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Abstract 18 

Adequate knowledge about the development and operation of the components of water systems is of high 19 

importance in order to optimize them. For this reason, forecasting of future events becomes greatly significant 20 

due to making the appropriate decision. Moreover, operational river management severely depends on accurate 21 

and reliable flow forecasts. In this regard, current study inspects the accuracy of support vector regression 22 

(SVR), and SVR regulated with fruit fly optimization algorithm (FOASVR) and M5 model tree (M5), in river 23 

flow forecasting. Monthly data of river flow in two stations of the Lake Urmia Basin (Vaniar and Babarud 24 

stations on the Aji Chay and the Barandouz Rivers) were utilized in the current research. Additionally, the 25 

influence of periodicity (π) on the forecasting enactment was examined. To assess the performance of 26 

mentioned models, different statistical meters were implemented, including root mean squared error (RMSE), 27 

mean absolute error (MAE), correlation coefficient (R), and Bayesian information criterion (BIC). Results 28 

showed that the FOASVR with RMSE (4.36 and 6.33 m3/s), MAE (2.40 and 3.71 m3/s) and R (0.82 and 0.81) 29 

values had the best performances in forecasting river flows in Babarud and Vaniar stations, respectively. Also, 30 

regarding BIC parameters, Qt-1 and π were selected as parsimonious inputs for predicting river flow one month 31 

ahead. Overall findings indicated that, although both FOASVR and M5 predicted the river flows in suitable 32 

accordance with observed river flows, the performance of FOASVR was moderately better than the M5 and 33 
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periodicity noticeably increased the performances of the models; consequently, FOASVR can be suggested as 34 

the accurate method for forecasting river flows. 35 

Keywords: River flow forecasting; Optimization; M5 model tree; Support vector regression; Fruit fly 36 

optimization algorithm  37 

 38 

 39 

1. Introduction 40 

Dependable approximation of discharge is imperative in water resources management (Onyari and Ilunga, 41 

2010). Nowadays, stream flow predicting is a dynamic and active research zone which has been studied. The 42 

stream flow is censorious to numerous actions such as planning and designing flood protections for farming 43 

lands and urban areas, and evaluating the amount allowable extracted water from a river for irrigation (Ismail 44 

et al., 2010). By happening a dynamic climate change and continues altering of environmental situations, 45 

instantaneous approaches based on utilizing real past data rather than the hydrology of the catchments has 46 

become more applicable (Fernando et al., 2012). 47 

Generally, data mining is an influential novel methodology based on the abstraction of concealed information 48 

from huge data. These tools forecast forthcoming movements of a special system using knowledge-driven 49 

decisions resulted from enormous input-output data. M5 model tree (M5), as a sub-technique of data mining, 50 

constructs tree based linear models for continues data. Lately, the implementation of M5, as decision tree based 51 

regression method, have been stated for hydrological and water-related studies (Bhattacharya and Solomatine, 52 

2005, 2006; Khan and See, 2006; Siek and Solomatine, 2007; Stravs and Brilly, 2007; Samadianfard et al., 53 

2014(a,b); Esmaeilzadeh et al. 2017). Londhe and Dixit (2011) implemented M5 to estimate river flow at two 54 

stations of India. The models were established by the preceding values of gauged river flow and rainfall for 55 

predicting river flow one day beforehand. Sattari et al., (2013) inspected the proficiencies of support vector 56 

machine (SVM) and M5 model tree in forecasting flows of Sohu River. They revealed that M5 provided precise 57 

predictions comparing with SVM. 58 

SVM is a technique in which the strong points of traditional statistical methods, which are theory-oriented and 59 

analytically simple, are utilized. SVM approach has been frequently implemented in the areas of hydrology 60 

and forecasting time series. Liong and Sivapragasam (2002) applied the method for foreseeing floods. Yu et 61 

al. (2004) suggested a method for forecasting daily runoff through combining Chaos Theory and the SVM 62 
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method. Recently, support vector regression (SVR) method has been developed based on SVM and shows 63 

superiority in the prediction of hydrologic processes. Kalteh (2013) with applying Artificial Neural Network 64 

