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18  Abstract

19  Adequate knowledge about the development and operation of the components of water systems is of high
20  importance in order to optimize them. For this reason, forecasting of future events becomes greatly significant
21 due to making the appropriate decision. Moreover, operational river management severely depends on accurate
22 and reliable flow forecasts. In this regard, current study inspects the accuracy of support vector regression
23 (SVR), and SVR regulated with fruit fly optimization algorithm (FOASVR) and M5 model tree (M5), in river
24 flow forecasting. Monthly data of river flow in two stations of the Lake Urmia Basin (Vaniar and Babarud
25  stations on the Aji Chay and the Barandouz Rivers) were utilized in the current research. Additionally, the
26  influence of periodicity (m) on the forecasting enactment was examined. To assess the performance of
27  mentioned models, different statistical meters were implemented, including root mean squared error (RMSE),
28  mean absolute error (MAE), correlation coefficient (R), and Bayesian information criterion (BIC). Results
29  showed that the FOASVR with RMSE (4.36 and 6.33 m3/s), MAE (2.40 and 3.71 m3/s) and R (0.82 and 0.81)
30  values had the best performances in forecasting river flows in Babarud and Vaniar stations, respectively. Also,
31  regarding BIC parameters, Q. and m were selected as parsimonious inputs for predicting river flow one month
32 ahead. Overall findings indicated that, although both FOASVR and M5 predicted the river flows in suitable

33 accordance with observed river flows, the performance of FOASVR was moderately better than the M5 and

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints201905.0320.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2019 d0i:10.20944/preprints201905.0320.v1

34  periodicity noticeably increased the performances of the models; consequently, FOASVR can be suggested as
35  the accurate method for forecasting river flows.

36 Keywords: River flow forecasting; Optimization; M5 model tree; Support vector regression; Fruit fly
37  optimization algorithm

38

39

40 1. Introduction

41  Dependable approximation of discharge is imperative in water resources management (Onyari and Ilunga,
42 2010). Nowadays, stream flow predicting is a dynamic and active research zone which has been studied. The
43 stream flow is censorious to numerous actions such as planning and designing flood protections for farming
44 lands and urban areas, and evaluating the amount allowable extracted water from a river for irrigation (Ismail
45 et al, 2010). By happening a dynamic climate change and continues altering of environmental situations,
46  instantaneous approaches based on utilizing real past data rather than the hydrology of the catchments has
47  become more applicable (Fernando et al., 2012).

48  Generally, data mining is an influential novel methodology based on the abstraction of concealed information
49  from huge data. These tools forecast forthcoming movements of a special system using knowledge-driven
50  decisions resulted from enormous input-output data. M5 model tree (M5), as a sub-technique of data mining,
51 constructs tree based linear models for continues data. Lately, the implementation of M5, as decision tree based
52 regression method, have been stated for hydrological and water-related studies (Bhattacharya and Solomatine,
53 2005, 2006; Khan and See, 2006; Siek and Solomatine, 2007; Stravs and Brilly, 2007; Samadianfard et al.,
54 2014(a,b); Esmaeilzadeh et al. 2017). Londhe and Dixit (2011) implemented M5 to estimate river flow at two
55  stations of India. The models were established by the preceding values of gauged river flow and rainfall for
56  predicting river flow one day beforehand. Sattari et al., (2013) inspected the proficiencies of support vector
57  machine (SVM) and M5 model tree in forecasting flows of Sohu River. They revealed that M5 provided precise
58  predictions comparing with SVM.

59  SVM is a technique in which the strong points of traditional statistical methods, which are theory-oriented and
60 analytically simple, are utilized. SVM approach has been frequently implemented in the areas of hydrology
61 and forecasting time series. Liong and Sivapragasam (2002) applied the method for foreseeing floods. Yu et

62  al. (2004) suggested a method for forecasting daily runoff through combining Chaos Theory and the SVM
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63  method. Recently, support vector regression (SVR) method has been developed based on SVM and shows
64  superiority in the prediction of hydrologic processes. Kalteh (2013) with applying Artificial Neural Network
65  (ANN) and SVR to monthly streamflow recorded in 2 different stations revealed that both models coupled
66  with wavelet transformation produced more accurate outcomes than the regular models. Also, the results
67  specified that SVR models had enhanced performances comparing ANN models. Wu et al. (2008) used a
68  genetic algorithm to optimize the SVR model, and result exhibited that the suggested model could anticipate
69  river flow precisely in comparison with other models. Londhe and Gavraskar (2015) utilized the SVR model
70  to one-day ahead forecast river flow in two studied locations. The model results were favorable according to
71  the low values of the evaluating metrics.

