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Abstract: Single-molecule fluorescence detection (SMFD) experiments are useful in distinguishing
between sub-populations of molecular species in measurements of heterogeneous samples. One of
the experimental platforms for SMFD is based on a confocal microscope setup, where molecules in
the solution randomly traverse an effective detection volume, formed by a tightly focused laser
beam. The non-uniformity of the excitation profile and the random nature of Brownian motion,
produce fluctuating fluorescence signals. For these signals to be distinguished from the background,
single-molecule fluorescence burst analysis is frequently used. Yet, the relation between the results
of burst analyses and the underlying spatial information of the diffusing molecules is still obscure
and requires systematic assessment. In this work we performed three-dimensional Brownian
motion simulations of SMFD, and tested the positions from which the molecules emitted photons
that were detected and passed the burst analysis criteria for different values of burst analysis
parameters. The results of this work verify which of the burst analysis parameters and experimental
conditions influence both the position of molecules in space when fluorescence is detected and taken
into account, and whether these bursts of photons arise purely from single molecules, or not entirely.

Keywords: single-molecule; fluorescence; burst; photon rate; effective detection volume; point-
spread function; Brownian; diffusion; simulation; threshold.

1. Introduction

The outstanding capability to detect fluorescence from single molecules one at a time allowed
distinguishing between different molecular species based on many parameters derived from these
experiments[1]. In the field of single-molecule fluorescence detection (SMFD) there are two main
experimental platforms: i) fluorescence imaging of single molecules immobilized to the surface of a
coverslip; and ii) detection of fluorescence bursts from freely-diffusing single molecules through a
small effective detection volume. The advantage of immobilized SMFD over its freely-diffusing
counterpart is that the fluorescence from each individual molecule can be recorded for long periods
of time. 5till, the main limitation of immobilized SMFD is the inherent requirement to immobilize the
molecule in the first place. Within this perspective, the common immobilization is through chemical
conjugation, which always raises criticism about the possible perturbation this procedure might
cause to the biomolecule under measurement. There are other techniques that allow limiting a
biomolecule to a small volume, such as the anti-brownian electrokinetic (ABEL) trap[2], or
confinement by encapsulation inside vesicles[3,4] or liposomes[5]. Nevertheless, each such method
presents its own possible limitations (the electric field used in the ABEL trap to center back the
molecules might affect them; it might be hard to exchange chemical conditions if the molecules are
encapsulated in liposomes). For the abovementioned reasons, some researchers choose the confocal-
based SMFD of freely diffusing molecules. Additionally, the amount of different single molecules
probed in this version of SMFD can be potentially higher than in the immobilized SMFD, which
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makes it better in applications that require a higher throughput. Still, the nonuniformity of the
effective excitation at different positions in space and the random Brownian motion of molecules into
these different regimes in space, make it hard to distinguish different signals from single molecules
from each other and from the experimental background.

A confocal-based SMFD measurement of freely diffusing molecules involves laser excitation
tightly focused through a high numerical aperture objective lens (usually water immersion), where
the focus is brought deep (a few tens of um) inside the sample solution. Then, if the overall laser
power is low, effective excitation will occur mostly when molecules traversed through the laser focus.
Lenses and a narrow pinhole (diameter of a few tens of pum) focus fluorescence photons, collected by
the objective lens, so that only the maximum of focused fluorescence crosses it, while its periphery is
rejected. Then, fluorescence is re-collimated by additional lenses, spectrally selected (with proper
filters) and focused, so that light reaches the active area of single-photon avalanche diodes (SPADs;
the detectors). Confocal-based SMFD measurement of freely diffusing molecules is carried out by a
setup as described above, based on the premise that most of the time no molecule traverses the
effective detection volume, and when some do, they are mostly single ones. To promise this condition
is kept, these measurements are performed in concentrations of the fluorescently labeled molecules
(tens of pM, or lower). The measured trace is comprised of a long list of detection times, relative to
the moment the recording started, as well as detection tagging, usually used in SMFD applications,
in which more than one SPAD is used (such as in single-molecule Forster resonance energy transfer;
smFRET). In summary, most of the measured trace is background, since most of the time no molecule
crosses the effective detection volume, and there are short intervals of time, in which fluorescence
from molecules are detected. Therefore, an inherent requirement of SMFD of freely-diffusing
molecules is that the background will be low and the fluorescence signal will be high. To keep the
signal high, one needs to choose fluorophores with a high absorption coefficient at the wavelength of
excitation and a high fluorescence quantum yield. This set of requirements is also known as
fluorophores with higher molecular brightness. To explain how to keep the background low, we first
have to understand what the sources of background are. The dark counts of SPADs comprise a part
of the measured background, however other sources could be due to molecules excited out of the
focus, as well as light scattering that was not optically rejected efficiently enough. If both the
background and the signal comprise of fluorescence signals, what differs in-focus from out-of-focus
fluorescence? The answer could be hidden in photon detection rates. If the time interval of all pairs
of consecutive detection moments will be collected into a histogram, one will identify it includes two
time-dependent processes — a slow Poisson process and a fast Poisson (and sometimes super-Poisson)
process. If so, identifying fluorescence from molecules that traversed the focus region of space (the
effective detection volume) is a matter of identifying signals with instantaneous photon detection
rates high enough relative to the mean rate of the slow Poisson process of the background.

