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Abstract: This study presents a new form of velocity distribution in laminar liquid flow in 9 
rectangular microchannels using the eigenfunction expansion technique. Darcy friction factor and 10 
Poiseuille number are also obtained analytically. Due to the symmetry of the solutions, the effects 11 
of changing the aspect ratio from 0 to ∞ are also discussed. Using finite element method (FEM), the 12 
obtained analytical results are further compared with the 3D numerical simulations for the 13 
rectangular microchannels with different range of aspect ratio and pressure gradient, and excellent 14 
agreements were found. These findings provide additional insights in interpreting the results of the 15 
pressure-driven flows in finite aspect ratio microchannels, in which very precise comparison with 16 
the macroscale theory is crucial. 17 
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 20 

1. Introduction 21 

Microchannels are basic components in drug delivery devices [1,2], micro-electro-mechanical-systems 22 
(MEMS) [3], and lab-on-a-chip systems [4], microfluidic assisted reproductive technology (ART) [5] and other 23 
microfluidic components [6-20]. Large surface-to-volume ratio (SVR) [21-23] of microchannels makes 24 
them an excellent choice for compact and efficient heat exchangers in electronic cooling devices 25 
[24,25]. In biomedical and chemical sciences, microchannels are used to deliver and analyze the 26 
micron-sized biological and chemical substances [26-29]. Therefore, a complete understanding of the 27 
flow characteristics in microchannels is essential to improve the performance of such an 28 
interdisciplinary field.  29 

For fully developed incompressible flow in microchannels at low Reynolds number, partial 30 
differential equation (PDE) of the momentum equation simplifies to the classic Poisson equation [30]. 31 
Although classical 1D analysis of Hagen-Poiseuille for a cylindrical pipe is usually adapted to solve 32 
in noncircular cross-section microchannels by considering the equivalent hydraulic diameter ([31]), 33 
analytical modeling for rectangular cross-section microchannels needs 2D analysis ([30),32),33]). 34 
Because of the complexity of this approach, most of the previous research works merely focused on 35 
high aspect ratio microchannel, which is, in fact, the flow between two parallel plates. One of the 36 
drawbacks of such an analysis is that the effect of the side walls is ignored. From the experimental 37 
point of view, any discrepancy from the macroscopic theories is related to microscale behavior. This may 38 
become misleading if the comparing theories are not very accurate.  39 

The two-dimensional solution of Poisson equation is similar to the theory of elasticity. Therefore, 40 
the 2D velocity profile was classically obtained by an analogy with the torsion problem in elasticity 41 
using Lagrange stress function [34] and presented by [35] and [36], and well summarized by [37] for 42 
different channel cross-sections. In the obtained series solutions for the rectangular channels, the 43 
variables of the lateral coordinates were expressed by two different functions, i.e., one variable with 44 
hyperbolic function and the other one with trigonometric function.  Spiga and Morino used finite 45 
Fourier transform to find the velocity profile of the rectangular channels and verified their results by 46 
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comparing the obtained friction factors with those presented in the literature [33]. Additionally, 47 
approximate solutions for the channels by considering the side walls effect also exist. Knowing the 48 
maximum velocity,  Purday proposed an approximate expression to calculate the average velocity 49 
of the channels with the aspect ratio greater than 2 [38]. Using finite difference method for channels 50 
with the aspect ratio greater than 3, Natarajan and Lakshmanan presented another approximate 51 
solution for the velocity field [39]. Savino and Siegel also suggested an approximate series solution 52 
for the channels with the aspect ratio from 1 to ∞ [40]. The other exact series solutions of the Poisson 53 
equation were also proposed in the literature [41,42)]. Even though the experimental results verified 54 
the accuracy of these models, the convergences of these series solutions were slow and had many 55 
computational complexities. Moreover, the lateral coordinates in all, except the solution presented 56 
by [33], of these classical solutions of the Poisson equation describing the velocity profile of the finite 57 
aspect ratio channels were in the asymmetric form with different numerical exponents. Furthermore, 58 
to relate the frictional losses to the average velocity in the channels, classical Darcy-Weisbach 59 
equation is used. Subsequently, instead of performing detailed analytical solutions, most commonly, 60 
friction factor and Poiseuille number are multiplied by empirical Hartnett–Kostic correction factor to 61 
take into account the effect of the microchannels aspect ratio in the literature (see for example a review 62 
article by Dey et al. [43]).  63 