72 On the other hand, Cao and Wu (2016) coupled Fruit Fly Optimization algorithm (FOA) with SVR (named
73 FOASVR) for optimizing the parameters of SVR. The obtained results exhibited that applying FOASVR had
74  a significant role in increasing the prediction accuracy. Lijuan and Guohua (2016) used FOASVR which
75  hybridizes the SVR model with FOA to estimate monthly incoming tourist flow. It was reported that the
76  suggested FOASVR is a viable option for touristic applications.

77  The key objective of this research is exploiting the accuracy of M5, support vector regression, and optimized
78  SVR with FOA for river flow forecasting in the Vaniar and Babarud stations on the Aji Chay and the
79  Barandouz rivers, respectively, located in the Lake Urmia basin of Iran. Some evaluation parameters for error
80  estimation are utilized for assessing the enactment of the considered models. To the best knowledge of the
81  authors, FOA has not been integrated with SVR in river flow forecasting.

82

83 2. Techniques applied in modeling

84 2.1 M5 model tree

85  With a constant value at their leaves, model trees are based on regression trees (Witten and Frank, 2005). In
86  this regard, M5, as one of the versions of model trees, has a high capability to forecast continuous numerical
87  attributes (Quinlan, 1992). Moreover, two different steps are necessary to develop tree models. Firstly, a
88  splitting principle should utilize for creating a decision tree. This criterion is constructed using the standard
89  deviation (SD) of the class values which reach a node as a size of the error. So, the standard deviation reduction

90 (SDR) is given by:
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SDR=SD(T)-> xS0 (M

91  Where Tis a set of data that reaches the node and 7; is the i subset of data. After the first step, data in the

92  secondary nodes have lower SD comparing with initial nodes, so, M5 selects the split which expects to

93  maximize error reduction. Producing a large tree is the main drawback of this step which may cause overfitting

94  problem. Pruning techniques should be employed in order to fix this problem and avoid overfitting. Therefore,

95  the second step for developing M5 involves these techniques and substitution of subtrees with LR functions.

96  As aresult, by applying these two steps, M5 develops an LR model for each subspace.

97

98 2.2 Support vector regression (SVR)

99  SVM is recognized as a technique for classification and regression (Vapnik, 1995). Generally, regression-
100  based SVM is called SVR. For solving complex problems effectively, SVR is constructed based on minimizing
101  the structural risk. So, insensitive loss function (s -) identified as the model tolerating errors up to ¢ in the
102 training data. Thus, the SVR pursues a linear function as follows:

F(x)=w'x+b 2)

103 Where w and b represent the coefficients of the weight vector. This can be clarified as the following problem:

1 N FxX)—yise+§
Min 2 [Iwl? +CZ(E,- +E) Subjectto { y,~F(x) <e+5 3)
= §,620, i=12,..,N
104  Where C>0 is a penalty parameter which has to be selected earlier. The constant C can grade the experimental
105  error. Moreover, §; and &; which are known as slack variables indicating distathe nce between real values and

106  the corresponding boundary values of ¢ —tube. Hence, in order to minimize Eq. (2) subject to Eq. (3), non-Lthe

107 R function is given by (Gunn, 1998; Cimen, 2008):

N 4)
flx)= ;(al —al.)K(x,xi)Jr B

108  Where K(x,x,) is the Kernel function, al.,a: >0 are the Lagrange multipliers and B is a bias term. Kernel trick

109  is an approach which is used to solve this problem by SVR (Smola and Scholkopf, 2004). In this study, the

110  widely implemented kernel named radial basis function (RBF) is utilized for building optimum SVR model.
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111 Converging fast, working well in high dimensional spaces and being simple are some advantages of the
112 selected kernel (Wu et al., 2009).

k(x,x;) = exp(=y|lx — x| )
113 Where y is the bandwidth of kernel function. C, y and . are three predefined parameters. In this research, 1,
114  0.01, and 0.001 were selected as default amounts which are used in WEKA software, respectively. Fig. 1

115  indicates scthe hematic configuration of SVthe R model.