(ANN) and SVR to monthly streamflow recorded in 2 different stations revealed that both models coupled 65 

with wavelet transformation produced more accurate outcomes than the regular models. Also, the results 66 

specified that SVR models had enhanced performances comparing ANN models. Wu et al. (2008) used a 67 

genetic algorithm to optimize the SVR model, and result exhibited that the suggested model could anticipate 68 

river flow precisely in comparison with other models. Londhe and Gavraskar (2015) utilized the SVR model 69 

to one-day ahead forecast river flow in two studied locations. The model results were favorable according to 70 

the low values of the evaluating metrics.  71 

On the other hand, Cao and Wu (2016) coupled Fruit Fly Optimization algorithm (FOA) with SVR (named 72 

FOASVR) for optimizing the parameters of SVR. The obtained results exhibited that applying FOASVR had 73 

a significant role in increasing the prediction accuracy. Lijuan and Guohua (2016) used FOASVR which 74 

hybridizes the SVR model with FOA to estimate monthly incoming tourist flow. It was reported that the 75 

suggested FOASVR is a viable option for touristic applications. 76 

The key objective of this research is exploiting the accuracy of M5, support vector regression, and optimized 77 

SVR with FOA for river flow forecasting in the Vaniar and Babarud stations on the Aji Chay and the 78 

Barandouz rivers, respectively, located in the Lake Urmia basin of Iran. Some evaluation parameters for error 79 

estimation are utilized for assessing the enactment of the considered models. To the best knowledge of the 80 

authors, FOA has not been integrated with SVR in river flow forecasting. 81 

 82 

2. Techniques applied in modeling 83 

2.1 M5 model tree 84 

With a constant value at their leaves, model trees are based on regression trees (Witten and Frank, 2005). In 85 

this regard, M5, as one of the versions of model trees, has a high capability to forecast continuous numerical 86 

attributes (Quinlan, 1992). Moreover, two different steps are necessary to develop tree models. Firstly, a 87 

splitting principle should utilize for creating a decision tree. This criterion is constructed using the standard 88 

deviation (SD) of the class values which reach a node as a size of the error. So, the standard deviation reduction 89 

(SDR) is given by:  90 
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   i
i TSD
T

T
TSDSDR    (1) 

 

Where T is a set of data that reaches the node and Ti is the ith subset of data. After the first step, data in the 91 

secondary nodes have lower SD comparing with initial nodes, so, M5 selects the split which expects to 92 

maximize error reduction. Producing a large tree is the main drawback of this step which may cause overfitting 93 

problem. Pruning techniques should be employed in order to fix this problem and avoid overfitting. Therefore, 94 

the second step for developing M5 involves these techniques and substitution of subtrees with LR functions. 95 

As a result, by applying these two steps, M5 develops an LR model for each subspace.  96 

 97 

2.2 Support vector regression (SVR) 98 

SVM is recognized as a technique for classification and regression (Vapnik, 1995). Generally, regression-99 

based SVM is called SVR. For solving complex problems effectively, SVR is constructed based on minimizing 100 

the structural risk. So, insensitive loss function (  ) identified as the model tolerating errors up to   in the 101 

training data. Thus, the SVR pursues a linear function as follows:  102 

bxwxF T )(  (2) 

 

Where w and b represent the coefficients of the weight vector. This can be clarified as the following problem: 103 

��� 
1
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 ������� �� �
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     (3) 

Where C>0 is a penalty parameter which has to be selected earlier. The constant C can grade the experimental 104 

error. Moreover, ξ� ��� ξ�
∗ which are known as slack variables indicating distathe nce between real values and 105 

the corresponding boundary values of  tube. Hence, in order to minimize Eq. (2) subject to Eq. (3), non-Lthe 106 