This procedure is precisely the one used in burst identification in SMFD of freely-diffusing
molecules. The single-molecule burst analysis procedure of SMFD has been discussed in many
previous works[6—11]. The procedure includes a window of m consecutive photon detections, for
which we calculate the time, f, from the first detection time (No. 1) to the last one (No. m) [6,12], or
the rate, f, by dividing m by this time interval[11]. In the analysis, this window slides one photon
detection event at a time. These calculations are used for the definition of the signal as photon bursts
with instantaneous photon detection rates higher than a given threshold. Doing so, the instantaneous
time, ¢, for the m consecutive detection events should be smaller than some arbitrary time T[6,12].
Using the m-rate notation, the rate, f, should be higher than some arbitrary rate[11]. To make the
threshold choices a bit less arbitrary, one can choose a minimal rate threshold, F times higher than
the background rate. This way, at least, the signal is defined relative to the background objectively.
Still, the choice of the value of this F parameter is arbitrary.

After identification of photon bursts, each burst is defined by the total amount of photons in it
(the burst size), the time interval from the first to the last photon in the burst (the burst width), the
ratio of the burst size and width (the mean photon brightness) and the maximal instantaneous photon
rate (also equivalent to the molecular brightness). After burst identification, it is customary to filter
photon bursts according to some of these criteria or ratios of them, using, again, some arbitrarily
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chosen values. Many choose the burst size as a burst selection criterion, where the larger the burst
size is, the more trustworthy it is in calculations using its size, such as in the calculations of the mean
FRET efficiency using burst sizes recorded in two SPADs. However, since in SMFD experimental,
conclusions are drawn from burst-dependent histograms (e.g. FRET histograms, burst width
histograms), many bursts are required to pass the burst selection criterion, but the higher the minimal
burst size threshold is, the lower the amount of bursts that will be selected.

Overall there is a price for arbitrary choice of parameter thresholds in this process, and it is
important to understand what is the meaning of choosing different threshold values at the level of
the chosen molecules and their positions in space, when they emitted a photon that was selected as
part of a burst. In this work we used PyBroMo (python Brownian motion) simulations
(https://github.com/tritemio/PyBroMo; was utilized in previous works[13-16]) to simulate SMFD of
freely-diffusing molecules. Doing so, we record both the molecular positions in the simulation and

the photon detection times. Then, after employing the burst analysis procedure, as we usually do in
experiments, we assess the positions of single molecules, at the moments when each photon of each
burst was detected. By doing so, it was possible to define the spatial maps of positions as a function
of the burst analysis parameters. We tested different m-photon windows, different F factors, different
burst size and different burst width minimal thresholds. Additionally, we repeated the assessment
for different simulations results with different diffusion coefficients at a given molecular
concentration, as well as different concentrations at a given diffusion coefficient. We show that in
order to identify bursts of molecules that traversed a well-defined narrow region of the effective
detection volume, where the bursts are constructed mostly of photons of single molecules, the best
practice would be to use large values of photon detection rate thresholds, F and modest values of the
burst size threshold. We also show that measuring lower concentration of molecules further improves
the single-molecule burst identification. Finally, we show that caution has to be taken with the use of
large values of F, when molecules with low diffusion coefficients are being measured.

2. Results

We used the Python Brownian motion (PyBroMo) code to perform 3D diffusion simulations,
where we record the x, y & z positions of each diffusing molecule at each moment and advance the
molecular positions in intervals of 200 ns. The diffusion simulation times were 60 seconds. Table 1
summarizes the different simulation conditions we tested.

Table 1. Different 3D diffusion simulation conditions that were tested.

Box' x Box y Box z Box vol. 2 No. of Conc.? D¢
(pum) (pum) (um) (fL) molecules (pM) (um?/s)
5.54 5.54 13.85 425 15 62 90.0
6.60 6.60 19.70 858 15 31 90.0
8.30 8.30 24.90 1715 15 15 90.0
5.54 5.54 13.85 425 15 62 22.5
5.54 5.54 13.85 425 15 62 5.6

! The molecules diffuse inside a box having a length x, depth y & height z.

2 The box volume is calculated from the box dimensions x, y & z

3 The concentration is derived from the No. of molecules divided by Avogadro’s number and then divided by
the volume (in L units)

* The diffusion coefficient.

To model the effective detection volume we considered the model of a realistic point-spread function (PSF) of a
typical 60x water immersion objective with a numerical aperture of 1.2, with a sample mounted on top a 150
um coverglass and with sample excitation at a wavelength of 532 nm (see Figure S1). We modeled the PSF
using a vectorial electromagnetic simulation, PSFLab[17]. This model includes effects of refractive index
mismatch as well as mismatch between objective lens correction and coverglass thickness.
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Then, in the next step, the instantaneous emission rates of each molecule at each moment in the
Brownian motion simulation were calculated by evaluating the intensity of the PSF at different points
in space, which dictate the probability for excitation, emission and detection. After the diffusion
simulation and the calculation of the instantaneous emission rates, photons were generated from a
Poisson process using the instantaneous emission rates. Each detected photon was assigned the
molecule from which it originated. Afterwards, Poisson background timestamps were also added. In
the end of the simulation, a photon HDF5[13] file was constructed, including all photon timestamp
assignments, as if it was a file containing experimental data. Therefore, next, each simulated photon
HDF5 file was analyzed for identifying single molecule photon bursts, using the FRETbursts single-
molecule photon detection analysis suite[18].