In the present paper, a new form of velocity distribution in laminar liquid flow in rectangular 64 
microchannels is obtained by adopting the eigenfunction expansion technique [44]. Darcy friction 65 
factor and Poiseuille number are also found analytically and the effects of changing the aspect ratio 66 
from 0 to ∞ are discussed. Using finite element method (FEM), the obtained analytical results are 67 
further compared with the numerical simulations of COMSOL Multiphysics for microchannels with 68 
different values of aspect ratio and pressure gradient.  69 

 2. Materials and Methods 70 

2.1 Analytical Modeling 71 

In the present study, the velocity distributions of a creeping flow in a rectangular microchannel 72 
are derived. This type of flow is dominant at small length scale, low velocity or for a very viscous 73 
fluid. By considering hydrophilic channel walls, the boundary conditions (BCs) are the homogeneous 74 
no-slip Dirichlet BCs. Yet, the governing equation is still non-homogeneous and the classical method 75 
of separation of variables cannot be applied.  76 

In order to solve this type of PDE, the method of eigenfunction expansion can be used, 77 
corresponding to the homogeneous BCs and non-homogeneous linear governing PDE equation [44]. 78 
It is common in the literature that the origin of coordinates describing the velocity distribution is chosen at the 79 
center of the channel (Figure 1-a) but it is mathematically more convenient to transform it to the bottom corner 80 
of the channel, (Figure 1-c). The new coordinates X and Y can be defined:  � = � + �;  � = � + ℎ. 81 

 82 

 83 

Figure 1. Schematic of the model: a) Rectangular cross-section of the channel with the flow velocity 84 
at z-direction (normal to the page). b) Corresponding BCs (no-slip) at the walls and Stokes governing 85 
equation; c) Transformation of the coordinate to X and Y  86 

(a) (b) (c) 
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The momentum equation in the streamwise direction becomes: 87 

 ���
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(1) 

where � and  
��

��
 are the velocity and pressure gradient in the streamwise direction z, respectively. 88 

Since 
��

��
 and fluid viscosity, ��, are constant across the channel cross-section, we denote them with 89 

a single variable F. Thus, we need to solve Eq.(1) subject to the following no-slip BCs: 90 
 91 

 ���� �
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 92 
If we can find a function (say, � ) by which the Laplacian operator is simplified to the operation, i.e., 93 
��(�) = �. � , then we can find the solution of the problem easily. In mathematical terminology, such 94 
function is called eigenfunction with the corresponding λ as the eigenvalue. Eigenfunction should 95 
also satisfy the BCs. Accordingly, 2D form of the solution can be written as:  96 
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where ��� is a constant needed to be determined. Substituting this form of the solution into Eq. (1) 97 
results: 98 
 99 
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 100 
Considering the above equation as the double Fourier sinusoidal series expansion of F, we can find 101 
the as-yet unknown  ���  after some mathematical manipulations: 102 
 103 
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−16 � ��  ℎ� 

{(��)� + (���)�}
�
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��
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1

��
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 104 
where � is the aspect ratio of the channel, that is: 105 

 � =
2�

2ℎ
 

                

(6) 

By substituting Eq. (5) into Eq. (3), and replacing the (X, Y) with the original (x, y) the final form of 106 
the velocity profile becomes: 107 
 108 
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By introducing the normalized velocity �∗ : 109 
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 110 
The final dimensionless form of the velocity becomes: 111 
 112 
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 113 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2019                   doi:10.20944/preprints201905.0316.v1

https://doi.org/10.20944/preprints201905.0316.v1


 4 of 11 

Also the flow rate can be calculated by integrating the velocity distribution, Eq. (7), as: 114 
 115 
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(10) 