R function is given by (Gunn, 1998; Cimen, 2008): 107 

     



N

i
iii BxxKxf

1

* ,  
(4) 

 

Where ),( ixxK  is the Kernel function, 0, *ii aa  are the Lagrange multipliers and B is a bias term. Kernel trick 108 

is an approach which is used to solve this problem by SVR (Smola and Scholkopf, 2004). In this study, the 109 

widely implemented kernel named radial basis function (RBF) is utilized for building optimum SVR model. 110 
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Converging fast, working well in high dimensional spaces and being simple are some advantages of the 111 

selected kernel (Wu et al., 2009). 112 

�(�, ��) = exp (−��|� − ��|�
�

) (5) 

Where � is the bandwidth of kernel function. C, � and are three predefined parameters. In this research, 1, 113 

0.01, and 0.001 were selected as default amounts which are used in WEKA software, respectively. Fig. 1 114 

indicates scthe hematic configuration of SVthe R model. 115 

 116 

 117 

Fig. 1 schematic configuration of SVR model. 118 

 119 

2.3. Fruit fly Optimization Algorithm (FOA) 120 

FOA which was introduced by Pan (2012) is a swarm intelligent optimization algorithm that imitates the 121 

activities of fruit flies for searching the global optimum. Fruit flies can identify the smell from even 40 122 

kilometers and fly on the way to it. Fig. 2 displays the food searching progression utilized by fruit fly 123 

iteratively. According to Pan (2012), the following equations are exploited to acquire the initial swarm location 124 

of a fruit fly: 125 

�� = ����(��) 

�� = ����(��) 

(6) 

 

Where LR is the location range of the accidental, initial fruit fly swarm. Subsequently, unexpected search 126 

direction and distance for foraging of the fruit flies are given by: 127 

�� = �� + ����(��) 

�� = �� + ����(��) 

(7) 

 

where FR is the random flight range, so, smell concentration judgment value (S) can be computed by: 128 
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�� = 1/���
� + ��

� 
(8) 

 

 129 

Fig. 2 food searching process utilized by fruit fly iteratively. 130 

For improving the performance of river flow forecasting, FOA was implemented for choosing optimized values 131 

of three SVR parameters including �, ε, γ, which are connected to (���, ���, ���) (i.e., � = ���, γ = ���, and ε =132 

���). The flowchart of the mentioned procedure (FOASVR) is displayed in Fig. 3. Moreover, the differences 133 

among the predicted and the actual values were evaluated by mean squared error (MSE), as presented in 134 

equation belthe ow: 135 

��� =
∑ (�� − ��)��

���

�
 

(9) 

 

where p� and o� �re the ith predicted and observed values and n is the entire number of data. The fruit fly saves 136 

the finest smell concentration value and the corresponding coordinate among the swarms, then flies towards 137 

the next place. When the new result is not superior to the previous iteration or the iteration number reaches its 138 

maximum, or the error of the prediction reaches the predefined value, this process will stop. Therefore, optimal 139 

values are acquired, and the model has the best performance with these values. 140 
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 141 

Fig. 3 The FOASVR flowchart 142 

In this research, data were normalized to be between 0 and one because it helps to increase the accuracy of the 143 

model and to predict performance (Chang and Lin, 2001). Besides, LR and FR were chosen to be included [0, 144 

10] and [-1, 1], respectively; Also, the maximum iteration number (maxgen) was equal to 100, and the 145 

population size (size pop) was selected to be 20 in order to have reasonable efficiency. Moreover, Libsvm 146 

toolbox was used to run SVR in this article.  147 

3. Study area 148 

In the current study, the monthly river flow was used for the Vaniar station on the Aji Chay Stream and the 149 

Babarud station on the Barandouz River, both located at Lake Urmia basin of Iran (Fig. 4). The observed data 150 

include 780 monthly river flows (65 years from 1952 to 2017) for Babarud station and 744 monthly records 151 