116
\ \ \
Input data }—b Processing )—> Kernel selection |
.jﬂ “ Y, 4
) . \ Predefined parameters
Model vahdanonj)d— Model training /}1— selection /)
117 ' i ]
118 Fig. 1 schematic configuration of SVR model.
119

120 2.3. Fruit fly Optimization Algorithm (FOA)

121 FOA which was introduced by Pan (2012) is a swarm intelligent optimization algorithm that imitates the
122 activities of fruit flies for searching the global optimum. Fruit flies can identify the smell from even 40
123 kilometers and fly on the way to it. Fig. 2 displays the food searching progression utilized by fruit fly
124 iteratively. According to Pan (2012), the following equations are exploited to acquire the initial swarm location
125  of a fruit fly:

X, = rand(LR)
(6)

Yy = rand(LR)

126 Where LR is the location range of the accidental, initial fruit fly swarm. Subsequently, unexpected search

127  direction and distance for foraging of the fruit flies are given by:

X; = Xy + rand(FR)
(7

Y; =Yy +rand(FR)

128  where FR is the random flight range, so, smell concentration judgment value (S) can be computed by:

5
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130 Fig. 2 food searching process utilized by fruit fly iteratively.

131  For improving the performance of river flow forecasting, FOA was implemented for choosing optimized values
132 of three SVR parameters including , €,y, which are connected to (S¢;, Sgj, Syi) (i.., C = S, Y = Sy4, and € =
133 S;). The flowchart of the mentioned procedure (FOASVR) is displayed in Fig. 3. Moreover, the differences
134 among the predicted and the actual values were evaluated by mean squared error (MSE), as presented in
135  equation belthe ow:

Zita(pi —0)* ©)

n

MSE =

136 where p; and o; are the i predicted and observed values and n is the entire number of data. The fruit fly saves
137  the finest smell concentration value and the corresponding coordinate among the swarms, then flies towards
138  the next place. When the new result is not superior to the previous iteration or the iteration number reaches its
139  maximum, or the error of the prediction reaches the predefined value, this process will stop. Therefore, optimal

140  values are acquired, and the model has the best performance with these values.
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141
142 Fig. 3 The FOASVR flowchart

143 In this research, data were normalized to be between 0 and one because it helps to increase the accuracy of the
144 model and to predict performance (Chang and Lin, 2001). Besides, LR and FR were chosen to be included [0,
145  10] and [-1, 1], respectively; Also, the maximum iteration number (maxgen) was equal to 100, and the
146  population size (size pop) was selected to be 20 in order to have reasonable efficiency. Moreover, Libsvm

147  toolbox was used to run SVR in this article.

148 3. Study area

149  In the current study, the monthly river flow was used for the Vaniar station on the Aji Chay Stream and the
150  Babarud station on the Barandouz River, both located at Lake Urmia basin of Iran (Fig. 4). The observed data
151  include 780 monthly river flows (65 years from 1952 to 2017) for Babarud station and 744 monthly records
152 (62 years from 1952 to 2014) for Vaniar station. Moreover, there is no basic and technical way of separating
153  training and testing data. For example, the study of Kurup and Dudani (2002) used a total of their 63% of data
154  for model development whereas Pal (2006) used 69%, and Samadianfard et al. (2013, 2014) used 67% of total

155  data, and Deo et al. (2018) and Samadianfard et al. (2018) used 70% of total data to develop their models.
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156  Thus, for developing the studied models, the data are divided into training (70%) and testing (30%).
157  Additionally, Table 1 displays the statistics of implemented data for both stations. The observed data confirms
158  high positive values of skewness (Csx = 2.13 and 3.19). Furthermore, the low auto-correlations demonstrated
159  the low persistence for both mentioned stations. According to the crisis of Lake Urmia, the amounts of
160  precipitation and consequently river flow have decreased for the recent years; therefore, this may cause some

161  difficulties in forecasting river flows.

162
; ' Georia‘ \.h,\
Greece S
i Banraink,
i )
163
164 Fig. 4 Babarud and Vaniar stations, located at Lake Urmia basin <URL1>
165
166 Table 1 Statistical parameters of the implemented data (X mean, X max, X min, SX, CSX, a1, a2, a3 denote the overall mean,
167 maximum, minimum, standard deviation, skewness, lag -1, lag -2, lag -3 auto-correlation coefficients, respectively)
: Xmean Xmax Xmin Sx Csx
Station Data set (m/s) (m/s) (m/s) (m/s) (m/s) I I I3
Babarud Training data 8.75 66.50 0.00 9.63 2.05 0.70 025 -0.07
Testing data 471 43.27 0.00 7.37 2.54 0.59 0.14 -0.12
Entire data 7.74 66.50 0.00 9.28 2.13 0.69 025 -0.05
Vaniar Training data 14.28 178.29 0.00 21.35 2.94 0.62 0.15 -0.11
Testing data 5.66 65.30 0.00 10.50 3.02 0.50 0.11 -0.05
Entire data 12.13 178.29 0.00 19.58 3.19 0.63 0.18 -0.07
168
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169 4. Evaluation parameters

170 In this study, different evaluation parameters were considered for scrutinizing the precision of the mentioned
171  models for river flow forecasting.

