death in a pellet. *Med. Leg. J.* **1980**, *48*, 51-62.

598 85. Kortepeter, M.G.; Parker, G.W. Potential biological weapons threats. *Emerg. Infect. Dis.* **1999**, *5*, 523-527.

599 86. Mubofu, E.B. Castor oil as a potential renewable resource for the production of functional materials. *Sustain
600 Chem. Process* **2016**, *4*, 11.

601 87. Ordman, D. An outbreak of bronchial asthma in South Africa, affecting more than 200 persons, caused by
602 castor bean dust from an oil processing factory. *Int. Arch. Allergy Appl. Immunol.* **1955**, *7*, 10-24.

603 88. Panzani, R.C. Respiratory castor bean dust allergy in the south of France with special reference to
604 Marseilles. *Int. Arch. Allergy Appl. Immunol.* **1957**, *11*, 224-236.

605 89. Weiss, E.A. 2000. Castor. In *Oilseed Crops*, 2nd ed.; Blackwell Science Ltd., Oxford, UK, 2000, pp. 31-36.

606 90. Vashst, D.; Amhad, M. Statistical analysis of diesel engine performance for castor and jatropha biodiesel-
607 blended fuel. *IJAME* **2014**, *10*, 2155-2169.

608 91. Falk, S. World Outlook for Castor Oil 2018. Proceedings of the Global Castor Conference 2018, Ahmedabad,
609 India, 23-24 Feb 2018.

610 92. Food and Agriculture Organization of United States (FAO), 2017. Available online: (accessed on 15 April
611 2019).

612 93. Patel, V.R.; Dumancas, G.G.; Kasi Viswanath, L.C.; Maples, R.; Subong, B.J. Castor oil: properties, uses, and
613 optimization of processing parameters in commercial production. *Lipid Insights*, **2016**, *9*, 1-12.

614 94. Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J-P.; Dogliotti, E.; Di Domenico, A.; Fernández-Cruz,
615 M.L.; Fürst, P.; Fink-Gremmels, J.; Galli, C.L.; Grandjean, P.; Gzyl, J.; Heinemeyer, G.; Johansson, N.; Mutti,
616 A.; Schlatter, J.; van Leeuwen, R.; van Peteghem, C.; Verger, P. Scientific Opinion of the Panel on
617 Contaminants in the Food Chain on a request from the European Commission on ricin (from *Ricinus
618 communis*) as undesirable substances in animal feed. *EFSA Journal* **2008**, *726*, 9-38. doi:
619 10.2903/j.efsa.2008.726.

620 95. Anandan, S.; Kumar, G.; Ghosh, J.; Ramachandra, K. Effect of different physical and chemical treatments
621 on detoxification of ricin in castor cake. *Anim. Feed Sci. Tech.* **2004**, *120*, 159-168.

622 96. Smallshaw, J.E.; Vitetta, E.S. Ricin vaccine development. *Curr. Top. Microbiol. Immunol.* **2012**, *357*, 259-272.

623 97. Rainey, G.J.; Young, J.A. Antitoxins: novel strategies to target agents of bioterrorism. *Nat. Rev. Microbiol.*
624 **2004**, *2*, 721-726.

625 98. Stechmann, B.; Bai, S.K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.;
626 Beaumelle, B.; Sauvaire, D.; Gillet, D.; Johannes, L.; Barbier, J. Inhibition of retrograde transport protects
627 mice from lethal ricin challenge. *Cell* **2010**, *141*, 231-242.

628 99. Barbier, J.; Bouclier, C.; Johannes, L.; Gillet, D. Inhibitors of the cellular trafficking of ricin. *Toxins (Basel)*
629 **2012**, *4*, 15-27.

630 100. Gal, Y.; Mazor, O.; Alcalay, R.; Seliger, N.; Aftalion, M.; Sapoznikov, A.; Falach, R.; Kronman, C.; Sabo, T.
631 Antibody/doxycycline combined therapy for pulmonary ricinosis: Attenuation of inflammation improves

632

633 survival of ricin-intoxicated mice. *Toxicol. Rep.* **2014**, *1*, 496–504.

634 101. O'Hara, J.M.; Whaley, K.; Pauly, M.; Zeitlin, L.C.; Mantis, N. Plant-based expression of a partially
635 humanized neutralizing monoclonal IgG directed against an immunodominant epitope on the ricin toxin
636 A subunit. *Vaccine* **2012**, *30*, 1239–1243.

