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Abstract: Easter Island (Rapa Nui) deforestation has traditionally been viewed as a single event, 17 
synchronous in time and space across the island and caused by Polynesian settlers. However, recent 18 
studies have challenged this idea introducing the concept of spatio-temporal heterogeneity and 19 
suggesting a role for climate change. This paper presents a continuous paleovegetation record of the 20 
last millennium (~960 to ~1710 CE), based on palynological analysis of a peat core from Lake Kao. During 21 
this time interval, deforestation was gradual, with three main pulses at ~1070 CE, ~1410 CE and ~1600 22 
CE, likely driven by drought, anthropogenic practices (mostly fire) or the coupling of both. Some forest 23 
regeneration trends have been documented after the first and the second deforestation pulses. Forests 24 
were totally removed by 1600 CE, coinciding with the full permanent human settlement of the Kao area. 25 
Comparison with other continuous palynological records available for the last millennium (Aroi marsh 26 
and Lake Raraku), confirms that forest clearing was heterogeneous in time and space, rather than 27 
synchronous island-wide.  28 
 29 
Keywords: charcoal, climate change, deforestation, drought, fire, human disturbance, last millennium, 30 
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1. Introduction 33 
 34 

The deforestation of Easter Island (Rapa Nui) was considered for a long time as an abrupt and 35 
island-wide event due to the overexploitation of natural resources by the first Polynesian settlers, who 36 
were assumed to have caused their own cultural collapse after their arrival on the island between 800 37 
CE and 1200 CE [1, 2]. However, recent paleoecological investigations have challenged this view by 38 
suggesting that deforestation was gradual and heterogeneous in time and space across the island, and 39 
that the ancient Rapanui civilization was resilient to deforestation [3]. It has been proposed that this 40 
discrepancy was due to the occurrence of a millennial-scale sedimentary gap in the first palynological 41 
studies [4, 5], which hid the landscape changes of the last millennia [6]. New coring campaigns 42 
developed during the last decade, with emphasis on the more recent times, have yielded continuous 43 
(gap-free) and chronologically coherent paleovegetation records (without age inversions) for Lake 44 
Raraku and the Aroi marsh (Fig. 1), two of the three Easter island sedimentary basins suitable for 45 
paleoecological research [7, 8]. The other sedimentary basin that would be useful for this purpose, Lake 46 
Kao (or Kau), remained problematical due to gaps and frequent age inversions that prevented the 47 
development of reliable age-depth models [9-11]. A single continuous and chronologically coherent 48 
record exists for Lake Kao covering the last millennium [12] but pollen analyses of this sequence have 49 
not yet been published. Here we present the pollen analysis of another continuous sequence from Lake 50 
Kao encompassing the last millennium [3]. Results are considered preliminary as resolution can be 51 
increased and some low abundance pollen and spore types still lack identification. However, 52 
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deforestation trends are already clearly visible and can be compared with other gap-free and 53 
chronologically reliable records of similar resolution from Raraku and Aroi. 54 
 55 
2. Coring site and methods 56 
 57 

Lake Kao (~1250 m diameter and ~10 m depth) is the largest permanent freshwater body of 58 
Easter Island and is located within the Kao volcanic crater, in the southwestern corner of the island, at 59 
110 m elevation (Fig. 1). The surface of this lake is a mosaic of open waters and peat-forming floating 60 
mats dominated by Scirpus californicus (Cyperaceae) and Polygonum acuminatum (Polygonaceae). A 61 
220-cm depth peat core (KAO08-03) was retrieved from this floating mat with a Russian corer, at the 62 
northern side of the lake (27° 10’ 57.526” S - 109° 26’ 7.591”) (Fig. 1). Nine samples were taken for 63 
radiocarbon dating, which was performed at the Radiochronology Lab of the Université Laval (Canada). 64 
The age-depth model was carried out using the smooth-spline option in the Clam 2.2 software [13]. 65 
Samples for pollen analysis were processed at the ICTJA Laboratory of paleoecology with standard 66 
palynological methods, including KOH, Na4P2O4, HCL and HF digestions, acetolysis and mounting in 67 
glycerin-jelly [14]. Lycopodium tablets were added before treatment. Counting procedures followed ref. 68 
[15]. The diagram was plotted with psimpoll 4.27 and pollen zones were obtained using the OSIC 69 
(Optimal Splitting by Information Content) method [16]. The interpretation of these zones was based on 70 
previous knowledge about pollen-vegetation relationships on Easter Island, with the addition of some 71 
indicator non-pollen palynomorphs (NPPs) that were not analyzed in former investigations. Among 72 
these NPPs, the most important are fungal spores from genera such as Sporormiella, Byssothecium, 73 
Gelasinospora and Glomus. Sporormiella is a coprophilous fungus growing in the dung of domestic 74 
vertebrates and is thus commonly used as an indicator of human presence [17]. Byssothecium is a 75 
saprobe or weak parasite on woody and other plant remain substrates, whereas Gleasinospora prefers 76 
dry conditions with charred material [18]. Glomus, a michorrhizal fungus living in forest soils is 77 
commonly considered as an indicator of increased erosion rates [19]. Microcharcoal particle 78 

concentration, expressed in particles >5 m/g, was used as a proxy for fire. 79 
 80 
3. Results and interpretation 81 
 82 