(62 years from 1952 to 2014) for Vaniar station. Moreover, there is no basic and technical way of separating 152 

training and testing data. For example, the study of Kurup and Dudani (2002) used a total of their 63% of data 153 

for model development whereas Pal (2006) used 69%, and Samadianfard et al. (2013, 2014) used 67% of total 154 

data, and Deo et al. (2018) and Samadianfard et al. (2018) used 70% of total data to develop their models. 155 
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Thus, for developing the studied models, the data are divided into training (70%) and testing (30%). 156 

Additionally, Table 1 displays the statistics of implemented data for both stations. The observed data confirms 157 

high positive values of skewness (Csx = 2.13 and 3.19). Furthermore, the low auto-correlations demonstrated 158 

the low persistence for both mentioned stations. According to the crisis of Lake Urmia, the amounts of 159 

precipitation and consequently river flow have decreased for the recent years; therefore, this may cause some 160 

difficulties in forecasting river flows. 161 

 162 

 163 

Fig. 4 Babarud and Vaniar stations, located at Lake Urmia basin <URL1> 164 

 165 

Table 1 Statistical parameters of the implemented data (X mean, X max, X min, Sx, Csx, a1, a2, a3 denote the overall mean, 166 

maximum, minimum, standard deviation, skewness, lag -1, lag -2, lag -3 auto-correlation coefficients, respectively) 167 

Station Data set 
Xmean 
(m3/s) 

Xmax 
(m3/s) 

Xmin 
(m3/s) 

Sx 
(m3/s) 

Csx 
(m3/s) 

r1 r2 r3 

Babarud Training data 8.75 66.50 0.00 9.63 2.05 0.70 0.25 -0.07 

 Testing data 4.71 43.27 0.00 7.37 2.54 0.59 0.14 -0.12 

 Entire data 7.74 66.50 0.00 9.28 2.13 0.69 0.25 -0.05 

Vaniar Training data 14.28 178.29 0.00 21.35 2.94 0.62 0.15 -0.11 

 Testing data 5.66 65.30 0.00 10.50 3.02 0.50 0.11 -0.05 

 Entire data 12.13 178.29 0.00 19.58 3.19 0.63 0.18 -0.07 

 168 
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4. Evaluation parameters 169 

In this study, different evaluation parameters were considered for scrutinizing the precision of the mentioned 170 

models for river flow forecasting. 171 

As one of the widely-used statistical parameters, root mean squared error (RMSE) measures the average 172 

amount of error (the difference between predicted and observed flows) appropriately, and it can be determined 173 

as follows:  174 

    



n

i
op iQiQ

n
RMSE

1

21
 

(10) 

 

where Qp(i), Qo(i), and n represent the predicted river flow, the observed river flow, and the number of 175 

observations, respectively. 176 

The bias in the predicted river flow is calculated by the mean absolute error (MAE) which measures the 177 

closeness of the predictions to the actual flows. Lower MAE values represent more precise predictions of river 178 

flow either equal or close to the observed values. It is calculated as follows:  179 

   



n

i
op iQiQ

n
MAE

1

1    (11) 

 

The correlation coefficient (R), which describes the amount of linearity among simulated and observed values 180 

of river flows, ranges from -1 to 1 and is described as follows:  181 
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Also, the Bayesian information criterion (BIC) was utilized to specify the best model parsimoniously which 182 

means that the model with fewer input parameters could have better performance in comparison to others. BIC 183 

measures models relative to each other; in fact, the model with the best performance has the smallest quantity 184 

of the BIC (Burnham and Anderson, 2002). It is given as follows: 185 

  ��� = � ∗ ln �
���

�
� + � ∗ ln(�) (13) 

 

where K indicates the number of input parameters and RSS can be determined as follows: 186 
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     



n
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op iQiQRSS

1

2  
(14) 

 

Furthermore, Taylor diagram (TD) which is a graphical illustration of the observed and forecasted data, was 187 

applied for inspecting the precision of models (Taylor, 2001). The TD has this capability to encapsulate some 188 

characteristics of the predicted and observed flows at the same time. This diagram can illustrate RMSE, R, and 189 