172 As one of the widely-used statistical parameters, root mean squared error (RMSE) measures the average
173 amount of error (the difference between predicted and observed flows) appropriately, and it can be determined

174  as follows:

1 (10)
RMSE=\/—Z(QP (1)-0,0)f
175  where Qp(i), Qo(i), and n represent the predicted river flow, the observed river flow, and the number of
176  observations, respectively.
177  The bias in the predicted river flow is calculated by the mean absolute error (MAE) which measures the
178  closeness of the predictions to the actual flows. Lower MAE values represent more precise predictions of river

179  flow either equal or close to the observed values. It is calculated as follows:

MAE :%ip[, (i)-0,() (1)

180  The correlation coefficient (R), which describes the amount of linearity among simulated and observed values

181  of river flows, ranges from -1 to 1 and is described as follows:
- A (X A% .
S0.0,00- 30,05 0,0 .
o o (& Y e 1, )
Sour-L(Lon] [Low-![Lo 0]

R=

182  Also, the Bayesian information criterion (BIC) was utilized to specify the best model parsimoniously which
183  means that the model with fewer input parameters could have better performance in comparison to others. BIC
184  measures models relative to each other; in fact, the model with the best performance has the smallest quantity

185  of the BIC (Burnham and Anderson, 2002). It is given as follows:

RSS
n

BIC=n*ln( )+K*ln(n) (13)

186  where K indicates the number of input parameters and RSS can be determined as follows:
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187  Furthermore, Taylor diagram (TD) which is a graphical illustration of the observed and forecasted data, was

188  applied for inspecting the precision of models (Taylor, 2001). The TD has this capability to encapsulate some

189  characteristics of the predicted and observed flows at the same time. This diagram can illustrate RMSE, R, and

190 SD between the forecasted and actual data, simultaneously. In TD, the azimuth angle, the radial distance from

191  the origin, and radial distance from the observed data point denote the R-value, the ratio of the normalized SD

192  and the RMSE value of the prediction, respectively.

193

194 5. Results and discussion

195  For evaluating the effects of previous monthly flows, three input combinations were established. Moreover,

196  the periodicity effect was inspected by appending a component 7 (1 to 12 for each month).

197 Table 2 Input parameters of the established models.

Model Input parameters Output parameters

1 Qui Q¢
2 Qui,m Q:
3 Qu1, Q2 Qt
4 Qu1, Qea, @ Q:
5 Qe1, Qr2, Q3 Q:
6 Qe1,Qe2, Qus, m Qy

198

199  The results of statistical parameters for studied techniques in the test phase for the Babarud station are given
200  in Table 3. As mentioned before, © was appended to the input combinations 1,3, and 5 to examine the effect
201  of periodicity. From the table, it is clear that the periodicity considerably increased each model’s accuracy. For
202 the FOASVR model, R increased from 0.63 (for input combination (1)) to 0.82 (for input combination (2)) and
203  similarly, RMSE and MAE indices decreased from 5.74 to 4.36 and from 3.29 to 2.40, respectively. Regarding
204  two previous cases, by adding periodicity component, R increased from 0.70 to 0.80 and RMSE, and MAE
205  decreased from 5.33 to 4.50 and from 2.90 to 2.67, respectively. Finally, in the case of three previous
206  discharges inputs, R increased from 0.67 to 0.79 and RMSE, and MAE decreased from 5.69 to 4.58 and from

207  3.20 to 2.67, respectively. Comparison of FOASVR, M35, and SVR models indicated that the FOASVR-2