The burst analysis parameters that were tested and their values were: i) the number of
consecutive photons, m, in the burst search sliding window (values 5, 10, 15 & 20, at a constant photon
rate threshold, F=6), ii) the photon rate threshold, F, defined as the minimal multiplier of the
background rate that can be considered a signal (values 3, 6, 11, 16 & 21, at a constant m=10
consecutive photons), iii) minimal burst size thresholds (values 10, 20, 40 & 80, for constant m=10 and
F=6; burst size threshold value of 10 is already included for m=10 & F=6, since by definition the
identified bursts include at least m=10 consecutive photons) and iv) minimal burst width thresholds
(values 0.0, 0.5 & 1.0 ms, for constant m=10 and F=6; burst width threshold value of 0.0 ms is already
included for m=10 & F=6, since by definition the identified bursts include all bursts, with all burst
widths).

2.1. Molecular position dispersion

Because the simulations allowed recording the position of each molecule at any instance of the
diffusion simulation, including instances in which the molecule yielded a detected photon, we
plotted the positions of the molecules when they emitted a photon that was detected and was part of
a single molecule burst using the burst analysis parameters shown above. This produced a 3D scatter
plot of positions, where we chose to show the xy, xz & yz scatter plot projections for z=0, y=0 & x=0,
respectively. Then, we have overlaid the contour line of the 90% of the PSF in these 2D projections,
for reference (Figures 1 & 2). These results are for the simulation of 15 molecules in 425 fL rectangular
box (yielding a concentration of 62 pM), where the diffusion coefficient of the molecules was 90 pm?/s.

Figure 1 shows the positions of the diffusing molecules at the moment they emitted a photon,
after they have been selected as belonging to bursts, by minimal burst analysis criteria using a sliding
window of m=5 consecutive photons, and identifying bursts where the instantaneous photon rate was
at least F=6 times higher than the background rate, and with no additional burst filtration.
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Figure 1. The positions of diffusing molecules when they emitted photons that were detected and selected
by the burst analysis, with burst analysis parameters m=5 & F=6. In the top, central & bottom panels we show
the 2D projections at the yz, xz & xy planes when x=0, y=0 & z=0, respectively. Each dot in the scatter plots is an
emitted photon. These results are for the simulation of 15 molecules in 425 fL. rectangular box (yielding a
concentration of 62 pM), where the diffusion coefficient of the molecules was 90 um?/s. The colors of the points
correspond to the burst number out of the overall number of bursts. In each panel, the 1D projections are also
shown as histograms.

Figure 2, on the other hand, shows the positions of the diffusing molecules at the moment they
emitted a photon, after they have been selected as belonging to bursts, by stringent burst analysis
criteria using a sliding window of m=10 consecutive photons, and identifying bursts where the
instantaneous photon rate was F=6 times higher than the background rate, and after selection of only
bursts that had a size of more than 40 photons.
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Figure 2. The positions of diffusing molecules when they emitted photons that were detected and selected
by the burst analysis, with burst analysis parameters m=10, F=6 & a minimal burst size threshold of 40. In the
top, central & bottom panels we show the 2D projections at the yz, xz & xy planes when x=0, y=0 & z=0,
respectively. Each dot in the scatter plots is an emitted photon. These results are for the simulation of 15
molecules in 425 fL rectangular box (yielding a concentration of 62 pM), where the diffusion coefficient of the
molecules was 90 um?/s. The colors of the points correspond to the burst number out of the overall number of
bursts. In each panel, the 1D projections are shown in histograms.

In both cases, it is clear that the positions of the molecules are well within the PSF with a
tendency towards its center. Therefore, the burst analysis procedure achieves its primary goal —
identifying signals from molecules, when they traversed the effective detection volume. However,
while in the case of minimal burst analysis criteria the position dispersion (i.e. the spread or the
dispersion of the positions) was quite wide, in the case of stringent burst analysis criteria, the
position dispersion became smaller. Note that the fraction of events that were detected outside the
PSF region using minimal burst analysis criteria was much larger than that when using stringent
burst analysis criteria. How should one go about deciding which criteria are considered stringent
and which are not? How might one reduce arbitrary value choices? To answer these questions, it is
important to assess which of the burst analysis parameters are the parameters that highly affect the
reduction in the position dispersion around the center of the PSF.

Figure 3 shows the 1D histograms of the molecular positions as a function of the z coordinate

(Figure 3, left panels) and the x coordinate (Figure 3, right panels), for the four different tests of the
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burst search parameter values explained above (from top to bottom, different m values with a
constant F, different F values with a constant m, different minimal burst size and different minimal
burst width thresholds with constant m & F).

Normalized counts

e e I
z (um) X (um)

Figure 3. histograms of the 1D projections shown in Figures 1 & 2 for the z & x coordinates (left & right
panels, respectively). From top to bottom, we assessed these histograms as a function of a sliding window of m
consecutive photons (m=5, 20, 15 & 20 in blue, orange, green & red, respectively), using a constant instantaneous
photon rate threshold of F=6; as a function of the instantaneous photon rate threshold F, (F=3, 6 ,11,16 & 21 in
blue, orange, green, red & magenta, respectively), using a sliding window of constant =10 consecutive photons;
as a function of the minimal burst size threshold (10, 20, 40 & 80 in blue, orange, green & red, respectively); and
as a function of the minimal burst width threshold (0.0, 0.5 & 1.0 ms in blue, orange & green, respectivey), for a
constant m=10 & F=6. These results are for the simulation of 15 molecules in 425 fL rectangular box (yielding a
concentration of 62 pM), where the diffusion coefficient of the molecules was 90 um?/s. The colors of the points
correspond to the burst number out of the overall number of bursts.

Qualitatively, increasing the different burst analysis values makes the position dispersion
smaller, however to different degrees. It is clear, for instance, that increasing the instantaneous
photon rate threshold, F, and the minimal burst size threshold have the largest effect on decreasing
the position dispersion. It is also clear that the minimal burst width threshold does not have a
significant effect on the molecules’ position dispersion.

