Article

Effect of silver decoration and light irradiation on the antibacterial activity of TiO\textsubscript{2} and ZnO nanoparticles

Van Thang Nguyen1, Tien Viet Vu1, The Huu Nguyen1, Tuan Anh Nguyen2, Thien Vuong Nguyen2, Phuong Nguyen-Tri3,4*

1 Faculty of Chemical Technology, Hanoi University of Industry, BacTu Liem, Hanoi, Vietnam; email: thanhng2000@me.com
2 Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam; emails: ntanh2007@gmail.com, vuongvast@gmail.com
3 Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
4 Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Québec, Canada

Received: date; Accepted: date; Published: date

Abstract: This work emphasizes to use silver decorative method to enhance the antibacterial activity of TiO\textsubscript{2} and ZnO nanoparticles. These silver decorated nanoparticles (hybrid nanoparticles) were synthesized by using sodium borohydride as a reducing agent, with the weight ratio of Ag precursors: oxide nanoparticles = 1: 30. The morphology and optical property of these hybrid nanoparticles were investigated using transmission electron microscopy (TEM) and UV–vis spectroscopy. The agar–well diffusion method was used to evaluate their antibacterial activity against both \textit{Staphylococcus aureus} and \textit{Escherichia coli} bacteria, with or without light irradiation. The TEM images indicated clearly that silver nanoparticles (AgNPs, 5-10 nm) were well deposited on the surface of nano-TiO\textsubscript{2} particles (30-60 nm). Besides, smaller AgNPs (< 2 nm) were dispersed on the surface of nano-ZnO particles (20-50 nm). UV-vis spectra confirmed that the hybridization of Ag and oxide nanoparticles led to shift the absorption edge of oxide nanoparticles to the lower energy region (visible region). The antibacterial tests indicated that both oxide pure nanoparticles did not exhibit inhibitory against bacteria, with or without light irradiation. However, the presence of AgNPs in their hybrids, even at low content (< 40 mg/mL) leads to a good antibacterial activity and the higher inhibition zones under light irradiation as compared to that in dark was observed.

Keywords: Silver nanoparticles, nano-TiO\textsubscript{2}, nano-ZnO, nanohybrids, antibacterial

1. Introduction

It was reported in literature that nanoparticles can attack bacteria through six main mechanisms [1-15] such as: i) Destruction of the cell wall and peptidoglycan layer; ii) Release of toxic ions; iii) Destruction of protons efflux bombs and modification of membrane charges; iv) Formation of reactive oxygen species (ROS) degrading cell wall; v) Reactive oxygen species (ROS) degrading DNA, RNA and proteins; vi) Low adenosintriphosphat (ATP) production. In case of metallic oxide nanoparticles (such as NiO, CoO, ZnO, FeO\textsubscript{3}, FeO\textsubscript{4}, MgO, CuO, TiO\textsubscript{2}, SiO\textsubscript{2}...), ROS is the predominant antibacterial mechanism, especially for nano-ZnO and Nano-TiO\textsubscript{2}. For noble metal nanoparticles, such as silver nanoparticles (AgNPs), they can attack effectively against both \textit{Gram-negative} and \textit{Gram-positive} bacteria [16-19], via all 6 mentioned above antimicrobial mechanisms [20-22]. Therefore, in the application AgNPs can be used as the sole antimicrobial agent. AgNPs could also react with bacteria through the photo-catalytic production of ROS in solution [23]. However, Ag' free ions released from AgNPs are considered toxic not only to human cells, but also to the environment. Loading (embedding/ immobilizing immobilizing) AgNPs into oxide matrices is new approach due
Regarding the metal oxide semiconductor nanoparticles, such as ZnO anh TiO2, they can destroy the pathogenic bacteria by ROS mechanism under UV light radiation. In this case, when a photon of higher energy than their optical band gap energy (Eg~ 3.2-3.4 eV) is absorbed by these nanoparticles, the electron–hole pairs were created and then generated ROS. The practical applications of these nanoparticles are limited due to following two reasons: (i) wide band gap ~3.2 eV for nano-TiO2 [25]; 3.37 eV for nano-ZnO [26]; and (ii) low photoenergy conversion efficiency [27] with low charge separation efficiency and fast recombination of photogenerated charge carriers) [28, 29]. Two main approaches have been tried to improve the photocatalytic of these nanoparticles: (1) diminution of the recombination for photogenerated electron–hole pairs; and (2) enhancement of the visible light sensitivity [25]. The first pathway focused on the design of heterostructures (heterojunctions), such as (i) deposition of noble metals (Ag, Au or Pt) on the surface of nanoparticles; and (ii) coupling other semiconductor (such as CdSe, Ag2O, CdS...) with the oxide semiconducting nanoparticles [30-34]. The formation of the Schottky barriers at the interface of noble metals/semiconducting oxide nanoparticles could enhance significantly the segregation of charges, thus reduced the charge recombination [35-36]. In this direction, under UV irradiation, Ubonchonlakate et al. [37] indicated that Ag decorated TiO2 had higher antibacterial activity (100 % in 10 min) against P.aeruginosa bacteria, than that of pure TiO2 (57% in 15 min). In other direction, the doping of transition metals/rare earth ions into these oxide crystal lattices could reduce their optical band gap. For TiO2, the absorption edge was shifted into the lower energy region by S doping [38] and its absorption in visible region increased with the doping content of noble metals [39].