Furthermore, the average velocity can be calculated as: 116 

 � = �� × � ⇒ �� =
�

4 �ℎ�
 

               

(11) 

By substituting Eq. (10) into Eq. (11), and some mathematical manipulations, the final form of the 117 
average velocity of the channel by considering the aspect ratio effect becomes: 118 

 �� = ����� �(�) (12) 

where ����� is the classical Hagen-Poiseuille average velocity: 119 
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And �(�) is the additional term due to the side walls effects: 120 
 121 
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 122 
Furthermore, Darcy friction factor � can be written as: 123 
 124 
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 125 
where hydraulic diameter �� is: 126 
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 127 

By substituting Eq. (12) and Eq. (16) into Eq. (15), Final form of the friction factor becomes: 128 

 129 
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Equivalently, we can also define Poiseuille number, �� , by multiplying Darcy friction factor to 130 
Reynolds number: 131 

 �� = 96 �(�) 
              

(18) 
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2.2 Numerical Simulation 132 
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To numerically simulate the flow in the rectangular microchannel and validate the results of the 133 
theoretical ones, COMSOL Multiphysics 3.5a was used which implements the FEM approach to 134 
discretize and solve the governing equations. To this aim, first 3D models of the microchannels with 135 
the geometrical sizes shown in Table 1 were sketched: 136 

Table 1. Geometrical sizes of the microchannels used for numerical simulation 137 

�� (�� ) ��  (�� ) � (�� ) � = � /� � � (�� ) 

20 60,10  1 3,0.5 30, 13 

 138 

Subsequently, DI water with a density of � = 1000 
��

� �, dynamic viscosity of �� = 0.001 Pa. s, and 139 

zero body forces were defined. Inlet pressure was varied from 500 Pa to 4000 Pa while atmospheric 140 
pressure was defined as the outlet BC. Other domains of the microchannel were considered as the 141 
solid walls with no-slip BCs. 142 
Total element numbers of 17191 tetrahedral grids were generated after testing the grid independency. 143 
The grid shapes, as well as velocity distributions on z-plane, are shown in Figure 2(a,b). 3D form of 144 
the Navier-Stokes equation was used to simulate the results. 145 

 146 

Figure 2. Numerical modeling of the microchannels: (a) Extra fine tetrahedral meshes structures. (b) 147 
Numerical velocity distribution on z-plane for pressure gradient of 500 Pa. 148 

3. Results and Discussion 149 

Figure 3 illustrates the variations of the normalized velocity distribution with respect to the 150 
aspect ratio, i.e. Eq. (9). The results show that by increasing the aspect ratio, velocity profile becomes 151 
more parabolic and the effects of side walls on velocity distributions become negligible. That means, 152 
the classical Hagen-Poiseuille equation is the limiting case of the obtained 2D analytical formula 153 
when aspect ratio approaches infinity.  154 

(b) 

(a) 
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 155 

Figure 3. Variations of the normalized velocity (Eq. (9)) at different values of aspect ratio: (a) � = �; 156 
(b) � = �;  (c) � = �; (d) � = ��; (e) � = ��; (f) � = ��;  157 

To further illustrate the effect of aspect ratio on frictional losses, Poiseuille number is plotted as 158 
a function of aspect ratio in Figure 4. Two distinctive cases are distinguishable. First, when the aspect 159 
ratio is less than unity (lower left inset of Figure 4). In this case, Poiseuille number increases by 160 
decreasing the aspect ratio. In the limiting case of zero aspect ratio, it approaches up to 96. Second 161 
situation, corresponds to the case where aspect ratio is more than unity (upper right inset of Figure 162 
4). In that case, Poiseuille number increases by increasing the aspect ratio. Consistently, for very large 163 
aspect ratio, maximum value of Poiseuille number becomes 96 corresponding to the two parallel 164 
plates channels. Generally, it can be concluded for the laminar flow at the same Reynolds number, 165 
square cross-section channels (α = 1) generates the lowest frictional losses and as the channel cross-166 
section deviates from being square shape, frictional losses increases (up to 74%).      167 