To quantitatively assess the effect of choice of burst search parameter values on the position
dispersion, we quantified the position dispersion in each dimension by calculating the standard
deviations of the x, y & z positions. Figure 4 reports the results of quantifying the molecules’ position
dispersion as a function of the burst analysis parameter values assessed in the histograms of Figure
3.
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Figure 4. Quantification of the position dispersion in x, y & z using different burst analysis
parameter values. The quantification was achieved via calculation of the standard deviation of the
molecule positions in x , y (right) & z (left). From top to bottom, we quantified the molecules’
positional narrowing as a function of a sliding window of m consecutive photons, using a constant
photon rate threshold of F=6; as a function of the photon rate threshold F; as a function of the minimal
burst size, , for burst search results using m=10 & F=6; and as a function of the minimal burst width,
, for burst search results using m=10 & F=6. These results are for the simulation of 15 molecules in 425
fL rectangular box (yielding a concentration of 62 pM), where the diffusion coefficient of the
molecules was 90 pm?/s. The colors of the points correspond to the burst number out of the overall
number of bursts.

One can see that among all factors assessed here, increasing the photon rate and minimal burst
size thresholds decreases the position dispersion the most. This means, that the burst analysis
retrieves bursts of molecules that were acquired while they were traversing the effective detection
volume, and the higher the values of these thresholds were, the closer their position was to the center
of the effective detection volume.

2.2. Pure and impure single-molecule bursts

The approach used here is built on the premise that the photons in each single molecule burst
are emitted from a single molecule, and hence can be considered pure single-molecule bursts. However,
it is certainly possible that there will be a fraction of single molecules that will include photons that
arise mostly from a single molecule, whereas a few photons from another molecule that crossed the
effective detection volume at the same time. There is also a possibility that other molecules traversing
the laser beam region, out of the focus, will emit photons, with a low rate. With the abovementioned
two possible scenarios, one can imagine a molecule traversing close to the center of the effective
detection volume, hence emitting photons at a high rate, and another molecule out of focus, or at the
rim of the effective detection volume, also emitting photons at the same moments, but at a lower rate.
The overall photon emission rate will be the combined photon rate, which is why this burst might be
selected by the analysis. We term such bursts, impure single-molecule bursts.

According to the possible explanations given for the formation of impure single-molecule bursts,
three factors may influence the occurrence of such bursts and their level of impurity: 1) the choice of
the burst search parameter values; 2) the concentration; and 3) the diffusion coefficient. While the
first factor is intrinsically controlled in the data analysis, the second & third factors are extrinsic
parameters that can be controlled in the experiments.

In Figures 1-4 we have shown that by controlling the burst analysis parameter values we modify
the molecular positions that are selected as photons in bursts. If an impure single-molecule burst
becomes impure due to an additional molecule that has a low photon rate because it is outside the
effective detection volume, or on its rim, reduction of the position dispersion will lead to reduction
in the occurrence of such bursts, and to a reduction in the level of impurity.

To assess this suggestion, we calculated the level of impurity in a burst as the complement of the
ratio of the amount of photons arising from the most frequent molecule and the overall amount of
photons (as in Eq. 1):
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f=1 - (photons from most frequent molecule)/(all photons), (1)

Background timestamps were discarded from the calculation of amount of photons. Figure 5
shows the histograms of bursts as a function of the level of impurity, expressed as the fraction of
photons from other molecules (as in Eq. 1).
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Figure 5. Quantification of the level of impurity of single-molecule bursts using different burst analysis
parameter values. Each panel shows a histogram of all the bursts’ level of impurity, calculated as the fraction of
photons arising from molecules other than the main one. The burst impurity histograms are of the simulation
results after burst search analysis using a constant photon rate threshold F=6 and varying value of m, for a sliding
window of m consecutive photons (left), constant m=10 and varying F values(center) and constant m=10, F=6 and
varying burst size threshold values (right). The dashed vertical grey lines indicate the mean impurity value for
all bursts. These results are for the simulation of 15 molecules in 425 fL rectangular box (yielding a concentration
of 62 pM), where the diffusion coefficient of the molecules was 90 pm?/s. The colors of the points correspond to
the burst number out of the overall number of bursts.

Qualitatively, one can make the following inferences: 1) increasing the value of m, for a sliding
window of m consecutive photons, used in the burst search process, increases the amount of impure
bursts as well as increase the burst impurity overall; 2) increasing the photon rate threshold, used in
the burst search process, decreases the impure bursts and the leftover impure bursts have a lower
level of impurity; 3) increasing the burst size threshold leaves us with more impure bursts, but with
a lower level of impurity. Overall, increasing the bursts with higher sizes include more photons
arising from molecules other than the main one in the burst. This is because, the higher the size is,
the higher the probability that one of the photons arose from a different molecule, owing to its low
photon rate. Naturally, increasing the minimal photon rate (F) allows better rejection of such
instances.

Two main inferences can be made from burst impurity histograms as the ones in the panels of
figure 5: 1) the fraction of bursts that are pure (impurity level of 0) and the fraction that are impure
(impurity level higher than 0); and 2) the mean level of impurity, as the mean of all the impurity
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values of all the bursts (Figure 5, dashed vertical grey lines). Figure 6 summarizes the values of these
parameters for different burst search parameters.
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Figure 6. The occurrence and level of impure single-molecule bursts using different burst analysis
parameter values. The relative occurrence of impure bursts was calculated as the fraction of bursts with an
impurity level larger than 0, as the fraction of non-single-molecule bursts. The man level of impurity was
calculated as the mean of all burst impurity levels, as the mean fraction of photons from other molecules (other
than the main molecule in a burst). These results are for the simulation of 15 molecules in 425 fL rectangular box
(yielding a concentration of 62 pM), where the diffusion coefficient of the molecules was 90 um?/s. The colors of
the points correspond to the burst number out of the overall number of bursts.

