

1 Article

2 Isolation of protease inhibitors from cyanobacteriaum 3 *Microcystis* sp. strain BM 25 which inhibits major 4 digestive enzyme in *Daphnia magna*

5 Md. Mohibul Hasan *¹, Md. kamrul Hasan ², M. Harun-or Rashid ³ and Abul Khayer ⁴

6 1 Department of Environmental Toxicology, Faculty of Biology, Universität Duisburg-Essen,
7 Universitätsstraße 2, 45141 Essen, Germany; mohibul.hasan.ude@gmail.com

8 2 Department of Bioengineering, Faculty of Graduate School of Natural and Applied Sciences, Bahçeşehir
9 University, Turkey; mdkamryl.hasan@bahcesehir.edu.tr

10 3 Biotechnology Division, Bangladesh institute of Nuclear Agriculture (BINA), BAU campus Mymensingh-
11 2202; mhrashid08@gmail.com

12 4 Department of Agriculture, Noakhali Science and Technology University, Noakhali-3814, Bangladesh;
13 zitunstu24@gmail.com

14 * Correspondence: mohibul.hasan.ude@gmail.com; +4917687146240

15 **Abstract:** Cyanobacterial mass developments in eutrophic ponds and lakes are a major concern for
16 lake management, as many cyanobacteria produce a huge variety of toxic secondary metabolites,
17 e.g. microcystins. The aim of this research was to culture a strain of the cyanobacterium *Microcystis*
18 sp strain BM25, to observe its biomass production and to isolate and purify protease inhibitors
19 from this cyanobacterial biomass. Different secondary metabolites were isolated following a
20 standard bioassay-guideline. Isolation was performed, with an enzymatic protease assay as
21 bioassay. High performance liquid chromatography was used to identify different fractions of
22 secondary metabolite from the strain BM25. Moreover, protease homogenates were isolated from
23 *Daphnia magna* in order to test the inhibitors against naturally occurring major digestive proteases
24 trypsin and chymotrypsin. It was measured that 60% MeOH and the 80% MeOH C18-SPE fraction
25 inhibits chymotrypsin activity 98% (6 nmol pNA min⁻¹ mg⁻¹) and 99 % (4 nmol pNA min⁻¹ mg⁻¹),
26 respectively. In contrast, trypsin activity was not inhibited by methanolic extracts of this
27 cyanobacterium strain.

28 **Keywords:** Cyanobacteria; Protease inhibitors; Digestive enzyme; Daphnia; HPLC; UV/Vis
29

30 1. Introduction

31 In aquatic systems, the transfer of carbon and energy to the consumer level is to a large extent
32 due to the interaction between the herbivore Daphnia and phytoplankton (e.g. Algae, Cyanobacteria)
33 [1]. Cyanobacterial mass developments, so-called 'blooms', have become widespread in last few
34 decades. Daphnia might also play a role in the control of cyanobacterial blooms because they are
35 unselective filter feeders. Due to have this character, they cannot distinguish between good and bad
36 food quality. However, cyanobacteria are low quality food source for this crustacean because
37 cyanobacteria are deficient of fatty acids and sterols which are necessary for the growth of Daphnia
38 [2]. Another reason is the production of secondary metabolites by cyanobacteria which are not
39 necessary for their growth or reproduction but they have detrimental effects on Daphnia [3].
40

41 Some species of cyanobacteria produce secondary metabolites called cyanotoxins, which are
42 harmful for terrestrial as well as aquatic organisms. Cyanobacterial toxins are classified on the basis
43 of their toxic action, and accordingly they are termed hepatotoxin, neurotoxin, cytotoxin,

44 dermatotoxin and irritant toxins [4]. Toxic effects of various cyanotoxins have been investigated in
45 mammals and aquatic organisms. *Microcystis* is a well-known cyanobacterial genus frequently
46 producing hepatotoxins called microcystins[5]. Microcytins are cyclic hepta peptides consisting of
47 short chain of amino acids linked by peptide bonds similar in structure to that of proteins. The cyclic
48 nature of the microcystins makes them difficult to break down and to be metabolized by the animals
49 that have ingested microcystins. Microcystins block protein phosphatases 1 and 2a with an
50 irreversible covalent bond, which are important molecular switches in all eukaryotic cells [5]. In
51 vertebrates, microcytins accumulate in the liver, where it damages liver tissue and promotes tumor
52 growth in the liver [5]. The cyanobacterium *Microcystis* sp. produces a variety of bioactive
53 metabolites which are cyclic and noncyclic peptides as well as depsipeptides with unusual amino
54 acid compositions. The most known cyclic peptides are classified as microcystins, nodularins and
55 hepatotoxins. Microcystins are produced by many cyanobacterial genus (eg.*Microcystis*). There are
56 different variants of microcystins known. Among them chief Microcystin poisonings is
57 Microcystin-LR which is found in freshwater environment [5]. There are also some non-toxic
58 compound produced by *Microcystis* sp. such as cyanopeptolins or Micropeptolins, which are one of
59 the class of cyanobacterial peptides.
60