Radiocarbon ages are shown in Table 1 and the best-fit age-depth model is displayed in Fig. 2. 83 
According to this model, the sequence encompasses roughly the last millennium, except the last 2-3 84 
centuries (1022 cal yr BP to 237 cal yr BP or 928 CE to 1713 CE). The sampling resolution is multidecadal 85 
(~36 y/sample). The average model error is 5.3% (range: 4.0% to 11.5%). Average accumulation rates are 86 
3.6 mm/y (range: 2.1 mm/y to 4.6 mm/y), with lower values in the uppermost part of the sequence, 87 
higher values in the intermediate part and medium values in the basal part. The pollen diagram was 88 
subdivided into four pollen zones (Fig. 3), from I to IV, which are described in chronological order. 89 
 90 
Pollen Zone I (289-255 cm; 993-881 cal yr BP; 957-1069 CE). This zone is co-dominated by palms and 91 
grasses, suggesting an open palm woodland with Triumfetta (Tiliaceae) shrubs in the understory. Ferns 92 
started to be abundant at the end of the zone. Indicator NPPs were still absent, with only scattered 93 
occurrences of Sporormiella and Byssothecium. Charcoal is present but in very low amounts. The whole 94 
picture suggests a dispersed human presence with a very low ecological impact. 95 
 96 
Pollen Zone II (255-175 cm; 881-544 cal yr BP; 1069-1406 CE). This zone begins with a rapid and 97 
significant palm forest decline, with a minimum at about 1100 CE, that turned the Kao vegetation into a 98 
grassland with scattered palm trees. This conspicuous shift occurred in the middle of a Medieval climatic 99 
drought that desiccated the shallower Lake Raraku [7] and is not associated with a coeval increase in 100 
indicators of human presence (Sporormiella, charcoal), which suggests that climate may have been the 101 
main driver for the forest decline. A fire peak occurred at 1150-1200 CE but this did not seem to affect 102 
the trend of forest regeneration, possibly favored by a wetter climate [7]. This regeneration culminated 103 
at about 1350 CE, when a new forest retraction took place, this time coeval with small increases of 104 
Sporormiella and fire, suggesting more intense human activity than in former times. 105 
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 106 
Pollen Zone III (175-127 cm; 544-340 cal yr BP; 1406-1610 CE). At the beginning of this zone, palm pollen 107 
almost disappeared and the landscape became almost entirely herbaceous. Indicators of human 108 
presence (Sporormiella, charcoal) slightly increased and fungi associated with dead wood and charred 109 
plant material (Byssothecium, Gelasinospora) followed a similar trend, supporting anthropogenic forest 110 
clearing and the corresponding accumulation of degraded and burned wood and other plant materials. 111 
Minimum forest values at about 1470 CE coincided with an increase of erosion indicators (Glomus). A 112 
new forest regeneration trend can be observed, culminating at the end of the zone, although this is less 113 
intense than in the former pollen zone. A significant increase in fire indicators and coprophilous fungi 114 
(Soporomiella) at the end of the zone (from about 1550 CE onwards) suggest that forest regeneration 115 
was interrupted by human occupation of the Kao catchment. The onset of another drought during the 116 
Little Ice Age (LIA) [7] would have contributed to fire exacerbation. 117 
 118 
Pollen Zone IV (127-83 cm; 340-239 cal yr BP; 1610-1711 CE). The Kao area was already devoid of 119 
forests, which were replaced by extensive grassland meadows, with the addition of an unknown 120 
Apiaceae. Human settlement increased abruptly, as indicated by the dramatic increase of fires, 121 
coprophilous fungi (Sporormiella) and saprophytic fungi (Byssothecium and Gelasinospora). This 122 
coincided with the maximum development of a LIA drought recorded at Lake Raraku [7], which suggests 123 
that climate could also have had a role by favoring biomass flammability and fire expansion. 124 
Archaeological evidence indicates that the ceremonial village of Orongo, situated on the SW of the Kao 125 
crater (Fig. 1) was founded by 1600 CE [20], which is consistent with an eventual permanent human 126 
occupation of the Kao catchment and the development of intensive terrace cultivation practices on the 127 
shores of the lake [11]. 128 
 129 
4. Preliminary conclusions 130 
 131 
Based on the above results, some preliminary conclusions may be advanced pending further high-132 
resolution studies. However, the main trends of deforestation and landscape shift are not expected to 133 
undergo significant changes. 134 
 135 

 During the last millennium (~960 CE onwards), the Lake Kao catchment was progressively 136 
deforested, with the total disappearance of forests by 1600 CE. 137 

 Forest clearing was gradual but spiked with three major acceleration pulses at ~1070 CE, ~1410 CE 138 
and ~1600 CE. 139 