One can clearly see the description qualitatively portrayed above, is quantitatively justifiable.
Therefore, although increasing the values of both the photon rate threshold, F, and the burst size
threshold, leads to the desired decrease in the molecular position dispersion, mainly increasing the
value of F and moderately increasing the value of the burst size threshold keeps the occurrence of
impure bursts low.

2.3. Experimental control over the molecular position dispersion and on the occurrence and level of impure
single-molecule bursts

As mentioned above, in addition to controlling the results by using different burst analysis
parameter values, they can also be controlled experimentally by decreasing the concentration or
decreasing the diffusion coefficient. We assessed the effect of both the experimental and analytical
control over the results by performing the simulations either in decreasing concentrations for a
constant diffusion coefficient or in decreasing values of diffusion coefficient for a constant
concentration.

2.3.1. Decreasing concentrations further decreases the molecular position dispersion and the
occurrence of impure single-molecule bursts

Figure 7 quantitatively proves what was conceptually obvious: the lower the concentration of
the measured molecules is, the lower the occurrence of impure bursts will be. Additionally, for the
leftover impure bursts that passed the burst selection, their level of impurity will be smaller, in
comparison to a measurement in higher concentrations.
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Figure 7. The occurrence and level of impure single-molecule bursts decrease when decreasing the
concentration of the measured molecules. Different burst analysis parameter values for different concentrations
(62, 31 & 15 pM, shown as filled circle, empty circle and asterisk, respectively) of molecules diffusing with a
constant diffusion coefficient (90 pm?/s). The relative occurrence of impure bursts was calculated as the fraction
of bursts with an impurity level larger than 0, as the fraction of non-single-molecule bursts. The main level of
impurity was calculated as the mean of all burst impurity levels, as the mean fraction of photons from other
molecules (other than the main molecule in a burst).

Additionally, figure 8 shows that decreasing the concentration of the measured molecules
further decreases the molecular position dispersion.

Figure 8. The molecular position dispersion decreases when decreasing the concentration. Different burst
analysis parameter values for different concentrations (62, 31 & 15 pM, shown as filled circle, empty circle and
asterisk, respectively) of molecules diffusing with a constant diffusion coefficient (90 um?/s). Quantification of
the position dispersion in X, y & z using different burst analysis parameter values. The quantification was
achieved via calculation of the standard deviation of the molecule positions in x (right) & z (left). From top to
bottom, we quantified the molecules’ positional narrowing as a function of a sliding window of m consecutive
photons, using a constant photon rate threshold of F=6; as a function of the photon rate threshold F; as a function
of the minimal burst size, , for burst search results using m=10 & F=6; and as a function of the minimal burst
width, , for burst search results using m=10 & F=6.

Overall, and as expected, measurements at lower molecular concentrations give rise to better
single-molecule bursts with high purity as single molecules and that are detected when crossing close
to the center of the effective detection volume. Analyzing such results with elevated values of photon
rate threshold, F, and moderate burst size threshold values further improve the quality of the single
molecule bursts.

2.3.2. Decreasing the diffusion coefficient further decreases the occurrence of impure single-
molecule bursts, but not necessarily the molecular position dispersion

The effect of molecules diffusing through the effective detection volume with different diffusion
coefficients on the quality of the single-molecule bursts is a bit less trivial. A molecule that diffuses
slowly inside a region of the effective detection volume that is associated with a given photon rate,
will move to another region associated with a different photon rate, slowly. Therefore, the rate in
which the instantaneous photon rate changes will be slower. This means that for a given photon rate
threshold, F, once the molecule emits photons with a higher rate, it takes a longer time for it to diffuse
into regions in which it will emit photons at a rate lower than F. How should the decrease in diffusion
coefficient value influence the amount of impure bursts that are selected by the burst analysis, the
level of impurity in these bursts, as well as the molecular position dispersion around the center of the
PSF? To answer these questions, we compared the molecular position dispersion and the fraction and
level of impure bursts, using different simulations with different diffusion coefficient values (90.0,
22.5 & 5.6 um?/s), at a constant concentration (62 pM). As in the previous assessment, we have tested
different burst search analysis parameter values and their performance in reducing the molecular
position dispersion, the fraction of impure bursts and the mean impurity levels.
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Figure 9 shows that when it comes to the amount of impure bursts, as well as the level of
impurity, the slower the measured molecules diffuse, the lower will the occurrence of impure bursts
be. Additionally, for the leftover impure bursts that passed the burst selection, their level of impurity
will be smaller than in faster diffusing molecules.
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Figure 9. The occurrence and level of impure single-molecule bursts decrease when decreasing the value
of their diffusion coefficient. Different burst analysis parameter values of molecules diffusing with a different
diffusion coefficient values (90, 22.5 & 5.6 um?/s, shown as filled circle, empty circle and asterisk, respectively)
for a constant concentration (62 pM). The relative occurrence of impure bursts was calculated as the fraction of
bursts with an impurity level larger than 0, as the fraction of non-single-molecule bursts. The main level of
impurity was calculated as the mean of all burst impurity levels, as the mean fraction of photons from other
molecules (other than the main molecule in a burst).

Figure 10, however, shows that when it comes to the effect of the diffusion coefficient values on
the molecular position dispersion around the center of the PSF, the results are not that
straightforward.