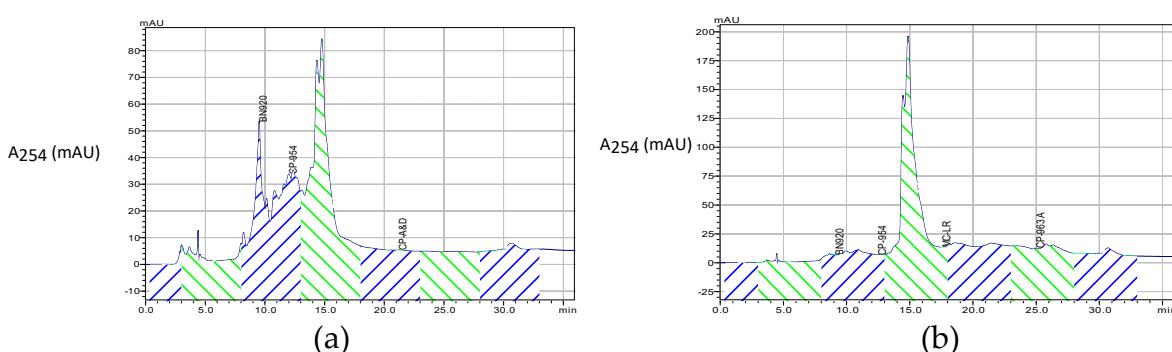
61 Trypsin and chymotrypsin are the major protease enzymes found in the gut of *Daphnia* [6].
62 These enzymes are also called serine proteases which represent the most important digestive
63 enzymes in the gut of *D. magna* [7]. On the other hand, protease inhibitors are another group of
64 cyanobacterial secondary metabolites that interfere with growth and reproduction of zooplankton.
65 In another study, it was reported that these inhibitors decreases protease activity and reducing
66 somatic growth [8-11]. An experiment was done by Schwarzenberger et al. (2013), it was found that
67 the inhibitor content of *M. aeruginosa* BM25 is increased under p-limited condition [12] According to
68 this study *M. aeruginosa* BM25 was grew in phosphorus depleted or nitrogen depleted medium and
69 the content of three micropeptins, also chymotrypsin inhibitors, were measured. They found that the
70 micropeptin content was different depending on the available nutrients. Under phosphorus deplete
71 condition higher growth of *Daphnia magna* compared to *Daphnia* that were fed with p-depleted
72 cyanobacteria.
73

74 From previous information it is clear that different species of cyanobacteria produce different
75 compounds, few of these compound interfere digestive proteases of planktonic crustaceans. The aim
76 of this study was to isolate specific compounds produced by *Microcystis* sp. strain BM 25 which
77 inhibit proteases activity of *Daphnia magna*. If such an inhibitor would be produced by *Microcystis*
78 sp. strain BM 25 then it would be identified by the subsequent fractionation of the extract using high-
79 performance liquid chromatography (HPLC) and by the inhibition of digestive proteases of *Daphnia*
80 *magna*, which was measured using spectrophotometer.
81

82 2. Results

83 An extract was produced from *Microcystis* sp. strain BM25 from freeze-dried biomass. Then, this
84 extract was loaded onto a C18 solid-phase extraction and successively eluted with 20%MeOH,
85 40%MeOH, 60%MeOH and 100% MeOH. These SPE fractions were tested for the inhibition of
86 trypsin and chymotrypsin in *Daphnia magna* homogenate. Inhibition of chymotrypsin activity was
87 measured by preparing different fractions i.e. 20%, 40%, 60%, 80% and 100% of *Microcystis* sp. strain
88 BM25. Without addition of any SPE-fraction, the *Daphnia* homogenate had a chymotrypsin activity.
89 Inhibition of trypsin was measured different volume of this cyanobacterial strain and no significant
90 inhibition observed (Appendix: Figure A1).
91