SD between the forecasted and actual data, simultaneously. In TD, the azimuth angle, the radial distance from 190 

the origin, and radial distance from the observed data point denote the R-value, the ratio of the normalized SD 191 

and the RMSE value of the prediction, respectively. 192 

 193 

5. Results and discussion 194 

For evaluating the effects of previous monthly flows, three input combinations were established. Moreover, 195 

the periodicity effect was inspected by appending a component π (1 to 12 for each month).  196 

Table 2 Input parameters of the established models. 197 

Model Input parameters Output parameters 

1 Q t-1 Q t 

2 Q t-1, π Q t 

3 Q t-1, Q t-2 Q t 

4 Q t-1, Q t-2, π Q t 

5 Q t-1, Q t-2, Q t-3 Q t 

6 Q t-1, Q t-2, Q t-3, π Q t 

 198 

The results of statistical parameters for studied techniques in the test phase for the Babarud station are given 199 

in Table 3. As mentioned before, π was appended to the input combinations 1,3, and 5 to examine the effect 200 

of periodicity. From the table, it is clear that the periodicity considerably increased each model’s accuracy. For 201 

the FOASVR model, R increased from 0.63 (for input combination (1)) to 0.82 (for input combination (2)) and 202 

similarly, RMSE and MAE indices decreased from 5.74 to 4.36 and from 3.29 to 2.40, respectively. Regarding 203 

two previous cases, by adding periodicity component, R increased from 0.70 to 0.80 and RMSE, and MAE 204 

decreased from 5.33 to 4.50 and from 2.90 to 2.67, respectively. Finally, in the case of three previous 205 

discharges inputs, R increased from 0.67 to 0.79 and RMSE, and MAE decreased from 5.69 to 4.58 and from 206 

3.20 to 2.67, respectively. Comparison of FOASVR, M5, and SVR models indicated that the FOASVR-2 207 
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model whose inputs are Qt-1, and π had better accuracy than the M5 and SVR models. M5 also performed better 208 

than the SVR model. Overall, FOASVR performed better than SVR and M5s. Also, FOA increased the 209 

accuracy of SVR by approximately 27% for RMSE and 38% for MAE in the second scenario which performed 210 

roughly (4% RMSE and 14%MAE) better than M5. Without periodicity, FOASVR-3 indicated 6% better 211 

performance than M5-3, and they performed better than the SVR-5 model. The relative RMSE and MAE 212 

differences between the optimal FOASVR-3 model without periodicity and FOASVR-3 model with periodicity 213 

input were 18.2% and 17.2%, respectively. From the BIC point of view FOASVR-2, M5-2, and SVR-4 with 214 

the values of 597.55, 581.85, and 701.18 had better performance in comparison with other models which means 215 

that these scenarios had parsimonious inputs (accurate result with fewer input parameters), respectively. So, 216 

for this station input combination (2) was a reasonable choice. Time variation of observed and predicted river 217 

flows by the optimal periodic and non-periodic FOASVR, M5 and SVR models are illustrated in Fig. 5 and 6. 218 

It can be comprehended from the figures that all three periodic and non-periodic models considerably 219 

underestimate some peak flows. It seems that preciseness of these models decreases with increasing flow rate. 220 

However, the superior accuracy of FOASVR and M5 to the SVR model can be comprehended from these 221 

figures. Comparison of Fig. 5 and 6 visibly indicate that the periodic models better approximates the observed 222 

river flows than the non-periodic models. Fig. 9 displayes the scattered diagrams of the observed and predicted 223 

monthly river flows by each method. It is noticeably evident from the graphs that the SVR model performs 224 

worse than the other two methods especially in the prediction of peak river flows. Comparison of two figures 225 

reveals that the estimates of periodic models are more accurate than non-periodic models. Also, this figure 226 

indicates that all models (periodic and non-periodic) overestimate some low flows. 227 