B4
niz| &
ninf L -]

o

o W5 E 0 [
Na. of conseculive phatans, m oo Na. of conseculive photans, m

pred H g uw
Foe

o, (um)

20, = L

el ¥ iz
"

e . il o

i
non{ L

ENE ] ETE TS
Minirmal burst size Minirmial burst size

il ! . ; ‘

3 o8 o o [ ) )
Wnimal burst widh (ms) Wirimal burst width (ms)

Figure 10. The molecular position dispersion can decrease or increase when decreasing the value of the
value of the diffusion coefficient. Different burst analysis parameter values of molecules diffusing with a
different diffusion coefficient values (90, 22.5 & 5.6 um?/s, shown as filled circle, empty circle and asterisk,
respectively) for a constant concentration (62 pM). Quantification of the position dispersion in x & z using
different burst analysis parameter values. The quantification was achieved via calculation of the standard
deviation of the molecule positions in x (right) & z (left). From top to bottom, we quantified the molecules’
positional narrowing as a function of a sliding window of m consecutive photons, using a constant photon rate
threshold of F=6; as a function of the photon rate threshold F; as a function of the minimal burst size, , for burst
search results using m=10 & F=6; and as a function of the minimal burst width, , for burst search results using
m=10 & F=6.

It seems that reduced value of the diffusion coefficient actually induces a non-monotonic change
in the molecular position dispersion. A glimpse at the shape of the distribution of positions in these
simulations may help better understand the reason behind the non-monotonic changes in the
molecular position dispersion as a function of the value of the diffusion coefficient. Inspecting the
shape of the molecule position distribution in figure 2, one can clearly observe an asymmetric-shaped
single population distribution. This was the result when stringent burst analysis parameter values
were used (m=10, F=6 and a burst size threshold of 40 photons). When using minimal burst search
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parameter values (m=5 & F=6; Figure 1), the shape may imply two sub-populations of molecule
positions. This might be expected for a physical simulation of the PSF (Figure S1) that is different
from the ideal symmetrical Gaussian approximation. Nevertheless, using stringent burst analysis
parameters, the position distribution looks as if the two sub-populations have been averaged into one
population in a skewed distribution (Figure 2).

We therefore inspected the molecule position distribution for the simulations with slower
diffusion coefficients (22.5 & 5.6 pm?/s in Figures S2 & 11, respectively).
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Figure 11. The positions of diffusing molecules when they emitted photons that were detected and selected
by the burst analysis, with burst analysis parameters m=10, F=6 & a minimal burst size threshold of 40. In the
top, central & bottom panels we show the 2D projections at the yz, xz & xy planes when x=0, y=0 & z=0,
respectively. Each dot in the scatter plots is an emitted photon. These results are for the simulation of 15
molecules in 425 fL rectangular box (yielding a concentration of 62 pM), where the diffusion coefficient of the
molecules was 5.625 pum?/s. The colors of the points correspond to the burst number out of the overall number
of bursts. In each panel, the 1D projections are shown in histograms.

Inspecting molecule position distribution for these simulations, after burst selection using the
stringent burst analysis parameter values, we observe that the slower the molecules are diffusing, the
more pronounced are the two sub-populations of molecule positions. This feature may reflect
motional narrowing. In single-molecule fluorescence detection, the slower molecules diffuse through
a non-uniform asymmetric effective detection volume. The slower molecules diffuse, the more
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photons they will emit per each region of space. Therefore, the slower molecules diffuse, the better
their molecular positions will reveal the fine shape of the effective detection volume. On the other
hand, fast diffusing molecules emit a few photons per each region of space, which may lead to
averaging out of the molecular positions, and to what is perceived as motional narrowing, observed
very well in figure 2. In our case, if indeed there are two distinct local maxima of photon rates in the
effective detection volume, the positions at which molecules emitted photons will include both
position sub-populations.

The appearance of two sub-populations of molecular positions is what increases the calculated
position dispersion, since its calculation is based on the standard deviation of all positions.
Obviously, the bimodal position distribution introduces a larger standard deviation. Additionally,
the standard deviation of all molecule positions becomes irrelevant as a measure of dispersion, if the
distribution of positions is of more than a single population.

Overall, the recommendation that this work provides for experimentalists using confocal-based
SMED is to try keeping the concentrations of the measured molecules as low as feasibly possible, and
to analyze the experimental results with a large photon rate threshold and a modest burst size
threshold. However, since it is mostly the value of F that controls the molecular position dispersion,
caution should be taken in choosing a very large value of F, when measuring molecules with
extremely low diffusion coefficients. That is since a large value of F, may introduce two types of
bursts, from molecules that traversed two position sub-populations that became distinguishable by
the large F value.

2.3. Improving the accuracy of mean FRET efficiency estimation

We have shown that proper choice of burst analysis parameter values can greatly influence the
occurrence of impure single-molecule bursts as well as their level of impurity. Next, we show how
impure photon bursts may influence measurements based on ratios of burst photon counts.

In applications of confocal-based single-molecule fluorescence detection, histograms of ratios of
photon counts are many times the main plots from which inferences are made. For instance, in single-
molecule Forster resonance energy transfer (smFRET), FRET histograms are constructed out of FRET
efficiencies of photon bursts, after the fluorescence signal is split onto two SPADs, using a dichroic
mirror. The FRET efficiency of a burst is calculated by taking the ratio of all photon detected in the
acceptor fluorescence detection channel in the numerator and all photons detected both in the donor
and acceptor fluorescence detection channels in the denominator. The shape of the histogram of the
FRET efficiencies of all bursts can help make inferences on whether the sample included a single
population, or distinct sub-populations, based on FRET. This, in turn, is the power of smFRET - it
helps define the amount of molecular or conformational species, as well as their mean FRET
efficiencies.