 Forest regeneration was observed after the ~1070 CE pulse and, to a minor extent, after the ~1410 140 
CE acceleration.  141 

 Using the pollen percentage as a proxy for forest cover, the general deforestation trend progressed 142 
at a rate of -10 forest pollen %/century, whereas accelerations occurred at rates of -30 to -50 143 
%/century. 144 

 Both climatic (drought) and anthropogenic (mostly fire) drivers, as well as their coupled action, 145 
seem to have had a role in the acceleration of forest clearance. 146 

 Total deforestation coincided with the permanent human settlement of the lake catchment, 147 
coinciding with the foundation of the ceremonial village of Orongo, around 1600 CE. 148 

 149 
5. Discussion 150 
 151 
The Kao deforestation timing and rates were different from those observed in Lake Raraku and the Aroi 152 
marsh (Table 2), confirming that forest clearing was heterogeneous in time and space across the island, 153 
contradicting the earlier hypothesis of a single, abrupt and island-wide event. The Kao deforestation 154 
timing is also consistent with the hypothesis of intra-island population migration and reorganization as a 155 
consequence of the coupled action of the LIA drought and anthropogenic deforestation [3]. According to 156 
archaeological evidence, Lake Raraku and its surroundings was the center of the ancient Rapanui 157 
civilization, based on the cult of the megalithic anthropomorphic statues known as moai, which were 158 
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carved from the tuff that forms the Raraku crater. At some point, a cultural revolution took place and 159 
the main center of Rapanui moved to Orongo, on the edge of the Kao crater. This then became the 160 
center of a new cult (the Birdman cult) involving a profound social, religious and political reorganization 161 
[20]. The earlier date proposed for this cultural shift is 1600 CE, when Orongo was founded. According 162 
to the intra-island migration hypothesis [3, 21], the desiccation of Lake Raraku between 1570 CE and 163 
1720 CE, together with the full forest removal of this catchment, had occurred by 1530 CE, and would 164 
have turned the site into a badland unable to support human life and the activities required for the 165 
Moai cult. By then, Lake Kao was likely the only permanent freshwater source on the island and, hence, 166 
the most suitable site to sustain human life. Therefore, a migration of the cultural center from Raraku to 167 
Kao seems a plausible explanation and is supported by the chronological coincidence between the 168 
foundation of Orongo (1600 CE), as shown by archaeological evidence [20], and the full human 169 
occupation of the Kao catchment, as documented in this paleoecological study. Further paleoecological 170 
research based on biomarkers, as indicators of climate change and human presence and activities, is in 171 
progress. 172 
 173 
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Table 1. Results of radiocarbon dating carried out at the Radiochronology Lab of the Université Laval 210 
(Canada). All samples were pollen residues. The sample with an asterisk was not used in the age-depth 211 
model. 212 
 213 

Core sample Lab code Depth (cm) 14C yr BP Cal yr BP Range (2) 

KAO3-1-24 ULA-5790 106 305±15 312 289-327 

KAO3-1-43 ULA-5792 125 290±15 304 283-323 

KAO3-2-39 ULA-5789 141 355±20 392 350-452 

KAO3-2-20 ULA-5791 160 470±20 499 468-516 

KAO3-6-15 ULA-5872 196 695±15 597 563-658 

KAO3-6-35 ULA-5821 216 885±20 748 720-791 

KAO3-7-16* ULA-5874 247 5060±20 5755 5658-5891 

KAO3-7-40 ULA-5817 271 1060±20 934 906-962 

KAO3-8-12 ULA-5873 297 1165±15 1017 968-1059 

 214 
 215 
 216 
 217 
 218 
Table 2. Comparison of deforestation timing and rates in the three Easter Island sedimentary basins, 219 
based on continuous and chronologically coherent pollen records for the last millennia. Rates are in % of 220 
pollen palm decrease per century. 221 
 222 

Site Onset End Time (y) Rates (%) References 

Aroi 1520 CE 1620 CE 100 -73 Rull et al. (2015) 

Kao 1070 CE 1600 CE 530 -10 This paper 

Raraku 450 BCE 1530 CE 1980 -7 Cañellas-Boltà et al. (2013) 

 223 
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 226 
 227 
 228 
 229 
 230 
 231 
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 234 
 235 
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 240 
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 243 
 244 
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Figure captions 302 
 303 
1. Location map. A) Sketch-map of Easter Island showing the three paleoecological sites (Aroi, Kao and 304 

Raraku), indicated by blue areas. B) Google Earth image of Lake Kao showing the coring site (white 305 
dot) and the ancient ceremonial village of Orongo. 306 

2. Age-depth model of core KAO08-03 using the radiocarbon dates of Table 1 and the smooth-spline 307 
option. 308 

3. Pollen diagram of core KAO08-03. Gray bands indicate the droughts that desiccated Lake Raraku 309 
(Cañellas-Boltà et al., 2013). Deforestation pulses are indicated as red arrows in the Arecaceae 310 
curve. Blue arrows indicate forest regeneration trends. 311 
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