92 Addition of aliquots of the 20% MeOH and the 100% MeOH SPE-fractions had almost no effect on
93 the chymotrypsin activity. For 20% MeOH SPE-fractions, chymotrypsin activity was 287nmol
94 pNAMin⁻¹mg⁻¹and for 100% MeOH SPE-fractions, chymotrypsin activity was 289 nmol pNA

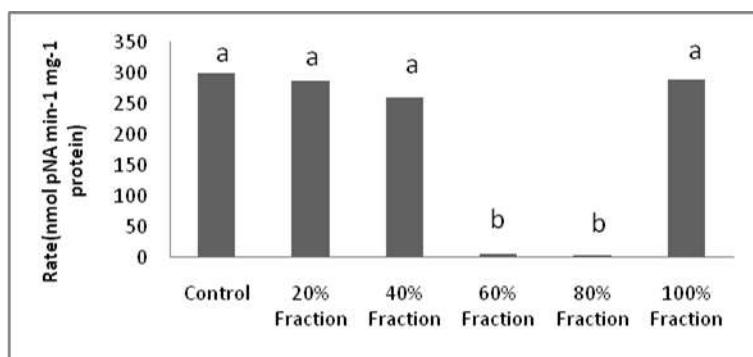

95 min⁻¹mg⁻¹. However, addition of aliquots of 60% MeOH and 80% MeOH SPE-fractions resulted in
 96 chymotrypsin activities of 6 nmol pNA min⁻¹mg⁻¹ and 4 nmol pNA min⁻¹mg⁻¹ (Figure 2). This
 97 indicates that the 60% MeOH and 80% MeOH SPE fractions inhibited the *Daphnia* chymotrypsin by
 98 98% and 99 %. Therefore, only the 60% MeOH and 80% MeOH SPE fractions used were for the
 99 subsequent HPLC analyses.

100 After that, 50 μ L of 60% MeOH and 80% MeOH SPE fractions were injected to HPLC to separate
 101 chymotrypsin inhibitors from other compounds. The sample was chromatographed on a gradient
 102 with 6 min: 40% MeOH to 25 min: 80% MeOH and seven fractions were collected from each
 103 SPE-fractions thus that the entire HPLC run was collected in fractions. A few peaks were detected at
 104 different retention times (Figure 1a and Figure 1b), which indicates that different compounds were
 105 present among the fractions. After collecting the fractions were evaporated to dryness and
 106 re-dissolved in the 250 μ L of methanol. Aliquots of this methanolic solution were added to *Daphnia*
 107 *magna* homogenate and then the chymotrypsin activity was determined with the aim to identify
 108 which specific fraction would inhibit *D. magna* chymotrypsin activity. In each assay 25 μ L of the
 109 fractions was used (Appendix: Figure 1B and Figure 2A)

110 without any additions (control) had a chymotrypsin activity of 367 nmol pNA min min⁻¹mg⁻¹
 111 (Appendix: Figure 1B). Addition of aliquots of the HPLC fractions 0, 1, 2, 5 and 6 did not change this
 112 activity (Appendix: Figure 1B). However, addition of HPLC fraction 4 resulted in an activity of 292
 113 nmol pNA min⁻¹mg⁻¹ and addition of HPLC fraction 3 led to chymotrypsin activity of 14 nmol pNA
 114 min⁻¹mg⁻¹. This means that HPLC fraction 4 inhibited the *Daphnia* chymotrypsin activity by 20% and
 115 fraction 3 inhibited 96 %.

116 For 60% MeOH C18-SPE fraction (Figure 2A), *D.magna* homogenate had a chymotrypsin activity of
 117 375 nmol pNA min⁻¹mg⁻¹ (Appendix: Figure 2A). Addition of aliquots of the HPLC fractions 0, 1, 4, 5
 118 and 6 did not change this activity (Appendix: Figure 2A). However, addition of HPLC fraction 2
 119 resulted in an activity of 200 nmol pNA min⁻¹mg⁻¹ and addition of HPLC fraction 3 led to
 120 chymotrypsin activity of 32 nmol pNA min⁻¹mg⁻¹ (Appendix: Figure 2A). This means that HPLC
 121 fraction 2 inhibited the *Daphnia* chymotrypsin activity by 47% and fraction 3 inhibited 91 %. It
 122 indicates that both, the 60% MeOH and the 80% MeOH C18-SPE fraction contain the same
 123 chymotrypsin inhibitor.