637 102. Sully, E.K.; Whaley, K.J.; Bohorova, N.; Goodman, C.; Kim, D.H.; Pauly, M.H.; Velasco, J.; Hiatt, E.; Morton,
638 J.; Swope, K.; Roy, C.J.; Zeitlin, L.; Mantis, N.J. Chimeric plantibody passively protects mice against
639 aerosolized ricin challenge. *Clin. Vaccine Immunol.* **2014**, *21*, 777–782.

640 103. Van Slyke, G.; Sully, E.K.; Bohorova, N.; Bohorov, O.; Kim, D.; Pauly, M.; Whaley, K.; Zeitlin, L.; Mantis, N.J.
641 Humanized monoclonal antibody that passively protects mice 3 against systemic and intranasal ricin toxin
642 challenge. *Clin. Vaccine Immunol.* **2016**, *23*, 795–799.

643 104. Pratt, T.S.; Pincus, S.H.; Hale, M.L.; Moreira, A.L.; Roy, C.J.; Tchou-Wong, K.-M. Oropharyngeal aspiration
644 of ricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin A chain
645 for post-exposure treatment. *Exp. Lung Res.* **2007**, *33*, 459–481.

646 105. Noy-Porat, T.; Alcalay, R.; Epstein, E.; Sabo, T.; Kronman, C. Extended therapeutic window for post
647 exposure treatment of ricin intoxication conferred by the use of high-affinity antibodies. *Toxicon* **2017**, *127*,
648 100–105.

649 106. Noy-Porat, T.; Rosenfeld, R.; Ariel, N.; Epstein, E.; Alcalay, R.; Zvi, A.; Kronman, C.; Ordentlich, A.; Mazor,
650 O. Isolation of anti-ricin protective antibodies exhibiting high affinity from immunized non-human
651 primates. *Toxins (Basel)* **2016**, *8*, E64.

652 107. Whitfield, S.J.C.; Griffiths, G.D.; Jenner, D.C.; Gwyther, R.J.; Stahl, F.M.; Cork, L.J.; Holley, J.L.; Green, A.C.;
653 Clark, G.C. Production, characterisation and testing of an ovine antitoxin against ricin; efficacy, potency
654 and mechanisms of action. *Toxins (Basel)* **2017**, *9*, E329.

655 108. Moolten, F.; Zajdel, S.; Cooperband, S. Immunotherapy of experimental animal tumors with antitumor
656 antibodies conjugated to diphtheria toxin or ricin. *Ann. N. Y. Acad. Sci.* **1976**, *277*, 690–699.

657 109. Gilabert-Oriol, R.; Weng, A.; Mallinckrodt Bv.; Melzig, M.F.; Fuchs, H.; Thakur, M. Immunotoxins
658 constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific
659 efficacy. *Curr. Pharm. Des.* **2014**, *20*, 6584–6643.

660 110. Tyagi, N.; Tyagi, M.; Pachauri, M.; Ghosh, P.C. Potential therapeutic applications of plant toxin-ricin in
661 cancer: challenges and advances. *Tumour Biol.* **2015**, *36*, 8239–8246.

662 111. Blythman, H.E.; Casellas, P.; Gros, O.; Gros, P.; Jansen, F.K.; Paolucci, F.; Pau, B.; Vidal, H. Immunotoxins:
663 hybrid molecules of monoclonal antibodies and a toxin subunit specifically kill tumour cells. *Nature* **1981**,
664 290, 145–146.

665 112. Weil-Hillman, G.; Runge, W.; Jansen, F.K.; Vallera, D.A. Cytotoxic effect of anti-Mr 67,000 protein
666 immunotoxins on human tumors in a nude mouse model. *Cancer Res.* **1985**, *45*, 1328–1336.

667 113. Ghetie, V.; Ghetie, M.A.; Uhr, J.W.; Vitetta, E.S. Large scale preparation of immunotoxins constructed with
668 the Fab' fragment of IgG1 murine monoclonal antibodies and chemically deglycosylated ricin A chain. *J.
669 Immunol. Methods* **1988**, *112*, 267–277.

670 114. Ghetie, M.A.; Richardson, J.; Tucker, T.; Jones, D.; Uhr, J.W.; Vitetta, E.S. Antitumor activity of Fab' and IgG-
671 anti-CD22 immunotoxins in disseminated human B lymphoma grown in mice with severe combined
672 immunodeficiency disease: effect on tumor cells in extranodal sites. *Cancer Res.* **1991**, *51*, 5876–5880.

