

1 *Supplementary Materials*

2 **Systematic assessment of freely-diffusing single-**
3 **molecule fluorescence detection using Brownian**
4 **motion simulations**

5 **Dolev Hagai ¹ and Eitan Lerner ^{1,*}**

6 ¹ Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of
7 Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem,
8 Israel; Eitan.Lerner@mail.huji.ac.il

9 * Correspondence: Eitan.Lerner@mail.huji.ac.il; Tel.: +972-2-658-5457

10 Received: date; Accepted: date; Published: date

11

12

13

14 Figure Legends

15

16 **Figure S1.** The model for the effective excitation volume is the point-spread function (PSF). The PSF was modeled using
17 PSFLab[5] for a typical 60x water immersion objective with a numerical aperture of 1.2, with a sample mounted on top a
18 150 μ m coverglass and with sample excitation at a wavelength of 532 nm.

19

20

21 **Figure S2.** The positions of diffusing molecules when they emitted photons that were detected and selected by the burst
22 analysis, with burst analysis parameters $m=10$, $F=6$ & a minimal burst size threshold of 40. In the top, central & bottom
23 panels we show the 2D projections at the yz, xz & xy planes when $x=0$, $y=0$ & $z=0$, respectively. Each dot in the scatter
24 plots is an emitted photon. These results are for the simulation of 15 molecules in 425 fL rectangular box (yielding a
25 concentration of 62 pM), where the diffusion coefficient of the molecules was 22.5 μ m²/s. The colors of the points
26 correspond to the burst number out of the overall number of bursts. In each panel, the 1D projections are shown in
27 histograms.

28

29

30

Figure S1.

31
32

33

34

Figure S2.

35