Imagine that a sample contains a mixture of two types of molecules, yielding different FRET
efficiencies. Assume the mean FRET efficiency of sub-population one is <E>=0.75, and that the mean
FRET efficiency of the second sub-population os <E>=0.50. If a molecule from the second sub-
population (the one with <E>=0.50) traverses the effective detection volume, it produces both donor
and acceptor photons, with a FRET efficiency close to 0.50, with the deviation induced mostly due to
lack of enough photons. This deviation is not systematic. Now, imagine that while that molecule
traverses the effective detection volume, another molecule belonging to the first sub-population (the
one with <E>=0.75), also traverses a part of the effective excitation volume. There is a possibility that
it will also emit a few photons, however since <E>=0.75, there is a higher probability that these
photons will be detected in the acceptor detection channel. Therefore, <E>=0.75 molecular impurity
in a <E>=0.50 burst, systematically biases the FRET efficiencies to values higher than 0.50.

In the previous sections, we have shown how different burst analysis parameter values influence
the occurrence and level of burst impurity. More specifically, we have shown how increasing the
value of the photon rate threshold, F, reduces both the occurrence of impure bursts and also reduces
the level of impurity in the leftover impure bursts. Therefore, we can anticipate that fitting a FRET
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histogram of two sub-populations will yield mean FRET efficiencies with values that deviate from
the ground-truth simulated values, and that the higher F will be, the smaller these differences will
be. We therefore simulated the free 3D diffusion of 15 molecules, at a concentration of 62 pM and
with a diffusion coefficient of 90 um?/s. Then we allocated donor and acceptor photon timestamps
for 10 out of 15 molecules, according to <E>=0.75, and for the leftover 5 molecules, according to
<E>=0.5. Then, we analyzed the results for bursts using a sliding window of m=10 consecutive
photons, with different values of the photon rate threshold, F={6, 11, 21}. We collected the FRET
efficiencies of all bursts into FRET histograms and fitted them with a sum of two-gaussians’ function.
The results of this procedure are shown in figure 12.
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Figure 12. Increasing the value of the photon rate threshold, F, improves the accuracy of the retrieved mean

FRET efficiency. From top to bottom, each panel shows the resulting FRET histogram (blue), the best fit sum of
two-gaussians (red), the best-fit mean FRET efficiencies (orange and cyan), and the simulation ground-truth
mean FRET efficiency values (dashed red and green). These results are for the simulation of 15 molecules in 425
fL rectangular box (yielding a concentration of 62 pM), where the diffusion coefficient of the molecules was 90
pum?/s, and the molecules were split to 10 with <E>=0.75 & 5 with <E>=0.5.

Observe how the higher the value of F was, the closer the best fit mean FRET efficiencies were
to the ground-truth values. For the sake of explanation, let us focus on the <E>=0.50 sub-population.
Once in a while, a molecule that belongs to the <E>=0.75 population, diffuses through parts of the
effective detection volume, at the same time a molecule of the <E>=0.50 sub-population traverses the
its center. Both molecules emit both donor and acceptor photons. The <E>=0.50 molecule emits donor
and acceptor photons with equal probabilities and emit most of the photons. However, also the
<E>=0.75 molecule emits a few photons, with a higher probability of them being red. Overall, this
burst may systematically include more acceptor photons than donor ones, and hence its FRET
efficiency may be higher than 0.50. With enough impure bursts (the higher the occurrence of impure
bursts) and high enough level of impurity (the amount of photons not originating from the main
molecule), this bias will be large enough to influence the shape of the whole sub-population. This
scenario is what can be seen in the top panel of figure 12. However, the panels below show how the
higher the value of F is, the smaller this bias becomes, exactly as the assessments made in the text
above and in figure 6, predicted.

Additionally, not only the accuracy of the retrieved mean FRET efficiency improves, but also the
fraction of the sub-populations. The ground-truth value of the fraction of the <E>=0.75 sub-population
was 0.66 (10 molecules out of a total of 15). The values retrieved by the fitting procedure for F=6, 11
& 21 are 0.47+0.07, 0.58+0.04 & 0.61+0.05, respectively. Clearly, using a large F value is a good practice
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when the accuracy of the retrieved values of the mean FRET efficiencies and the fraction of the FRET
sub-populations is important.

3. Discussion

In this work, we have systematically tested the effect of different burst analysis parameters on
the underlying diffusing molecules. Specifically we focused on two main results: 1) how close were
the molecules, that were detected as photon bursts, to the center of the effective detection volume,
we referred to as the molecular position dispersion, and 2) how often and how well were photon
bursts originating from single-molecule. We have shown that increasing the values of burst analysis
parameters helps in reducing the molecular position dispersion. However, the parameters that when
increasing their values mostly influence the reduction of the molecular position dispersion were the
photon rate threshold, F, used in the burst search procedure and the burst size threshold used
afterwards in burst selection. Then we have shown that increasing the value of F helps in reducing
the amount of impure bursts and their level of impurity. Increasing the value of the burst size
threshold, on the other hand, introduces an increase in burst impurity.