673 115. FitzGerald, D.J.; Bjorn, M.J.; Ferris, R.J.; Winkelhake, J.L.; Frankel, A.E.; Hamilton, T.C.; Ozols, R.F.;
674 Willingham, M.C.; Pastan, I. Antitumor activity of an immunotoxin in a nude mouse model of human

675 ovarian cancer. *Cancer Res.* **1987**, *47*, 1407-1410.

676 116. Wang, D.; Li, Q.; Hudson, W.; Berven, E.; Uckun, F.; Kersey, J.H. Generation and characterization of an anti-
677 CD19 single-chain Fv immunotoxin composed of C-terminal disulfide-linked dgRTA. *Bioconjug. Chem.*
678 **1997**, *8*, 878-884.

679 117. Hertler, A.A.; Splitler, L.; Frankel, A. Humoral immune response to a ricin A chain immunotoxin in patients
680 with metastatic melanoma. *Cancer Drug Deliv.* **1987**, *4*, 245-253.

681 118. Splitler, L.E.; del Rio, M.; Khentigan, A.; Wedel, N.I.; Brophy, N.A.; Miller, L.L.; Harkonen, W.S.; Rosendorf,
682 L.L.; Lee, H.M.; Mischak, R.P.; Kawahata, R.T.; Stoudemire, J.B.; Fradkin, L.B.; Bautista, E.E.; Scannon, P.J.
683 Therapy of patients with malignant melanoma using a monoclonal antimelanoma antibody-ricin A chain
684 immunotoxin. *Cancer Res.* **1987**, *47*, 1717-1723.

685 119. Mischak, R.P.; Foxall, C.; Rosendorf, L.L.; Knebel, K.; Scannon, P.J.; Splitler, L.E. Human antibody responses
686 to components of the monoclonal antimelanoma antibody ricin A chain immunotoxin Xoma-Zyme-MEL.
687 *Mol. Biother.* **1990**, *2*, 104-109.

688 120. Strand, V.; Lipsky, P.E.; Cannon, G.W.; Calabrese, L.H.; Wiesenbutter, C.; Cohen, S.B.; Olsen, N.J.; Lee,
689 M.L.; Lorenz, T.J.; Nelson, B. Effects of administration of an anti-CD5 plus immunoconjugate in rheumatoid
690 arthritis. Results of two phase II studies. The CD5 plus rheumatoid arthritis investigators group. *Arthritis*
691 *Rheum.* **1993**, *36*, 620-630.

692 121. Stafford, F.J.; Fleisher, T.A.; Lee, G.; Brown, M.; Strand, V.; Austin, H.A.; Balow, J.E.; Klippel, J.H. A pilot
693 study of anti-CD5 ricin A chain immunoconjugate in systemic lupus erythematosus. *J. Rheumatol.* **1994**, *21*,
694 2068-2070.

695 122. Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.;
696 Carter, M.B.; Willman, C.L.; Brinker, C.J.; Caldeira, C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-
697 specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. *ACS Nano* **2011**, *5*, 5729-5745.

698 123. Díaz, R.; Pallarès, V.; Cano-Garrido, O.; Serna, N.; Sánchez-García, L.; Falgàs, A.; Pesarrodona, M.; Unzueta,
699 U.; Sánchez-Chardi, A.; Sánchez, J.M.; Casanova, I.; Vázquez, E.; Mangues, R.; Villaverde, A. Selective
700 CXCR4(+) cancer cell targeting and potent antineoplastic effect by a nanostructured version of recombinant
701 ricin. *Small* **2018**, *14*, e1800665.

702 124. Polito, L.; Mercatelli, D.; Bortolotti, M.; Maiello, S.; Djemil, A.; Battelli, M.G.; Bolognesi, A. Two Saporin-
703 Containing Immunotoxins Specific for CD20 and CD22 Show Different Behavior in Killing Lymphoma
704 Cells. *Toxins (Basel)* **2017**, *9*, E182.

705 125. Zhang, Y.H.; Wang, Y.; Yusufali, A.H.; Ashby, F.; Zhang, D.; Yin, Z.F.; Aslanidi, G.V.; Srivastava, A.; Ling,
706 C.Q.; Ling, C. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and
707 in vivo. *J. Integr. Med.* **2014**, *12*, 483-494.

708