124 10 μ l of 80% and 60%MeOH C18-SPE fraction was injected into HPLC using gradient with 6min 55%
 125 and 25min 55% condition and seven fractions were collected .After 20.98min retention time, a peak
 126 was observed at a wavelength of 254nm (Appendix: Figure 2B) for 80% MeOH C18-SPE fraction.
 127 Finally, inhibition of chymotrypsin activity was determined by bioassay and it was observed that
 128 fraction 4, 3 and 5 inhibits chymotrypsin activity than the other fractions.



134
 135 **Figure 1.** High performance liquid chromatography and fractionation of 50 μ L of an extract that had
 136 been eluted from a C18-SPE cartridge with (a) 60 % MeOH and (b) 80%. of *Microcystis* sp strain BM25.
 137 Numbers and vertical lines indicate retention times for fractions number 0-6. A gradient of 6 min:
 138

139
140

Several peaks are seen in the fractions 1-3, which indicates the existence of compounds among these fractions.

141

142
143
144
145
146
147
148
149
150

Figure 2. Effects of an extract of *Microcystis* sp. strain BM25 on chymotrypsin activity from homogenate of *D. magna*. The crude extract of this cyanobacterial strain had been loaded onto a C18-solid phase extraction (SPE) cartridge and successively been eluted by 20% MeOH, 40 % MeOH,60% MeOH,80%MeOH,100%MeOH and aliquots of each SPE fraction were added inhibition of chymotrypsin activity were determined. It was observed that among different percentage of fractions only the 60% and 80% fractions of *Microcystis* sp. strain BM25 completely inhibited chymotrypsin activity of *D. magna*. Shown are mean values \pm SD (n=3). Different letters indicate a significant difference among the content of the respective inhibitor (Tukey's HSD after one-way ANOVA, P<0.05).

151
152
153
154
155
156
157
158
159
160

3. Discussion

Crude extract of *Microcystis* sp. strain BM25 was assayed to compare inhibition of trypsin and chymotrypsin activity. There was no significant inhibition observed for trypsin activity but the 60% and 80% SPE fractions of this cyanobacterium strain completely inhibited chymotrypsin activity of *D. magna*. This finding is in line with [13], and it is therefore clear that ingestion of this cyanobacterial strain by *D. magna* leads primarily to interference with the animal's chymotrypsin and not with its trypsin activity[13].Therefore it was concluded that this strain BM25 of *Microcystis* contains considerably more chymotrypsin inhibitors than trypsin inhibitors, and thus all further work focused on the purification of chymotrypsin inhibitors from this cyanobacterium.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

After HPLC, several peaks indicated the existence of different compounds present in *Microcystis* sp. strain BM25 60% and 80% MeOH SPE fractions. After subsequent bioassays revealed that there were compounds present which inhibited *D. magna* chymotrypsin activity. Fraction 3 was inhibitory as it was for the 60% and 80% MeOH C18-SPE fraction. Which indicates that both, the fraction contain the same chymotrypsin inhibitor. This results demonstrated that *Microcystis* sp. strain BM25 contains chymotrypsin inhibitors which interfere with the digestive proteases of *D. magna*. Recently the two major types of proteases in *D.magna* were categorized as trypsins and chymotrypsins [14]. Numerous cyanobacteria produce protease inhibitors, which are mostly cyclic or linear peptides. A number of such peptides have been isolated from natural water blooms, which inactivate trypsin or chymotrypsin activity [14]. Protease inhibitors are a group of cyanobacterial secondary metabolites that interfere with growth and reproduction of herbivorous zooplankton. These protease inhibitors are found in many cyanobacterial blooms which inhibit digestive serine proteases of *D.magna*[13]. These serine proteases represent the most important digestive enzymes in the gut of this small crustaceans Daphnia [14].When cyanobacterial cells with protease inhibitors are ingested, then the protease inhibitors negatively affect the fitness of *D. magna* by decreasing the protease activity in the gut and thus finally reducing somatic growth of Daphnia [13].

