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Abstract

Model selection and model averaging have been the popular approaches in handling modelling
uncertainties. Fan and Li (2006) laid out a unified framework for variable selection via penalized
likelihood. The tuning parameter selection is vital in the optimization problem for the penalized
estimators in achieving consistent selection and optimal estimation. Since the OLS post-LASSO
estimator by Belloni and Chernozhukov (2013), few studies have focused on the finite sample
performances of the class of OLS post-selection estimators with the tuning parameter choice
determined by different tuning parameter selection approaches. We aim to supplement the
existing model selection literature by studying such a class of OLS post-selection estimators.

Inspired by the Shrinkage Averaging Estimator (SAE) by Schomaker (2012) and the Mallows
Model Averaging (MMA) criterion by Hansen (2007), we further propose a Shrinkage Mallows
Model Averaging (SMMA) estimator for averaging high dimensional sparse models.

Based on the Monte Carlo design by Wang et al. (2009) which features an expanding sparse
parameter space as the sample size increases, our Monte Carlo design further considers the effect
of the effective sample size and the degree of model sparsity on the finite sample performances
of model selection and model averaging estimators. From our data examples, we find that the
OLS post-SCAD(BIC) estimator in finite sample outperforms most of the current penalized
least squares estimators as long as the number of parameters does not exceed the sample size.
In addition, the SMMA performs better given sparser models. This supports the use of the
SMMA estimator when averaging high dimensional sparse models.
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1 Introduction

Model selection and model averaging have long been the competing approaches in dealing with
modelling uncertainties in practice. Model selection estimators help us search for the most relevant
variables especially when we suspect that the true model is likely to be sparse. On the other hand,
model averaging aims to smooth over a set of candidate models so as to reduce risks relative to
committing to a single model.

Uncovering the most relevant variables is one of the fundamental tasks of statistical learning,
which would be more difficult if modelling uncertainty is present. The class of penalized least
squares estimators have been developed to handle modelling uncertainty. Fan and Li (2006) laid
out a unified framework for variable selection via penalized likelihood.

The tuning parameter selection is vital in the optimization of the penalized least squares es-
timators for achieving consistent selection and optimal estimation. To select the proper tuning
parameter, the existing literature offers two frequently applied approaches which are the Cross
Validation (CV) approach and the Information Criterion (IC) based approach. Shi and Tsai (2002)
have shown that the Bayesian Information Criterion (BIC) under certain conditions could consis-
tently identify the true model when the number of parameters and the size of the true model are
both finite. Wang et al. (2009) further proposed a modified BIC for tuning parameter selection
when the number of parameters diverges with the increase in the sample size.

Although most of the penalized least squares estimators such as the adaptive Least Absolute
Shrinkage and Selection Operator (AdaLASSO) by Zou (2006), Smoothly Clipped Absolute Devi-
ation Penalty (SCAD) estimator by Fan and Li (2001) and the Minimax Concave Penalty (MCP)
estimator by Zhang (2010) have been researched with well documented finite sample performances,
few studies have focused on the finite sample performances of the class of OLS post-selection
estimators with the tuning parameter choice determined by different tuning parameter selection
approaches. Despite decent selection performance from the current penalized least squares estima-
tors, there is not yet a unified approach in estimating the distribution of such estimators due to
the complicated constraints and penalty functions. Knight and Fu (2000) and Pötscher and Leeb
(2009) investigated the distributions of LASSO-type and SCAD estimators and concluded that
they tend to be highly non-normal. Hansen (2014) stated that the distribution for model selection
and model averaging estimators are highly non-normal but routinely ignored. This ushered in the
development of the class of the post selection estimators such as the OLS post-LASSO estimator
by Belloni and Chernozhukov (2013).
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Model averaging is applied to hedge against the risks stemming from the possible specification
errors of a single model. Inspired by the Shrinkage Averaging Estimator (SAE) by Schomaker
(2012) and the Mallows Model Averaging (MMA) criterion by Hansen (2007), we further propose
a Shrinkage Mallows Model Averaging (SMMA) estimator to reduce the asymptotic risks in high
dimensional sparse models from possible specification errors. Finite sample performances from the
SMMA will be compared with most of the existing model averaging estimators.

The Monte Carlo design is similar to that of Wang et al. (2009) which features an expanding
sparse parameter space as the sample size increases. Our Monte Carlo design further considers
the effect of changes in the effective sample size and the degree of model sparsity on the finite
sample performances of model selection and model averaging estimators. We find that the OLS
post-SCAD(BIC) estimator in finite sample outperforms most of the current penalized least squares
estimators. In addition, the SMMA performs better given sparser models. This supports the use
of the SMMA estimator when averaging high dimensional sparse models.