Recently, the hybridization of noble metals (Au, Ag, Pd) and semiconducting oxides becomes the most promising strategy to defeat large band gap of semiconducting oxides [40-44]. The energy level alignment is combined at the heterojunction of these nanoparticles. In the hybrid nanoparticles, the noble metal nanoparticles (gold and silver) exhibit Localized Surface Plasmon resonance (LSPR) absorption in visible light region, which can have significant impact at the heterointerfaces. We published several books and articles on the related topic [21, 40, 45, 64-79].

In this study, the hybridization of AgNPs and ZnO/TiO2 nanoparticles are expected not only to simply combine property of single components, but also to significantly enhance their antibacterial properties [45]. Thus, this work aims to present the role of silver decoration in enhancing the antibacterial activity of both ZnO and TiO2 nanoparticles, against two most popular bacteria: Staphylococcus aureus (ATCC 25923, Gram-positive) and Escherichia coli (Gram-negative, ATCC 25922).

2. Materials and Methods

2.1. Materials

TiO2 (rutile) and ZnO nanoparticles, were purchased from Sigma Aldrich (Singapore), having a mean diameter <100 nm and a specific surface area of 18 and 15-25 m2/g, respectively. AgNO3 and NaBH4 were provided by Sigma Aldrich (Thailand).

2.2. Synthesis of silver decorated nanoparticles

0.2 g of TiO2 (or ZnO) nanoparticles was firstly dispersed in 200 ml of distilled water under ultrasonication. AgNO3 solution (0.01 g in 20 ml water) then slowly added into the prepared nano-TiO2 (or ZnO) solution under ultrasonication in 30 m. The mixing solution then poured into the 500-ml three-necked pot. Then, NaBH4 solution (0.01 g in 30 ml water) was then added dropwise (1 drop/s) to the 500 ml three-necked pot. The reaction temperature was kept at 4 °C, and reaction mixture was stirred mechanically for 60 minutes. The nanohybrids were then collected by using centrifugation at 10 000 rpm/min for 5 minutes. The residual precursors and agents were then fully removed after several times of centrifugation by adding fresh distilled water.
2.3. Characterization

The morphologies of the hybrid nanoparticles were investigated using transmission electron microscopy (JEM1010, JEOL, Japan), operating at 80 kV (resolution of 3 Å). UV–Vis spectra were obtained by using a CINTRA 40 spectrophotometer (USA) in absorbance mode with 2 nm slip width.

2.4. Antibacterial tests

The agar-well diffusion method was then used to evaluate their antibacterial activity against Gram-positive (Staphylococcus aureus - ATCC 25923) and Gram-negative (Escherichia coli - ATCC 25922) bacteria. Nutrient agar plates were inoculated in brain heart infusion (BHI) broth using 100 µl of 10^6 CFU bacterial suspensions. Wells (8 mm diameter) were then punched in the inoculated plates, by using a sterile plastic rod. These wells were then filled with 50 µL of solutions containing nanoparticles, at various concentrations, such as 8, 16 and 40 mg/mL. Control wells were filled with 50 µL of distilled water. These plates were the incubated at 37 °C for 18 h (with or without light irradiation). After this period, the antibacterial activities of these nanoparticles were evaluated by measuring the inhibition zone diameter around the wells (100 µm resolution; Model: Haloes Caliper - Zone Reader, IUL, Spain).

For light irradiation test, a LED (cold white, 1500 mcd, 3V DC) bulbs (two bulbs) has been used with illumination of ∼300 lux. These white LEDs were designed as mixture of blue (450-470 nm) and yellow (560-590 nm) lights that could be perceived by the eye as white color [46].

3. Results and discussions

3.1. Morphological study

Figure 1 shows the electron microscopy images of AgNPs decorated nano-TiO₂ particles. As can be seen in this figure, AgNPs (black particles, 5-10 nm) were well dispersed on the surface of nano-TiO₂ particles (30-60 nm). The bigger nanoparticles are nano-TiO₂ and the smaller ones are AgNPs as well described in the literature [21]. It has to be noted that the synthesis process of hybrid nanoparticles was optimized to obtain the reported sizes of the hybrid nanoparticles.