The test statistics of the FOASVR, M5 and SVR models for the Vaniar station are also provided in Table 3. 228 

Similarly, the encouraging influence of periodicity component on models’ precision is clearly seen for this 229 

station. For the FOASVR model, R increased from 0.57 (for input combination (1)) to 0.79 (for input 230 

combination (2)) and similarly, RMSE and MAE values decreased from 8.78 to 6.58 and from 4.77 to 3.86, 231 

respectively. In the case of two previous discharges inputs, by adding periodicity component, R increased from 232 

0.55 to 0.80 and RMSE, and MAE decreased from 8.88 to 6.48 and from 4.97 to 3.75, respectively. Finally, in 233 

the three previous discharges inputs case, R increased from 0.55 to 0.81 and RMSE, and MAE values decreased 234 

from 8.99 to 6.33 and from 5.53 to 3.71, respectively. Comparison of three models revealed that the optimal 235 

FOASVR-6 model whose inputs are Qt-1, Qt-2, Qt-3, and π performed better than optimal M5-2 comprising Qt-1 236 
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and π inputs and both performed better than the optimal SVR-6 model whose inputs are same as FOASVR-6. 237 

Generally, FOASVR performed better than SVR and M5 models, moreover, accuracy of SVR was increased 238 

by 29.7% and 30.4% related to RMSE and MAE in the optimal scenario (FOASVR-6) by applying FOA, 239 

respectively; also, FOASVR showed 16.8% and 19.7% better performances than M5 in terms of RMSE and 240 

MAE for this scenario, respectively. Without the periodicity component, the optimal FOASVR-1 model 241 

performed better than the optimal M5-1 and SVR-3 model. The relative RMSE and MAE differences between 242 

the optimal FOASVR-1 model without periodicity and FOASVR-1 model with periodicity input were 25.1% 243 

and 19.1%, respectively. The best values for BIC in this station were related to FOASVR-6 with 703.64, M5-244 

2 with 740.34, and SVR-2 with 825.05. According to the fact that FOASVR-6 was closely followed by 245 

FOASVR-4 with the value of 707.09 and FOASVR-2 with the value of 707.53, it is better to choose a 246 

combination with fewer input parameters. Thus, the input parameters of Qt-1 and π were selected as a 247 

parsimonious scenario for this station similar to the previous station. Fig. 7 and 8 demonstrate the time variation 248 

of observed and predicted river flows by the optimal periodic and non-periodic FOASVR, M5 and SVR 249 

models. As found for the Vaniar station, here also the three periodic and non-periodic models underestimate 250 

some peak flows. Comparison of Fig. 7 and 8 confirm that appending the periodicity component as the input 251 

increases the estimation capacity of the models. The scatterplots of the observed and predicted monthly river 252 

flows by each method are shown in Fig. 9. Alike to the previous station, the FOASVR and M5 perform better 253 

than the SVR model especially in the prediction of peak river flows. This figure indicates that the estimates of 254 

periodic models are more accurate. According to Fig. 9, same as Babarud station, the models overestimate low 255 

flows in the Vaniar station, so, forecasting shifts from overestimation to underestimation with increasing flow 256 

rate. 257 

Table 3 The evaluation parameters of studied models in the test period 258 

Model 

input 
Model 

Babarud Station Vaniar Station 

RMSE MAE R BIC RMSE MAE R BIC 

Qt-1 SVR-1 6.10 4.10 0.59 706.88 9.33 5.60 0.50 831.52 

 M5-1 5.94 3.62 0.61 696.57 9.57 5.44 0.54 840.91 

 FOASVR-1 5.74 3.29 0.63 683.28 8.78 4.77 0.57 809.04 

          

Qt-1, π SVR-2 5.97 3.88 0.61 703.79 9.04 5.31 0.52 825.05 

 M5-2 4.54 2.73 0.80 597.55 7.19 4.46 0.77 740.34 

 FOASVR-2 4.36 2.40 0.82 581.85 6.58 3.86 0.79 707.53 

          