The rest of the paper is organized as the following. Section 2 gives a brief review of the
existing model selection and model averaging estimators in the literature. Section 3 introduces our
proposed SMMA estimator. Section 4 reports the finite sample performances of the OLS post-
selection estimators and compares the finite sample performance of the SMMA with those of the
existing model averaging estimators. Section 5 concludes.

2 Literature Review

In this section, we will review some of the frequently applied model selection and model averaging
estimators in the existing literature. We start by defining a simple linear model from which the
corresponding model selection and model averaging estimators will be defined respectively in the
following subsections.

Consider a simple linear model given by

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (1)

where Xi is a p × 1 vector of exogenous regressors and β is a p × 1 parameter vector with only
p0 number of nonzero parameters. We further assume that p0 < p and that the error term εi ∼
i.i.d (0, σ2). The literature on variable selection and model average is large and continues to grow
with time, our review below is limited to the most frequently used model selection and model
averaging estimators.
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2.1 Model Selection

The traditional best subsets approach predating the class of penalized least squares estimators is
generally computationally costly and highly unstable due to the discrete nature of the selection
algorithm as pointed out in Fan and Li (2001). The subsequent Stepwise approach which is es-
sentially a variation of the best subsets approach frequently fails to generate a solution path that
leads to the global minimum. In addition, both approaches assume all variables are relevant even
if the underlying true model might have a sparse representation. Then came the class of the penal-
ized least squares estimators which minimize the loss function subjected to some forms of penalty.
Some of the frequently applied penalized least squares estimators include the ridge estimator, the
LASSO-type estimators, the SCAD estimator and the MCP estimator.

Hoerl and Kennard (1970) introduced the original ridge estimator with an l2 -penalty. And,
the ridge estimator is defined as

β̂ridge = argmin
β
‖y −Xβ‖2 + λ

p∑
k=1

β2
k, (2)

where λ is the so-called tuning parameter.

Tibshirani (1996) introduced an l1 -penalty and constructed the LASSO estimator as follows :

β̂LASSO = argmin
β
‖y −Xβ‖2 + λ

p∑
k=1
|βk|. (3)

Compared to the best subsets approach where all possible subsets need to be evaluated for
variable selection, both of the ridge and LASSO estimators conduct selection and estimation of
the parameters simultaneously thus gaining computational savings. However, both estimators fail
to satisfy the oracle properties due to the inconsistent selection and asymptotic bias. The oracle
properties describe the ability of an estimator to perform the same asymptotically as if we knew the
true specification of the model beforehand. In high-dimensional parametric estimation literature,
an oracle efficient estimator is therefore able to simultaneously identify the nonzero parameters and
achieve optimal estimation of the nonzero parameters. However, Fan and Li (2001) and Zou (2006)
among others questioned whether the LASSO satisfies the oracle properties.

Thus various LASSO-type estimators have been developed since then to overcome the selection
bias of the original ridge and LASSO estimator. Zou and Hastie (2005) introduced the elastic net
estimator by averaging between the l1-penalty and l2-penalty. Specifically, the elastic net estimator
is defined as
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β̂ElasticNet = argmin
β
‖y −Xβ‖2 + λ1

p∑
k=1
|βk|+ λ2

p∑
k=1

β2
k, (4)

where depending on the choices of the two tuning parameters, λ1 and λ2, the elastic net estimator
combines the properties of the ridge estimator and the LASSO estimator and enjoys the oracle
properties.

Zou (2006) further introduced a LASSO-type estimator namely the adaptive LASSO estimator
which is defined as

β̂AdaLASSO = argmin
β
‖y −Xβ‖2 + λ

p∑
k=1

ŵk|βk|, (5)

where the adaptive weights ŵk = |̂β∗k|
−γ with γ > 0 and β̂∗ denotes any root-n consistent estimator

for β. The adaptive LASSO estimator also fulfills the oracle properties.

Fan and Li (2001) proposed the Smoothly Clipped Absolute Deviation Penalty (SCAD) esti-
mator which features a symmetric nonconcave penalty function that leads to sparse solutions. The
SCAD estimator is defined as

β̂SCAD = argmin
β
‖y −Xβ‖2 +

p∑
k=1

F (|βk|;λ, γ), (6)

where the continuously differentiable penalty function F (|β|;λ, γ) is defined as

F (|β|;λ, γ) =


λ|β| if |β| ≤ λ
2γλ|β|−|β|2−λ2

2γ−1 if γλ > |β| > λ
λ2(γ+1)

2 if |β| ≥ γλ
, (7)

and γ defaults to 3.7 following the recommendation from Fan and Li (2001).