178
179

An experiment was done to identify protease inhibitors in cyanobacteria and it was found *Microcystis aeruginosa* produces few secondary metabolites which inhibits digestive protease from a

180 major phytoplankton grazer in freshwater lakes i.e the genus *Daphnia*[15]. Two major classes of
181 digestive proteases, trypsin and chymotrypsin, in *D. magna* have been found to have multiple
182 inhibitor with different specificities against them which were contained by *Microcystis aeruginosa*
183 PCC 7806[15].Those inhibitors possess a chemical nature which is still not known. Cyanopeptolins
184 A-D and microcystins are known to be produced by *M. aeruginosa* PCC 7806 but, trypsin or
185 chymotrypsin are not inhibited by microcystins[15]. However, bovine trypsin has been inhibited by
186 Cyanopeptolin A[15].whether cyanopeptolins belongs to the inhibitors of *D. magna* trypsins needs to
187 remain tested because there are subsequent difference in sensitivity found between proteases of
188 bovine origin and from *D. magna* to synthetic inhibitors and inhibitors from *Microcystis aeruginosa*
189 [15].
190

191 In conclusion, it is clear that chymotrypsin activity of *D. magna* is inhibited by *Microcystis*
192 sp.strain BM25.After HPLC and bioassay it is observed that peaks are correlated with the
193 chymotrypsin inhibition of *D. magna*. However, as separation of these two peaks by HPLC has not
194 yet been successful, different gradients, column,mobile phase, temperature was used to separate
195 chymotrypsin inhibitors from other compounds. It remains to be seen, if it is one or two major
196 inhibitors. And it remains to be tested by LC-MS, if these inhibitors are known chymotrypsin
197 inhibitors or yet unknown compounds.

198 4. Materials and Methods

199

200 4.1 Preparation and fractionation of *Microcystis* sp. strain BM25 extracts

201

202 Ten (10) Litre of a dense culture of *Microcystis* sp strain BM25 were centrifuged (17700g,
203 Temperature 10°C) for 10 minutes and the supernatant was discarded. The pallet was dried using
204 freeze-drier (Christ LOC-1m freeze dryer, ALPHA 1-4, Merrington,Shrewsbury, Shropshire, UK).
205 Freeze-drying was stopped when the weight of the biomass was stable (4th measurement day-4).
206 Freeze dried *Microcystis* sp. strain BM25 was transferred into a mortar by spatula and grinded using a
207 pestle. The final weight of the powdered *Microcystis* sp strain BM25 was 5.7g. One gram (1g) of dried
208 *Microcystis* sp strain BM25 was transferred into an Erlenmeyer flask, and 100ml 60% MeOH were
209 added and centrifuge (30,000g) for 3 minutes. Then,transferred *Microcystis* sp strain BM25 supernatant
210 to a 1000 mL biker. Ultrapure H₂O (500mL) was added to dilute the methanol to a final concentration of
211 10%. Next step to prepare sample was solid-phase extraction(SPE). For this experiment C18 (BM25
212 ODS)cartridge was used as stationary phase and 10% 600ml prepared sample was used as mobile
213 phase. By using the behavior of solute and different concentration of MeOH 20%, 40%, 60%, 80%, 100%
214 (Concentrated MeOH) solution was prepared. The portion that passes through the stationary phase
215 was discarded. The different fractions obtained from elution of the C18 SPE with 20%, 40%, 60%, 80%
216 and 100% MeOH were evaporated to dryness using a rotatory evaporator and 40°C. The residue was
217 re-dissolved in 10ml MeOH and transferred into a test tube. After that, the different fractions were
218 evaporated to dryness with the speed vac evaporator (Temperature 140°C). The residue was
219 re-dissolved in 1ml MeOH and transferred into a cap. Final volume of each fraction was 1ml.
220

221 4.2 Analysis of protease inhibitors using HPLC-DAD

222

223 HPLC-DAD is a form of liquid chromatography used to separate compounds that are dissolved
224 in solution. HPLC instruments basically consist of a reservoir of mobile phase, a pump; an injector, a
225 separation column, and a detector. After injection, the different components in the sample pass
226 through the column at different rates due to differences in their partition behavior between the mobile
227 phase and the stationary phase. The DAD detector was coupled to the HPLC in our experiment. All
228 chromatographic analyses were performed on a binary high pressure gradient HPLC system of
229 Shimadzu. The system was composed of SIL – 20 AC Auto sampler, LC – 20 AB Liquid
230 Chromatograph, DGU – 20 AB Degasser, CTO – 10 AC Column Oven. Fractionation and sample

231 purification 50 μ L *Microcystis* sp BM25 SPE was injected through the HPLC machine. In 40-80%
232 gradient condition fractions were collected in different retention time. In gradient condition with 6
233 min: 55 % MeOH to 25 min: 55 % MeOH condition,30 μ L 80% *Microcystis* sp. strain BM25 SPE of
234 sample (10 μ L injected each run) injected through the auto sampler and collected fractions in different
235 retention time.