10
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208  model whose inputs are Q.1, and & had better accuracy than the M5 and SVR models. M5 also performed better
209  than the SVR model. Overall, FOASVR performed better than SVR and M5s. Also, FOA increased the
210  accuracy of SVR by approximately 27% for RMSE and 38% for MAE in the second scenario which performed
211 roughly (4% RMSE and 14%MAE) better than M5. Without periodicity, FOASVR-3 indicated 6% better
212 performance than M5-3, and they performed better than the SVR-5 model. The relative RMSE and MAE
213 differences between the optimal FOASVR-3 model without periodicity and FOASVR-3 model with periodicity
214 input were 18.2% and 17.2%, respectively. From the BIC point of view FOASVR-2, M5-2, and SVR-4 with
215  thevalues 0f597.55, 581.85, and 701.18 had better performance in comparison with other models which means
216  that these scenarios had parsimonious inputs (accurate result with fewer input parameters), respectively. So,
217  for this station input combination (2) was a reasonable choice. Time variation of observed and predicted river
218  flows by the optimal periodic and non-periodic FOASVR, M5 and SVR models are illustrated in Fig. 5 and 6.
219 It can be comprehended from the figures that all three periodic and non-periodic models considerably
220  underestimate some peak flows. It seems that preciseness of these models decreases with increasing flow rate.
221  However, the superior accuracy of FOASVR and M5 to the SVR model can be comprehended from these
222 figures. Comparison of Fig. 5 and 6 visibly indicate that the periodic models better approximates the observed
223 river flows than the non-periodic models. Fig. 9 displayes the scattered diagrams of the observed and predicted
224 monthly river flows by each method. It is noticeably evident from the graphs that the SVR model performs
225  worse than the other two methods especially in the prediction of peak river flows. Comparison of two figures
226  reveals that the estimates of periodic models are more accurate than non-periodic models. Also, this figure
227  indicates that all models (periodic and non-periodic) overestimate some low flows.

228  The test statistics of the FOASVR, M5 and SVR models for the Vaniar station are also provided in Table 3.
229  Similarly, the encouraging influence of periodicity component on models’ precision is clearly seen for this
230  station. For the FOASVR model, R increased from 0.57 (for input combination (1)) to 0.79 (for input
231  combination (2)) and similarly, RMSE and MAE values decreased from 8.78 to 6.58 and from 4.77 to 3.86,
232 respectively. In the case of two previous discharges inputs, by adding periodicity component, R increased from
233 0.551t0 0.80 and RMSE, and MAE decreased from 8.88 to 6.48 and from 4.97 to 3.75, respectively. Finally, in
234 thethree previous discharges inputs case, R increased from 0.55 to 0.81 and RMSE, and MAE values decreased
235  from 8.99 to 6.33 and from 5.53 to 3.71, respectively. Comparison of three models revealed that the optimal

236  FOASVR-6 model whose inputs are Qv.1, Qi2, Qw3, and m performed better than optimal M5-2 comprising Q.

11
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237  and m inputs and both performed better than the optimal SVR-6 model whose inputs are same as FOASVR-6.
238  Generally, FOASVR performed better than SVR and M5 models, moreover, accuracy of SVR was increased
239 by 29.7% and 30.4% related to RMSE and MAE in the optimal scenario (FOASVR-6) by applying FOA,
240  respectively; also, FOASVR showed 16.8% and 19.7% better performances than M5 in terms of RMSE and
241  MAE for this scenario, respectively. Without the periodicity component, the optimal FOASVR-1 model
242 performed better than the optimal M5-1 and SVR-3 model. The relative RMSE and MAE differences between
243 the optimal FOASVR-1 model without periodicity and FOASVR-1 model with periodicity input were 25.1%
244 and 19.1%, respectively. The best values for BIC in this station were related to FOASVR-6 with 703.64, M5-
245 2 with 740.34, and SVR-2 with 825.05. According to the fact that FOASVR-6 was closely followed by
246  FOASVR-4 with the value of 707.09 and FOASVR-2 with the value of 707.53, it is better to choose a
247  combination with fewer input parameters. Thus, the input parameters of Q.; and m were selected as a
248  parsimonious scenario for this station similar to the previous station. Fig. 7 and 8 demonstrate the time variation
249  of observed and predicted river flows by the optimal periodic and non-periodic FOASVR, M5 and SVR
250  models. As found for the Vaniar station, here also the three periodic and non-periodic models underestimate
251  some peak flows. Comparison of Fig. 7 and 8 confirm that appending the periodicity component as the input
252 increases the estimation capacity of the models. The scatterplots of the observed and predicted monthly river
253  flows by each method are shown in Fig. 9. Alike to the previous station, the FOASVR and M5 perform better
254 than the SVR model especially in the prediction of peak river flows. This figure indicates that the estimates of
255  periodic models are more accurate. According to Fig. 9, same as Babarud station, the models overestimate low