Zhang (2010) introduced the Minimax Concave Penalty (MCP) estimator which produces nearly
unbiased variable selection. The MCP estimator is defined as

β̂MCP = argmin
β
‖y −Xβ‖2 +

p∑
k=1

F (|βk|;λ, γ), (8)

where the continuously differentiable penalty function F (|β|;λ, γ) is defined as

F (|β|;λ, γ) =

λ|β| −
|β|2
2γ , if |β| ≤ λγ

1
2γλ

2, if |β| > λγ
, (9)

and γ defaults to 3 as suggested by Breheny and Huang (2011).
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2.1.1 Choice of Tuning Parameter

The tuning parameter(s) play(s) a crucial role in the optimization problem for the aforementioned
penalized least squares estimators in achieving consistent selection and optimal estimation. There
exists an extensive debate in the model selection literature regarding the proper choice for the
tuning parameter. Two of the frequently applied approaches used to select the tuning parame-
ter are the n-fold Cross Validation (CV) or the Generalized Cross Validation (GCV) approach
and the Information Criterion (IC) based approach. In practice, the CV approach could also be
computationally costly for big datasets.

The traditional IC approaches have been modified for the selection of the tuning parameters in
the penalized least squares framework. Shi and Tsai (2002) have shown that the BIC under certain
conditions could consistently identify the true model when the number of parameters and the size
of the true model are finite. For scenarios where the number of parameters is diverging with the
increase in the sample size, Wang et al. (2009) proposed a modified BIC information criterion
for the selection of the tuning parameter. This criterion yields consistent selection and reduces
asymptotic risks. Fan and Tang (2013) further introduced a Generalized Information Criterion
(GIC) for determining the optimal tuning parameters in penalty estimators. They proved that
the tuning parameters selected by the GIC produces consistent variable selection and generates
computational savings.

Regarding the generation of the candidate tuning parameters in the penalized likelihood frame-
work, Friedman et al. (2010) first introduced the Cyclical Coordinate Descent algorithm to compute
the solution path for generalized linear models with convex penalties such as the LASSO and Elastic
Net. This algorithm helps generate a candidate set of tuning parameters to facilitate the selection
of the optimal tuning parameter. Breheny and Huang (2011) further applied this algorithm to cal-
culate the solution path for nonconvex penalty estimators such as the SCAD and MCP estimators.
They compared the performances of some of the popular penalty estimators such as the LASSO,
SCAD and MCP estimators for variable selection in sparse models. Their simulation study and
data examples indicated that the choice of the tuning parameter greatly affects the outcome of the
variable selection.

2.1.2 Post Selection Estimators

Despite decent selection performance from the current mainstream penalized least squares estima-
tors, there is not yet a unified approach in estimating the distribution of such estimators due to
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the complicated constraints and penalty functions. Knight and Fu (2000) and Pötscher and Leeb
(2009) investigated the distributions of LASSO-type and SCAD estimators and concluded that they
tend to be highly non-normal. This ushered in the burgeoning development in the post model se-
lection inferential methods. Hansen (2014) stated that the distribution for the model selection and
model averaging estimators are highly non-normal but routinely ignored in practice. Belloni and
Chernozhukov (2013) proposed the OLS post-LASSO estimator which under certain assumptions
outperforms the LASSO estimator in reducing asymptotic risks associated with high dimensional
sparse models. The OLS post-LASSO estimator utilizes the LASSO estimator as a variable selection
operator in the first step and reverts back to the OLS estimator to produce parameter estimates for
the selected model in the second step. Such an estimator avoids the complicated penalty functions
in estimating the distribution of the estimator in the second step and thus yields easier access to
inference that is solely based on the OLS estimator. Inspired by the OLS post-LASSO estimator,
other post selection estimators could be constructed with the tuning parameters in the penalty
function selected by either the BIC or GCV approach.

For example, an OLS post-SCAD(BIC) estimator can be constructed with the tuning parameter
in the penalty function selected by the BIC approach. More specifically, let Λ = {λ1, . . . , λq} be
the set of candidate tuning parameters and |Λ| = q with q ∈ Z+ .