236

237 *4.3 Pre-cultivation and homogenate preparation of Daphnia*

238

239 *Daphnia magna* clone B was used for this experiment which had been isolated. Twenty *D. magna*
240 were taken in 6 glass vessels which were kept in low light condition and constant room temperature
241 (20°C). Aged tap water was used as culture medium. The animals were fed daily with *Chlamydomonas*
242 *klinobasis*(strain 56) that had been filtered first with a 30um net filter. Every second day animals were
243 transferred in new glass vessels with fresh water and new food. After one week eggs were visible in
244 their brood chamber. The green alga *C. klinobasis* strain 56 used as food for *D. magna* . This algal strain
245 had been obtained from the Limnological Institute, University of Konstanz, Konstanz, Germany. It
246 was cultivated in cyanophycean medium at 20°C at 130 μ Em⁻² s⁻¹. After pre-cultivation, 72 *D.magna*
247 with eggs were collected in Eppendorf tube (1.5mL) and 360 μ L of water (5 μ L ultrapure H₂O per each
248 *D.magna*) were added. Homogenizer was washed with Ethanol before *D. magna* homogenate
249 preparation. Homogenized *D.magna* was centrifuged (14,000g) for 3 minutes and transferred
250 supernatant in new Eppendorf tube (1.5mL). Activity of the supernatant was assayed by using
251 spectrophotometer (UV/Vis).

252

253 *4.4. Inhibition of digestive proteases of Daphnia magna using spectrophotometer*

254

255 The protein concentration of the supernatant of *Daphnia magna* homogenate was analyzed using
256 a Qubit fluorometer(Invitrogen, Carlsbad, CA, USA). Concentration of *D. magna* protein was
257 measured (by using $C_1V_1=C_2V_2$ formula). After using spectrophotomer, activity was measured in
258 optical density per minute (OD/min). Then specific proteolytic activity was determined as nmol pNA
259 min⁻¹ mg⁻¹. Proteolytic activity of *D. magna* trypsin activity was assayed using the substrate
260 N-benzoyl-DL-arginine p-nitroanilide (BApNA) at a final concentration of 1.4 mM in 7.5% (v/v)
261 dimethylsulfoxide (DMSO). The reaction was carried out in 0.1 M phosphate buffer, pH 7.5. The
262 solution was thermoequilibrated at 20°C before the addition of 5 μ l of *D. magna* homogenate to start the
263 reaction. The hydrolysis of substrate was monitored continuously at 390 nm for 10 min and checked
264 for linearity. Chymotrypsin activity was assayed as above, except that
265 N-succinyl-alanine-alanine-proline- phenylalanine p-nitroanilide [S(Ala)2ProPhepNA] was used as a
266 substrate at a final concentration of 0.95 mM in 7.5% (v/v) DMSO. Crude extract of *Microcystis* sp.
267 strain BM25 SPE was prepared to observe inhibition of digestive proteases of *D. magna*. All the assays
268 were carried out in triplicate and the mean data of the treatments are presented in results section.

269

270 *4.5 Statistical analysis*

271

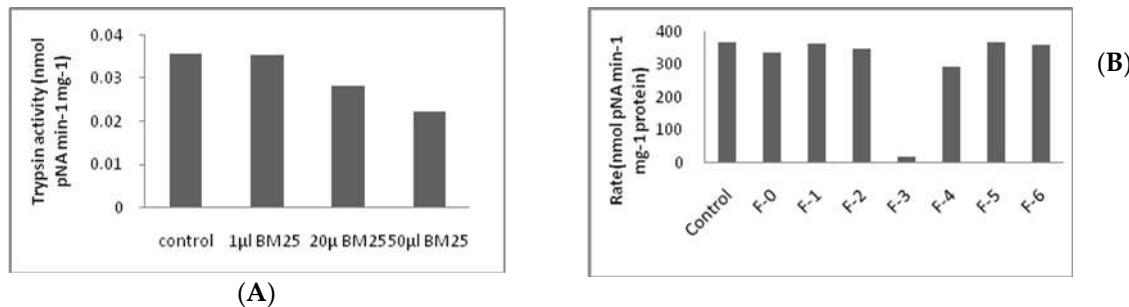
272 Statistical analyses were conducted with the program SigmaPlot 11.0. The data were analyzed using
273 one way ANOVA and a post hoc analysis [Tukey's honestly significant difference (HSD)].Graph were
274 made with Microsoft office Excel 2007.