256  flows in the Vaniar station, so, forecasting shifts from overestimation to underestimation with increasing flow

257  rate.
258 Table 3 The evaluation parameters of studied models in the test period
Model Model Babarud Station Vaniar Station
input RMSE MAE R  BIC RMSE MAE R  BIC
Qe SVR-1 6.10 4.10 0.59 706.88 9.33 5.60 0.50 831.52
Ms5-1 5.94 3.62 0.61 696.57 9.57 5.44 0.54 84091
FOASVR-1 5.74 3.29 0.63  683.28 8.78 4.77 0.57  809.04
Qui, @ SVR-2 5.97 3.88 0.61 703.79 9.04 5.31 0.52  825.05
M5-2 4.54 2.73 0.80 597.55 7.19 4.46 0.77  740.34
FOASVR-2 4.36 2.40 0.82 581.85 6.58 3.86 0.79  707.53
Qe1, Quz SVR -3 5.98 4.04 0.62 704.44 9.21 5.57 0.53  831.95
M5-3 5.79 3.49 0.68 691.92 9.80 5.46 0.59 854.92

12


https://doi.org/10.20944/preprints201905.0320.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2019 d0i:10.20944/preprints201905.0320.v1

FOASVR-3 533 2.90 0.70  659.80 8.88 4.97 0.55 81845
Qut, Qu2, @ SVR -4 5.85 3.83 0.64 701.18 8.96 5.33 0.54  826.99
M5-4 4.55 2.83 0.80 603.67 7.58 4.64 0.76  765.10
FOASVR-4 4.50 2.67 0.80 599.39 6.48 3.75 0.80  707.09
Qe1, Qe2,Qe3 SVR -5 591 3.90 0.62 705.14 9.22 5.73 0.52  837.57
M5-5 5.79 3.50 0.68 697.18 9.79 5.55 0.60  859.76
FOASVR-5 5.69 3.20 0.67 690.42 8.99 5.53 0.55 828.22
Qe1, Qe2,Qe3, T SVR -6 5.82 3.77 0.64 704.46 9.01 5.53 0.53  834.27
M5-6 4.54 2.84 0.80  608.09 7.61 4.62 0.75  771.78
FOASVR-6 4.58 2.67 0.79 611.49 6.33 3.71 0.81 703.64
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261 Fig. 5 The observed and forecasted monthly river flows without periodicity for Babarud station
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263 Fig. 6 The observed and forecasted monthly river flows with periodicity for Babarud station
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271 Fig. 9 The scatterplots of observed and forecasted monthly river flows with and without periodicity for both stations
272

273 Furthermore, TDs were utilized for examining SD and R values for the FOASVR, M5 and SVR models. Fig.
274 10 exhibits TDs for all models, where the space from the reference green point is an amount of the centered
275  RMSE. So, it can be comprehended from Fig. 10 that FOASVR (a point with yellow color) provided relatively

276  precise predictions of river flow in both stations.
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279 Fig. 10. TDs of the monthly predicted river flow
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6. Conclusion

In the current study, three different data-driven techniques, FOASVR, M5, and SVR were compared in one
month ahead river flow forecasting in two stations, located in the Lake Urmia Basin of Iran. Comparison of
three periodic models specified that the periodic FOASVR model had better accuracy than the periodic M5
and SVR models. M5 was also found to achieve more suitable results than the SVR model. Similar to periodic
models, comparison of non-periodic models showed that the optimal FOASVR also had a better performance
than M5 and SVR models. It was proved that appending periodicity component significantly increases models’
accuracy in forecasting monthly river flows for both stations. For the Babarud station, the relative RMSE and
MAE differences between the optimal periodic and non-periodic FOASVR models were found to be 18.2%
and 17.2%, respectively. For the Vaniar station, the periodicity component decreased the RMSE and MAE
values of the optimal FOASVR models by 27.9 and 22.2%, respectively. According to BIC, the second input
combination (Q: and m) opted as parsimonious inputs for FOASVR with values of 581.85 and 707.53 for
Babarud and Vaniar stations, respectively. Generally, the performance of FOASVR models was better than
the other two methods in forecasting monthly river flows. However, all methods indicated some difficulties in
forecasting river flow peaks while the FOASVR models provided a better forecast in high river flows.
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