Given any λ ∈ Λ and γ defaults to 3.7, the SCAD estimator from Equation (6) evaluated at λ
gives

β̂λ = argmin
β
‖y −Xβ‖2 +

p∑
k=1

F (|βk|;λ). (10)

The BIC evaluated at this λ is defined as BICλ which is given by

BICλ = log

(∥∥∥y −Xβ̂λ∥∥∥2

n

)
+ |Sλ|

log(n)
n

Cn, (11)

where the values for λ originate from an exponentially decaying grid as in Friedman et al. (2010).
Let Sλ denote the set of nonzero parameters of the model when evaluated at λ and more specifically
Sλ = {k : β̂λk 6= 0}. For any set S, let |S| represent its cardinality. Then, |Sλ| gives the number of
nonzero parameters of the model when evaluated at λ and Cn is a constant. Shi and Tsai (2002)
have shown that the above BIC with Cn = 1 consistently identifies the true model when both p

and p0 are finite.

The estimate of the optimal tuning parameter is denoted by λ̂BIC , which is the solution to the
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following problem:
λ̂BIC = argmin

λ∈{λ1,...,λq}
BICλ. (12)

Consequently, β̂λ̂BIC minimizes the SCAD penalized objective function given by Equation (6);
i.e.

β̂λ̂
BIC = argmin

β

1
2n‖y −Xβ‖

2 +
p∑

k=1
F (|βk|, λ̂BIC). (13)

Denoting ŜλBIC = {k : β̂λ̂BICk 6= 0}, we define the OLS post-SCAD(BIC) estimator as

β̂LS = argmin
β

∥∥∥∥∥∥y −
∑

l∈Ŝ
λBIC

Xlβl

∥∥∥∥∥∥
2

, (14)

where Xl is an n × 1 vector which is the lth column of the predictor matrix X and βl is the lth

parameter.

In the same vein, other OLS post-selection estimators such as the OLS post-MCP(BIC or GCV)
estimator could also be constructed for comparing the finite sample performances. The OLS post-
MCP(BIC or GCV) estimator minimizes respectively the BIC and the GCV in the estimation for
the optimal tuning parameter. It is worth pointing out that for the penalized estimators that are
already oracle efficient, post selection estimators such as the OLS post-SCAD estimator does not
outperform the SCAD estimator asymptotically. That being said, there could be differences in
the finite sample performances between the penalized least squares estimators and the OLS post
selection estimators. Even for the same estimator, different tuning parameter selection approaches
could also yield different selection outcomes.

2.1.3 Measures of Selection and Estimation Accuracy

To evaluate the performance of the shrinkage estimators, various measures for variable selection
and estimation accuracy have been introduced in the literature. Wang et al. (2009) used the model
size (MS), the percentage of the correctly identified true model (CM), and the median of relative
model error (MRME) to evaluate the finite sample performances of the adaptive LASSO and SCAD
estimators with tuning parameters selected either by GCV or BIC approach.

The model size, MS, for the true model is defined as the number of nonzero parameters or
|S0| = p0, where p0 is the dimension for the nonzero parameters. For any model selection procedure,
ideally the estimated model size |Ŝ| = p̂0 should tend to p0 asymptotically and Ŝ = {k : β̂k 6= 0}.
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This measure evaluates the precision with which said selection procedure estimates the number of
nonzero parameters from the data. In the context of Monte Carlo simulations, the average is taken
over all of the estimated MS which is generated per each round of simulation.

The correct model CM reveals if said model selection procedure accurately yields the right
nonzero parameters as the true model. The CM measure is defined as

CM =
{
β̂k 6= 0 : k ∈ S0, β̂k = 0 : k ∈ S0

c
}
. (15)

An estimation of the model is only considered correct if the above criterion is satisfied where all
of the non-zero and zero parameters are correctly identified. The higher the correction rate over a
number of simulation runs, the better the performance for an estimator.

The model prediction error (ME) for a model selection procedure is defined as

ME = (β̂ − β)TE[XTX](β̂ − β), (16)

where β̂ represents any estimator such as a penalized least squares estimator. And, the relative
model error (RME) is the ratio of the model prediction error to that of the naive OLS estimator
of the model given by Equation (1). For example, the RME for the SCAD estimator is given by

RME = (̂βSCAD − β)TE[XTX]((̂βSCAD − β)
(̂βLS − β)TE[XTX]((̂βLS − β)

. (17)

For a given number of Monte Carlo replications, the median of the RME (MRME) is used to
evaluate the finite sample performance of the said model selection estimator.