(a) (b) (c) 

(d) (e) (f) 
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  168 

Figure 4. Poiseuille number �� vs. aspect ratio �. The insets at the lower left and upper right show 169 
Po variations for � < � < �  and � ≥ �, respectively.  170 

Comparison between the derived analytical velocity distributions, i.e., Eq. (7), and the obtained 171 
numerical results across the channel height and width (along the vertical and horizontal directions 172 
of the microchannel, respectively) are illustrated in Figure 5 for two different values of channel aspect 173 
ratio at the same pressure gradient (500Pa). The analytical results are in excellent agreement with the 174 
numerical simulations at different locations of the channel cross-section. As expected, maximum 175 
velocity occurs at the midplanes (� = � = 0). Also, it is shown that the classical equation of Hagen-176 
Poiseuille, i.e. Eq. (13), can only predict the maximum velocity distributions on the midplane, i.e. � =177 
0  for � > 1  and � = 0  for � < 1 . Further, this equation overestimates the numerical and 2D 178 
velocity values.  179 

Figure 5(a) also indicates that on the plane at 2�� near to the side walls of the channel, i.e., � =180 
28��, the numerical results are notably less than the analytical ones. In particular, maximum values 181 
of velocity are 4.51mm/s and 6.48mm/s corresponding to the numerical and analytical results, 182 
respectively. In this case, analytical maximum velocity is 30% higher compared to the numerical one. 183 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2019                   doi:10.20944/preprints201905.0316.v1

https://doi.org/10.20944/preprints201905.0316.v1


 8 of 11 

 184 

Figure 5. Velocity distributions at different channel positions and aspect ratios (P=500Pa) as compared 185 
with the obtained analytical formula and numerical results. (a), (b) Velocity profiles across the channel 186 
height. (c), (d) Velocity profiles across the channel width 187 

This observation is consistent with the experimental observation of [45] who used micro-particle 188 
image velocimetry (micro-PIV) to probe the velocity distribution of DI water at different 189 
microchannel locations with an aspect ratio of 2.8. They found that very near the hydrophilic wall, 190 
the measured velocities were significantly larger than the theoretical velocity. Therefore, the larger 191 
values of analytical velocity presented in this study is closer to the experimental observations in the 192 
literature.  193 

4. Conclusions 194 

In this study, classical Hagen-Poiseuille and Darcy-Weisbach equations were modified by 195 
introducing the effect of the aspect ratio of the rectangular microchannels. Compared to the previous 196 
2D exact solutions, the present series solutions were symmetrical (x and y lateral coordinates are 197 
interchangeable) and converged very fast (owing to the 3rd and 4th powers of the computational 198 
indexes, i.e. � and �, in the denominator of the formulae, c.f., Eq. (7) or Eq. (14)). In addition, the 199 
obtained exact solutions are valid for any range of the channel aspect ratio. It was also shown that 1D 200 
classical equations were the limiting cases of the obtained 2D analytical formulae for velocity 201 
distributions and friction factor when the channel aspect ratio approached infinity. The results also 202 
indicated that for the laminar flow at the same Reynolds number, square cross-section channels (α =203 
1) generated the lowest frictional losses. As the channel cross-section deviated from the square shape, 204 
the Poiseuille number increased significantly from 55 (square section) to 96 (parallel plates). 205 
Moreover, the obtained analytical formula was compared with the numerical simulations of the 3D 206 
pressure driven laminar flow in rectangular microchannels with hydraulic diameters of 13�� and 207 
30��, and excellent agreements were found even for on the plane very close to the microchannel top 208 
wall. On the plane at 2�� near to the side walls of the microchannel with larger aspect ratio larger 209 
than unity, i.e. � = 3.0, analytical maximum velocity was 30% higher compared to the numerical one 210 
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which was consistent with the experimental micro-PIV results in the literature for the similar 211 
microchannel. Although the obtained results are applicable to any rectangular ducts, they are more 212 
useful in interpreting the pressure-driven flows in microchannels, in which very careful comparison 213 
is crucial in interpreting the results.  214 

 215 
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