275

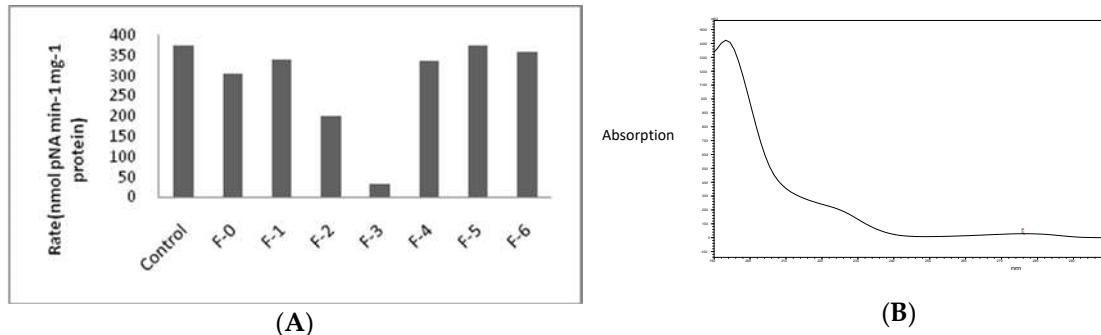
5. Conclusions

276

277 Extracts of *Microcystis* sp. strain BM25 inhibit one of the major proteases of *Daphnia magna*, i.e.
278 chymotrypsins. Chymotrypsin activity was inhibited but trypsin activity was not inhibited by
279 methanolic extracts of this cyanobacterium strain. It was observed that 60% MeOH and the 80%
280 MeOH C18-SPE fraction inhibits chymotrypsin activity 98% and 99 % respectively. After HPLC,
281 there were some fractions were collected from 60% and 80% MeOH C18-SPE fraction. HPL-fractions
number 3 inhibited chymotrypsin activity completely. It was true for both *Microcystis* sp. strain


282 BM25 60% and 80% MeOH C18-SPE-fractions inhibits chymotrypsin activity completely. So, it is
 283 assumed that there are common chymotrypsin inhibitors present in 60% and 80% MeOH
 284 C18-SPE-fractions. Separation of peaks is not been successful yet. Further research work is needed to
 285 identify chymotrypsin inhibitor by LC-MS. It is still unknown that which compound of this
 286 cyanobacterium inhibits chymotrypsin activity of *D. magna*.
 287

288 **Author Contributions:** Md.Mohibul Hasan had conducted the experiments and wrote a draft manuscript.
 289 Md.Kamrul Hasan, Abul Khayer and M.Harun-or Rashid checked and edited the manuscript.


290 **Funding:** This research received internal funding.

291 **Conflicts of Interest:** No conflict of interest.

292 **Appendix A**

293 **Figure 1.** (A)Effects of an extract of *Microcystis* sp strain BM25 on trypsin activity from homogenate of *D.*
 294 *magna* were determined by monitoring the release of p-nitroaniline (pNA).No significant inhibition of
 295 trypsin observed. (B) Chymotrypsin activity was measured by collecting seven fractions from HPLC. In
 296 HPLC 80% MeOH SPE- fraction was injected. And 25µl of the HPLC-fractions were used in each
 297 measurement. It was found that fraction 3 inhibits chymotrypsin activity. Shown are mean values \pm SD
 298 (n=3).

299 **Figure 2.** (A)Chymotrypsin activity was measured by collecting seven fractions from HPLC. In HPLC 60%
 300 MeOH SPE- fraction was injected. And 25µl of the HPLC-fractions were used in each measurement.
 301 Fraction 3 inhibits chymotrypsin activity more than any other fractions. However, it was found that
 302 fraction 2 also inhibited chymotrypsin activity but to some lesser extent. Shown are mean values \pm SD
 303 (n=3). Different letters indicate a significant difference among the content of the respective inhibitor
 304 (Tukey's HSD after one-way ANOVA. (B) Injected volume was 10 µl of 80% *Microcystis* sp BM25 at 55-55%
 305 isocratic condition. UV-spectrum of the peak with a retention time of 20.98 min and the spectrum shows
 306 maximam at 196 nm, 225 nm and 276 nm.