Then, we have shown that measuring the molecules at lower concentrations, help reduce both
the molecular position dispersion and burst impurity. However, on the other hand, it might
sometimes not be practical. The lower the concentration is, the longer data acquisition will take until
a high enough number of selected bursts is achieved. When performing smFRET experiments, if the
labeled molecules are at a concentration of 50-100 pM, proper data acquisition of enough legible
bursts (bursts that passed the burst search & selection procedure) can take 5-10 minutes. However,
decreasing the concentration by an order of magnitude will increase acquisition time by an order of
magnitude, which for some applications, and for some experimentalists, may be considered too long
for a single measurement. State-of-the-art multisport single-molecule spectroscopy allows to mitigate
this problem, by parallelizing a large number of independent SMFD measurements[11].

We have also assessed what would be the effect of decreasing diffusion coefficient values on the
resulting single-molecule bursts. Measuring slow diffusing molecules can further help decrease the
occurrence and level of impure bursts. However, when it comes to molecular position dispersion,
one has to take into account the fact that motional narrowing may make the molecule position
distribution appear as a single population for rapidly diffusing molecules. Motional narrowing does
not occur for slow diffusing molecules, which makes the molecule position distribution appear
somewhat bi-phasic. Therefore, at the extreme of measuring slow diffusing molecules, caution should
be taken when choosing high F values in the burst analysis, to prevent the separation into two groups
of bursts from two local maxima of the effective detection volume. It should be noted, however, that
we did not cover all possible diffusion coefficient values. Taking into account that the diffusion
coefficients of small proteins such as protein L, BLIP & Adenylate Kinase are ~135, ~80 & ~70 um?/s,
respectively[19], and of large complexes such the 70S ribosomal subunit is ~10 um?/s [20], we believe
we covered the value range typical to most biomolecules. Therefore, we believe that the possible
effect of no motional narrowing due to very low diffusion coefficients will not be observed in most
SMFD measurements of biomolecules.

Finally, we have shown the effect of impure photon bursts on how accurate one can retrieve the
mean FRET efficiency from histograms of burst-wise FRET efficiencies. In situations when a mixture
of molecular species are measured, bursts of one molecular species that are contaminated by photons
arising from molecules of the other species can influence the overall mean FRET efficiency retrieved
from fits to the FRET histogram. This can be explained by understanding that molecular species
distinguished by different mean FRET efficiency, <E>, values have a different amount of donor and
acceptor photons emitted. A high <E> molecule contaminating a burst arising from a low <E>, may
overall increase the acceptor photons in its bursts, yielding higher experimental E values. The
recommendation to use elevated values of the photon rate threshold, F, proved beneficial in restoring
the accuracy of the retrieved mean FRET efficiency (Figure 12). This is highly important in the
application of smFRET to retrieve information on accurate donor-acceptor distances (reviewed by
Lerner & Cordes et al.[21]). In this context, it is worth noting that impure photon bursts may also bias
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other estimates based on photon counts in a burst, and their ratios, such as, for instance, in single-
molecule fluorescence anisotropy. In fluorescence anisotropy, much like in smFRET, the fluorescence
signal is split onto two SPADs, only by a polarizing beam splitter, rather than by a dichroic mirror.
The fluorescence anisotropy is a ratio of photon counts, and hence is influenced by single-molecule
impurity from other molecules with a different mean fluorescence anisotropy. Therefore, the
recommendation to use elevated values of F in burst analysis of SMFD measurements is of general
use when analyzing single-molecule fluorescence bursts of freely diffusing molecules in SMFD
measurements.

It is noteworthy to mention that in our survey we did not cover all characterizations of single
molecule bursts. For instance, while we focused on molecules freely diffusing in 3D, the next logical
steps would be to test the performance of the burst search analysis on 2D diffusion (for membrane
proteins), 1D diffusion (for filament-associating proteins), and in situations where not only diffusion
occurs but also convection and perhaps flow. These features and others will be the subject of further
investigation in future work.

4. Materials and Methods

We performed all 3D diffusion simulations using PyBroMo (python Brownian motion)
simulations (https://github.com/tritemio/PyBroMo; was utilized in previous works[13-16]).
Afterwards, we simulated the photon timestamps to simulate SMFD of freely diffusing molecules,
also using the PyBroMo code. All of the PyBroMo and FRETbursts[18] code used here were
documented in Jupyter notebooks, that were deposited in Zenodo[22]. These simulations produced
photon HDF?5 files, that hold all the simulated molecule positions, photon timestamps and photon

identity (for smFRET simulations — either donor or acceptor detection channels), in files with names
beginning with ‘pybromo_’, ‘times_" and ‘smFRET_’, respectively. The photon HDF?5 files of the
photon timestamps and identities were deposited in Zenodo[23]). The molecule diffusion trajectory
photon HDFS5 files were not deposited, due their large size. These files can be reproduced by using
the “PyBroMo - 1-. Simulate 3D trajectories - single core - different 3D diffusion simulation conditions.ipynb’
Jupyter Notebook (deposited in Zenodo[22]), where we documented the input parameter values for
all simulation conditions performed in this work.

In a nutshell, all photon HDF5 files carrying photon timestamps were analyzed by
FRETbursts[18], by first estimating the background rate, and then, by using the sliding window
algorithm[6,11,12]. Then, photons from single-molecules were identifying as having instantaneous
photon rates larger than F times the background rate. Identified bursts, were further selected by using
different types of burst selection criteria. Then, per each set of burst analysis results, we tested which
was the molecule that produced each burst, its level of impurity (how many photons in the burst
originated from molecules other than the main one), and the positions of the molecule when it emitted
the burst’s photons. All the details are specified in the text above as well as in the Jupyter notebooks
deposited in Zenodo[22].

All figures in this work were produced either by matplotlib in the Jupyter notebooks, or by
OriginLab Origin 2018.
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