2.2 Model Averaging

On the other hand, an alternative to model selection in handling modelling uncertainties is model
averaging. In general, the model averaging estimator is defined as

β̂MA =
S∑
s=1

wŝβs, (18)

where ws represents the weight assigned to the sth model of an S number of candidate models and
w =

[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+ such that

HS =
{
w ∈ [0, 1]S :

S∑
s=1

ws = 1
}
. (19)
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Overtime, various estimators have been proposed for estimating the weight vector, w, for aver-
aging the candidate models. Buckland et al. (1997) proposed the smoothed information criterion
model averaging estimator where the weight for the sth model, ws, can be estimated as

ŵIC
s = exp(−Is/2)∑S

s=1 exp(−Is/2)
, (20)

where Is, the information criterion evaluated at the sth model, is defined as

Is = −2log(̂Ls) + Ps (21)

with L̂s being the maximized likelihood value and Ps being the penalty term that takes the form
of 2ps for the smoothed AIC (S-AIC) and ln(n)ps for the smoothed BIC (S-BIC).

Hansen (2007) proposed a Mallows Model Averaging (MMA) estimator whose weight choice is
estimated as

ŵMMA = argmin
w∈HS

(
y − µ̂(w)

)T(
y − µ̂(w)

)
+ 2σ2k(w), (22)

where the model averaging estimator µ̂(w) is defined as

µ̂(w) =
S∑
s=1

wsPsy = P (w)y, (23)

and the projection matrix for model s is defined as

Ps = Xs
(
XT
s Xs

)−1
XT
s . (24)

Also, the effective number of parameters, k(w), is defined as

k(w) =
S∑
s=1

wsks, (25)

where ks equals to the number of parameters in model s. The σ2 term can be estimated using the
variance of a larger model in the set of the candidate models according to Hansen (2007).

Under certain assumptions, Hansen (2007) showed that the MMA minimizes the Mean Squared
Prediction Error (MSPE) and Gao et al. (2016) showed that the MMA can produce smaller Mean
Squared Error (MSE) than that of the OLS estimator. Wan et al. (2010) further relaxed the
assumptions of discrete weights and nested regression models that are required by the asymp-
totic optimality conditions for the MMA to continuous weights without imposing ordering on the
predictors.

9
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Hansen and Racine (2012) proposed the heteroskedasticity consistent Jacknife Model Averaging
(JMA) estimator. The weight choice for the JMA estimator is defined as

ŵJMA = argmin
w∈HS

1
n
ε̃(w)T ε̃(w), (26)

where ε̃(w) =
∑S
s=1wsε̃s with ε̃s being the leave-one-out residual vector from the sth model.

Schomaker (2012) further explored the role of the tuning parameters in the Shrinkage Averaging
Estimator (SAE) post model selection. The SAE estimates β by averaging over a set of candidate
shrinkage estimators, β̂λ, which are calculated with a sequence of tuning parameters. For example,
an SAE that averages over an S number of candidate β̂LASSOλs

from an S-fold cross-validation
procedure can be defined as

β̂SAE =
S∑
s=1

wλŝβ
LASSO
λs (27)

where λs ∈ {λ1, . . . , λS} as one of the S competing tuning parameters. The weights for the SAE is
calculated as follows

ŵSAE = argmin
w∈HS

1
n
ε̃(w)T ε̃(w), (28)

where ε̃(w) =
∑S
s=1wλs ε̃s(λs) with ε̃s(λs) being the residual vector for the sth cross-validation.

3 The Shrinkage MMA Estimator

Inspired by the Shrinkage Averaging Estimator (SAE) and the Mallows Model Averaging (MMA)
estimator, we further propose a Shrinkage Mallows Model Averaging (SMMA) estimator to hedge
against the possible specification errors from model selection. The SMMA estimator is a two-stage
estimator. In the first stage, applying different penalty estimators introduced in Section 2 with
optimal tuning parameters selected via the GCV or BIC method, we obtain a sequence of candidate
models. In the second stage, we apply the MMA to estimate β. The SMMA estimator compliments
the class of penalty estimators by allowing for more than one model selection outcome rather than
committing to a single model. In addition, this estimator also extends the current MMA framework
by introducing a reasonable way of selecting the set of candidate models to be averaged. The SMMA
is especially helpful for averaging high dimensional candidate subset models where the generation
of such a set of candidate models would be computationally costly if not via shrinkage approaches.
It would be difficult for the traditional MMA to exhaust all possible subsets of candidate models
for high dimensional dataset. This estimator also builds on the SAE by incorporating the tuning

10
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parameter optimization problem which is crucial for the variable selection process for each candidate
model. This estimator is essentially a variation of the MMA estimator so the asymptotic properties
should be similar to those of the MMA.

Lehrer and Xie (2017) briefly mentioned the possibility of having a set of candidate models
first shrunk by the LASSO before applying the MMA. There is a clear distinction between Lehrer
and Xie’s (2017) idea and ours, since the candidate models for averaging are subjectively chosen
in Lehrer and Xie (2017), which is the same as the traditional literature on the MMA estimator.
However, the SMMA starts with a general large model and applies different penalty methods to
select the candidate models for averaging.