307 **References**

1. Liess, A. and Hillebrand, H. Invited review. Direct and indirect effects in herbivore-periphyton interactions. *Arch. Hydrobiol.* **2004**, 159, 433-453.
2. Martin-Creuzburg, D.; Von Elert, E. Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of *Daphnia magna*. *Aquatic ecology*. **2009**, 4, 943-950.

312 3. Sarnelle, O., Gustafsson and Hansson, L.A. Effects of cyanobacteria on fitness components of the herbivore
313 Daphnia. *Journal of plankton research*. **2010**, 32, 471-477.

314 4. Mankiewicz, J.M.; Tarczynska, Z.; Walter and M. Zalewski. Natural toxins from cyanobacteria. *Acta biological
315 cracoviensis series botanica*. **2003**, 45/2, 9-20.

316 5. Bownik, A. Effects of cyanobacterial toxins, Microcystins on freshwater invertebrates. *Polish journal of natural
317 science*. **2013**, 28(2), 185-195.

318 6. Von Elert, E.; Agrawal, M.K.; Gebauer, C.; Jaensch, H.; Bauer, U.; Zitt, A. Protease activity in gut of *Daphnia
319 magna*: evidence for trypsin and chymotrypsin enzymes. *Science direct*. **2003**, 137, 287-296.

320 7. Von Elert, E.; Agrawal, M. K.; Gebauer, C.; Jaensch, H.; Bauer, U.; and Zitt, A. Protease activity in gut of
321 *Daphnia magna*: evidence for trypsin and chymotrypsin enzymes. *Comp. Biochem. Physiol. B* **2004**, 137,
322 287-296.

323 8. Lürling, M. Daphnia growth on microcystin-producing and microcystin-free *Microcystis aeruginosa* in
324 different mixtures with the green alga *Scenedesmus obliquus*. *Limnol. Oceanogr.* **2003**, 48, 2214-2220.

325 9. Rohrlack, T.; Dittmann, E.; Henning, M.; Börner, T.; and Kohl, J. G. Role of microcystins in poisoning and
326 food ingestion inhibition of *Daphnia galeata* caused by the cyanobacterium *Microcystis aeruginosa*. *Appl.
327 Environ. Microbiol.* **1999**, 65, 737-739.

328 10. Von Elert, E.; Zitt, A. and Schwarzenberger, A. Inducible tolerance to dietary protease inhibitors in *Daphnia
329 magna*. *J. Exp. Biol.* **2012**, 215, 2051-2059.

330 11. Schwarzenberger, A.; Kuster, C. J.; and Von Elert, E. Molecular mechanisms of tolerance to cyanobacterial
331 protease inhibitors revealed by clonal differences in *Daphnia magna*. *Mol. Ecol.* **2012**, 21, 4898-4911.

332 12. Schwarzenberger, A.; D'Hondt, S.; Vyverman, W. and Von Elert, E. Seasonal succession of cyanobacterial
333 protease inhibitors and *Daphnia magna* genotypes in a eutrophic Swedish lake. *Aquat. Sci.* **2013**, 75, 433-445.

334 13. Schwarzenberger, A.; Sadler, T.; and Von Elert, E. Effect of nutrient limitation of cyanobacteria on protease
335 inhibitor production and fitness of *Daphnia magna*. *The Journal of Experimental Biology*. **2013**, 216, 3649-3655.

336 14. Von Elert, E.; Agrawal, M.K.; Gebauer, C.; Jaensch, H.; Bauer, U.; and Zitt, A. Protease activity in guts of
337 *Daphnia magna*: Evidence for trypsin and chymotrypsin enzymes. *Comparative Biochemistry & Physiology
338 Part B*. **2004**, 137, 287-296.

339 15. Agrawal, M.K.; Zitt, A.; Bagchi, D.; Weckesser, J.; Bagchi, S.N.; and Von Elert, E. Characterization of proteases
340 in guts of *Daphnia magna* and their inhibition by *Microcystis aeruginosa* PCC 7806. *Environmental
341 Toxicology*. **2005**, 20, 314-322.