Qt-1, Qt-2 SVR -3 5.98 4.04 0.62 704.44 9.21 5.57 0.53 831.95 

 M5-3 5.79 3.49 0.68 691.92 9.80 5.46 0.59 854.92 
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 FOASVR-3 5.33 2.90 0.70 659.80 8.88 4.97 0.55 818.45 

          

Qt-1, Qt-2, π SVR -4 5.85 3.83 0.64 701.18 8.96 5.33 0.54 826.99 

 M5-4 4.55 2.83 0.80 603.67 7.58 4.64 0.76 765.10 

 FOASVR-4 4.50 2.67 0.80 599.39 6.48 3.75 0.80 707.09 

          

Qt-1, Qt-2,Qt-3 SVR -5 5.91 3.90 0.62 705.14 9.22 5.73 0.52 837.57 

 M5-5 5.79 3.50 0.68 697.18 9.79 5.55 0.60 859.76 

 FOASVR-5 5.69 3.20 0.67 690.42 8.99 5.53 0.55 828.22 

          

Qt-1, Qt-2,Qt-3, π SVR -6 5.82 3.77 0.64 704.46 9.01 5.53 0.53 834.27 

 M5-6 4.54 2.84 0.80 608.09 7.61 4.62 0.75 771.78 

 FOASVR-6 4.58 2.67 0.79 611.49 6.33 3.71 0.81 703.64 

 259 

 260 

Fig. 5 The observed and forecasted monthly river flows without periodicity for Babarud station 261 

 262 

Fig. 6 The observed and forecasted monthly river flows with periodicity for Babarud station 263 
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 264 

Fig. 7 The observed and forecasted monthly river flows without periodicity for Vaniar station 265 

 266 

 267 

Fig. 8 The observed and forecasted monthly river flows with periodicity for Vaniar station 268 

 269 
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 270 

Fig. 9 The scatterplots of observed and forecasted monthly river flows with and without periodicity for both stations 271 

 272 

Furthermore, TDs were utilized for examining SD and R values for the FOASVR, M5 and SVR models. Fig. 273 

10 exhibits TDs for all models, where the space from the reference green point is an amount of the centered 274 

RMSE. So, it can be comprehended from Fig. 10 that FOASVR (a point with yellow color) provided relatively 275 

precise predictions of river flow in both stations. 276 

 277 

 278 

Fig. 10. TDs of the monthly predicted river flow 279 

 280 

 281 
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6. Conclusion 282 

In the current study, three different data-driven techniques, FOASVR, M5, and SVR were compared in one 283 

month ahead river flow forecasting in two stations, located in the Lake Urmia Basin of Iran. Comparison of 284 

three periodic models specified that the periodic FOASVR model had better accuracy than the periodic M5 285 

and SVR models. M5 was also found to achieve more suitable results than the SVR model. Similar to periodic 286 

models, comparison of non-periodic models showed that the optimal FOASVR also had a better performance 287 

than M5 and SVR models. It was proved that appending periodicity component significantly increases models’ 288 

accuracy in forecasting monthly river flows for both stations. For the Babarud station, the relative RMSE and 289 

MAE differences between the optimal periodic and non-periodic FOASVR models were found to be 18.2% 290 

and 17.2%, respectively. For the Vaniar station, the periodicity component decreased the RMSE and MAE 291 

values of the optimal FOASVR models by 27.9 and 22.2%, respectively. According to BIC, the second input 292 

combination (Qt-1 and π) opted as parsimonious inputs for FOASVR with values of 581.85 and 707.53 for 293 

Babarud and Vaniar stations, respectively. Generally, the performance of FOASVR models was better than 294 

the other two methods in forecasting monthly river flows. However, all methods indicated some difficulties in 295 

forecasting river flow peaks while the FOASVR models provided a better forecast in high river flows. 296 
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