Below we explain the SMMA estimator in detail. Let ΛOpt be the set of optimal tuning param-
eters selected either by BIC or GCV for the model selection procedures introduced in Section 2,
and a typical element in ΛOpt is denoted as λ̂Opts . Therefore ΛOpt is defined as

ΛOpt =
{̂
λOpt1 , . . . , λ̂Opts , . . . , λ̂OptS

}
, (29)

where |ΛOpt| = S.

The SMMA estimator is solved as follows

β̂SMMA(w; ΛOpt) =
S∑
s=1

ŵŝβ (̂λs), (30)

where the weight vector is estimated by the MMA criterion,

ŵ = argmin
w∈HS

(
y − µ̂(w; ΛOpt)

)T(
y − µ̂(w; ΛOpt)

)
+ 2σ2k(w; ΛOpt). (31)

and w =
[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+ such that

HS =
{
w ∈ [0, 1]S :

S∑
s=1

ws = 1
}
. (32)

The model averaging estimator µ̂(w) is defined as

µ̂(w; ΛOpt) =
S∑
s=1

wsP (s; λ̂Opts )y = P (w; ΛOpt)y, (33)

where the projection matrix for model s is defined as

P (̂λOpts ) = Xλ̂Opts
(
Xλ̂Opts

T
Xλ̂Opts

)−1
Xλ̂Opts

T
, (34)
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and the estimator for model s is given by

β̂ (̂λOpts ) =
(
Xλ̂Opts

T
Xλ̂Opts

)−1
Xλ̂Opts

T
y. (35)

Let L index the largest model in dimension from the set of the candidate models; i.e.,

L = argmax
s∈S

|̂β (̂λOpts )|, (36)

where |̂β (̂λOpts )| equals to the number of nonzero values in β̂ (̂λOpts ).

Following Hansen (2007), the σ2 term will be estimated by σ̂2
L which is given below

σ̂2
L = (y −XL̂βL)T (y −XL̂βL)

n− kL
. (37)

The effective number of parameters k(w) is defined as

k(w) =
S∑
s=1

wsks(ws; λ̂Opts ), (38)

where ks(ws; λ̂Opts ) =|̂β (̂λOpts )|.

4 Monte Carlo Simulations

This section assesses the performance of the existing model selection and averaging methods includ-
ing the SMMA estimator proposed in this paper via a small Monte Carlo simulation experiment.
Our Data Generating Process (DGP) is

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (39)

where β is a p× 1 parameter vector with only p0 number of nonzero parameters.

We further assume that p0 < p and that the error term εi ∼ i.i.dN (0, 1). Also, Xi is randomly
drawn from a p-dimensional multivariate normal distribution with zero mean and a co-variance
matrix as follows

Cov(Xl , Xj) =
{

1, if l = j

0.5, otherwise
. (40)

To investigate the effect of the number of parameters to sample size ratio (p/n) and the degree of
model sparsity (p0/p) on the performance of different estimation methods, we consider two data
examples in this section. The data example 1 from Section 4.1 considers the case where p/n is
constant while p0/p is decreasing. The data example 2 in Section 4.2 simulates the scenario where
p0/p is constant but p/n decreases as n increases.
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4.1 Example 1. Constant p/n Ratio

Similar to the example given in Fan and Peng (2004), we set β =
(

11
4 ,−

23
6 ,

37
12 ,−

13
9 ,

1
3 , 0, . . . , 0

)T
∈

Rp with p = n× α for some constant α. The nonzero parameters, β0 , are defined as

β0 =
(11

4 ,−
23
6 ,

37
12 ,−

13
9 ,

1
3
)T
. (41)

We fix n = 1000 and allow α to vary in the interval of
[
0.02, 0.98

]
. Therefore, we consider the

case with increasing number of redundant regressors while the true model remains fixed with 5
non-zero regressors, as α increases from .02 to 0.98, where α = p/n ∈ {0.02, 0.05, 0.1, 0.5, 0.98} and
p ∈ {20, 50, 100, 500, 980}. If we measure the degree of sparsity by δ = 1− p0/p, we see the model
becomes sparser for larger α and p0/p ∈ {0.25, 0.1, 0.05, 0.01, 0.005}. Note that this design allows
us to further consider cases where the number of parameters closely approaches the sample size.

4.2 Example 2. Decreasing p/n Ratio

The second example is similar to Wang et al. (2009) where the dimension of the true model also
diverges with the dimension of the full model as n increases. More specifically, p = [7n

1
4 ] where

[a] stands for the largest integer no larger than a and the size of the true model |S0| = p0 = [p/3]
with β0 ∼ U(0.5, 1.5). For sample size n ∈ {100, 200, 400, 800, 1600}, the respective sizes of the full
model are p ∈ {22, 26, 31, 37, 44} and respective sizes of the true model are S0 ∈ {7, 8, 10, 12, 14}.
The number of parameters to the sample size ratio is p/n ∈ {0.22, 0.13, 0.07, 0.046, 0.027} and the
degree of model sparsity is δ = 2/3. Different from the example given in Section 4.1, this data
example maintains a constant degree of model sparsity.

4.3 Monte Carlo Results

For the simulation studies, we will investigate the finite sample performances of the estimators
introduced in Section 2 and Section 3. In addition, we will also consider the variant of the afore-
mentioned penalized estimators with the tuning parameters selected by the BIC rather than the
conventional CV. To differentiate, we will name the OLS post-SCAD with the the tuning param-
eters selected by the BIC as the OLS post-SCAD(BIC) estimator. We will use the finite sample
performance of the OLS estimator as the benchmark for the model selection and model averaging
estimators. For each data example, a total of 500 simulation replications are conducted.
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4.3.1 Model Selection Estimators

The penalized least squares estimators to be considered in the simulation studies are listed in Table
1 below.

Table 1: Penalized Estimators

Estimator
Ridge(GCV) Ridge(BIC)
OLS post-Ridge(GCV) OLS post-Ridge(BIC)
LASSO(GCV) LASSO(BIC)
OLS post-LASSO(GCV) OLS post-LASSO(BIC)
Elastic Net(GCV) Elastic Net(BIC)
OLS post-Elastic Net(GCV) OLS post-Elastic Net(BIC)
Adaptive LASSO(GCV) Adaptive LASSO(BIC)
OLS post-Adaptive LASSO(GCV) OLS post- Adaptive LASSO(BIC)
SCAD(GCV) SCAD(BIC)
OLS post-SCAD(GCV) OLS post-SCAD(BIC)
MCP(GCV) MCP(BIC)
OLS post-MCP(GCV) OLS post-MCP(BIC)

The graphs below present the finite sample performances of the above penalized least squares
estimators with the tuning parameters selected by either GCV or BIC. To level the playing field,
each estimator is supplied with the same set of candidate tuning parameters Λ = {λ1, . . . , λq} as all
the other competing estimators and |Λ| = q with q ∈ Z+. Since the conventional LASSO, SCAD
and MCP estimators have already been studied extensively with well documented finite sample
performances, we would like to turn our focus on the finite sample performances of the class of
OLS post-selection estimators. For the elastic net estimator, the ratio for the l1-penalty and l2-
penalty the is set to 0.5. For a cleaner representation of comparison and saving space, we choose
to report only the first six best performing OLS post-selection estimators among those listed in the
table above.
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(a) β RMSE (b) Averge Model Size (MS)

(c) Percentage of Correct Model (CM) (d) Median of Relative Model Error (MRME)

Figure 1: Example 1 Model Selection and Estimation Accuracy
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(a) β RMSE (b) Averge Model Size (MS)

(c) Percentage of Correct Model (CM) (d) Median of Relative Model Error (MRME)

Figure 2: Example 2 Model Selection and Estimation Accuracy
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The table below ranks the first six best performing OLS post-selection estimators based on the
results from data example 1 and data example 2.

Table 2: Performance Ranking for the OLS post-selection Estimators

Ranking Example 1 Example 2
1 OLS post-SCAD(BIC) OLS post-SCAD(BIC)
2 OLS post-MCP(BIC) OLS post-MCP(BIC)
3 OLS post-MCP(GCV) OLS post-MCP(GCV)
4 OLS post-SCAD(GCV) OLS post-SCAD(GCV)
5 OLS post-LASSO(BIC) OLS post-Adaptive LASSO(BIC)
6 OLS post-Adaptive LASSO(BIC) OLS post-Adaptive LASSO(GCV)

For both data examples, it is evident from the figures above that in finite sample the OLS
post-SCAD(BIC) estimator outperforms the competing estimators consistently by yielding lower
β RMSE and higher selection accuracy. The performance of the OLS post-SCAD(BIC) is also
insensitive to the changes in the p/n ratio and the p0/p ratio. Therefore, as long as p < n, our
finding concludes that the OLS post-SCAD(BIC) outperforms the competing OLS post-selection
estimators regardless of the effective sample size and degree of model sparsity which are controlled
by p/n and p0/p respectively. The finite sample performances of the OLS post-LASSO and the
OLS post-Adaptive LASSO seem to be affected by changes in the degree of model sparsity and
the effective sample size. The findings from the two data examples above offer some guidance to
empirical researchers who are weighing different approaches for model selection.

4.3.2 Model Averaging Estimators

For the model averaging estimators, we will mainly focus on the finite sample performances of
the S-BIC, Hansen’s MMA, SAE(LASSO) with LASSO as the shrinkage method and the SMMA
estimator proposed in section 3. The SMMA estimator averages the candidate models produced
by the penalized least squares estimators listed in Table 1. The specifications of the candidate
models are determined by the set of optimal tuning parameters ΛOpt which consists of the optimal
tuning parameters selected by either the GCV or the BIC approach. For Hansen’s MMA, we will
only consider the pure nested subset models due to the fact that the all possible combinations of
subsets are not computationally feasible given the high dimensional nature of our data examples.
Since in Table 1, there are 24 estimators which yield 24 candidate models, we will also generate 24
candidate models for the MMA, S-BIC and SAE(LASSO). These candidate models are generated
using the program developed by Professor Hansen and the program is available from Professor
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Hansen’s website. Similar to Hansen (2007), we will evaluate the finite sample performances of the
model averaging estimators by comparing the β RMSE and the adjusted R2 for the final averaged
model. Due to the high dimensional sparse nature of the DGP, using the adjusted R2 helps us
to avoid the misleadingly high R2 from including many more predictors which might have been
irrelevant in the first place. The adjusted R2 can also gauge if the SMMA could better perform the
task of identifying the most relevant regressors, which is one of the fundamental goals of statistical
learning.

(a) Example 1 β RMSE (b) Example 1 Adjusted R2

(c) Example 2 β RMSE (d) Example 2 Adjusted R2

Figure 3: Finite Sample Performance for Model Averaging Estimators

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2019                   doi:10.20944/preprints201905.0311.v1

Peer-reviewed version available at J. Risk Financial Manag. 2019, 12, 109; doi:10.3390/jrfm12030109

https://doi.org/10.20944/preprints201905.0311.v1
https://doi.org/10.3390/jrfm12030109


For data example 1 where the degree of model sparsity is increasing while the effective sample
size decreases with the increase in the p/n, the SMMA outperforms the MMA in terms of yielding
relatively lower β RMSE and slightly higher adjusted R2 if p/n < 0.5. As p/n increases from
0.5 to 0.98, which causes p0/p to further decrease resulting in a much sparser model, the SMMA
significantly outperforms the competing model averaging estimators in β RMSE and adjusted R2.
The sparser the model and the smaller the effective sample size, the better the SMMA performs.
This supports the application of SMMA estimator when averaging high dimensional sparse models
against modelling uncertainty.

For data example 2 where the degree of model sparsity is constant and the p/n decreases as
the sample size n increases, the SMMA still slightly outperforms other model averaging estimators
in β RMSE and adjusted R2. However, the finite sample performances of the SMMA and MMA
estimators tend to be very close as n increases, which indicates rather similar asymptotic properties
for both estimators.

5 Conclusion

In this paper, We reviewed some of the conventional model selection and model averaging estimators
and we further proposed a Shrinkage Mallows Model Averaging (SMMA) estimator. Using a Monte
Carlo study, we compared the finite sample performances of the reviewed model selection and model
averaging estimators. We also investigated the effect of the tuning parameter choice on variable
selection outcomes. We aim to supplement the existing model selection literature by studying the
finite sample performances of the class of the OLS post-selection estimators via different tuning
parameter selection approaches. Our Monte Carlo design further considers the effect of changes
in the effective sample size and the degree of model sparsity on the finite sample performances of
model selection and model averaging estimators.

The results from our data examples suggest that the tuning parameter choice plays a vital role
for variable selection and optimal estimation. Given the same tuning parameter selection approach,
for the penalized estimators that are already oracle efficient, the corresponding OLS post-selection
estimators give rather similar performance. However, for the same penalized estimators, the per-
formances via different tuning parameter selection approaches are markedly different. The OLS
post-SCAD(BIC) estimator gives the best finite sample performance based on the data examples
in our Monte Carlo design. The SMMA performs better given sparser models. The sparser the
model and the smaller the effective sample size, the better the SMMA performs. This supports
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the use of the SMMA estimator when averaging high dimensional sparse models against modelling
uncertainty. We will leave the derivation of the asymptotic properties for the SMMA to future
studies.
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