TEM images of AgNPs decorated nano-ZnO particles are presented in Figure 2. As shown in this figure, small AgNPs (black spots, < 2 nm) were alternatively deposited and linked to nano-ZnO nanoparticles (10-30 nm). These small AgNPs might result in the presence of sharp peak at 410 nm in the UV-vis spectra for these Ag/ZnO nanohybrids (Figure 4 below).

For a comparative study, the size of AgNPs deposited on surface of TiO₂ nanoparticles was higher than that on surface of ZnO nanoparticles.
Figure 1. TEM images of Ag loaded TiO$_2$ nanoparticles at different magnifications showing the hybrid structure; a) 40,000x and b) 80,000x. Inserted images show the schematic illustration of hybrid nanoparticles. Red point represents Ag nanoparticles and blue support is nano-TiO$_2$.
Figure 2. TEM images of Ag loaded ZnO nanoparticles at different magnification: a) 30,000x and b) 100,000x.

The UV-visible absorption spectra of AgNPs, nano-TiO$_2$ and AgNPs decorated nano-TiO$_2$ particles (dispersed in water) are presented in Figure 3. In case of AgNPs (~10 nm of diameter), broad band around 398 nm was the characteristic of the Surface Plasmon Resonance (SPR peak) of AgNPs [47]. For AgNPs decorated nano-TiO$_2$ particles, the hybridization of nano-TiO$_2$ and AgNPs leads to shift the absorption edge to the lower energy region (visible region), as compared with the pure nano-TiO$_2$ (at 360 nm in the UV region). Similar results were reported for Ag–TiO$_2$...
nanocomposites [48, 49]. The authors signaled that visible light absorption by Surface Plasmon Resonance of AgNPs induced electron transfer to TiO$_2$, resulting in charge separation and therefore activated by visible light.

Figure 4 shows the UV-visible spectra of AgNPs, nano-ZnO and AgNPs decorated nano-ZnO particles (dispersed in water). As can be seen in Figure 4, a broad band around 410 nm was observed, indicating the presence of AgNPs on the surface of nano-ZnO particles.

Figure 3. UV-Vis spectra of AgNPs, nano-TiO$_2$ and AgNPs decorated nano-TiO$_2$ particles (dispersed in water)

Figure 4. UV-Vis spectra of AgNPs decorated nano-ZnO particles (dispersed in water)

3.2. Antibacterial tests
3.2.1. TiO$_2$ and Ag/TiO$_2$ nanoparticles

Figures 5 and 6 present the photographs of antibacterial test for nano-TiO$_2$ and Ag/TiO$_2$ NPs against *S. aureus* and *E. coli* bacteria, without and with light irradiation, respectively. Tables 1 and 2 show their corresponding inhibition zones. As shown in Figures 5a and 5b, in the dark TiO$_2$ NPs did not exhibit inhibitory effects on *S. aureus* bacteria (at concentrations of 10-40 mg/mL), whereas Ag loaded TiO$_2$ NPs exhibited significant antibacterial activity at the concentration of 40 mg/mL). It was reported that TiO$_2$ nanoparticles are easy to attach to the cell membranes and accumulate [50]. In general, TiO$_2$ nanoparticles can destroy the pathogenic bacteria by ROS mechanism under UV light radiation. Since the emitted wavelengths of the white LED lights include peaks in the blue (450-470 nm) and yellow (560-590nm) areas, the inhibition zone of Ag loaded TiO$_2$ NPs (40 mg/mL) could be attributed to the content of AgNPs in the nanohybrids (e.g ~1.3 mg/mL). Please note that the concentration of TiO$_2$ in nanohybrids is 30 times higher than that of AgNPs (from synthesis: the weight ratio of Ag precursors: TiO$_2$ = 1: 30). Besides, Ubochonlakate et al. [51] reported that Ag doped TiO$_2$ had higher antibacterial efficiency (100 % in 10 min) against *P. Aeruginosa* bacteria than that of pure TiO$_2$ (57% in 15 min), under UV irradiation. The interesting results are observed under light irradiation for Ag/TiO$_2$ nanohybrids (Table 1). These nanoparticles exhibited the inhibition zone of 2 mm (in diameter) at the lower concentration of 16 mg/mL, indicating the contribution of TiO$_2$ nanoparticles in this nanohybrids to their antibacterial activity. At the high concentration of 40 mg/mL, their inhibition zone is similar to the case in dark (4 mm in diameter), indicating the dominated contribution of AgNPs to the antibacterial activity of these nanohybrids (at this high concentration).

As seen in Figures 5c and 5d, TiO$_2$ NPs did not exhibit inhibitory effects under this light irradiation on these bacteria (at concentration of 8-40 mg/mL). It was reported that the absorption of light in the visible region of TiO$_2$ increased with the noble metals (Pt, Au and Pd) doping content [52]. Yue Lin et al. [53] also reported the antibacterial properties against *E.coli* of the Ag/TiO$_2$ core/shell nanoparticles without the presence of UV light. They observed the obvious zone of inhibition around the hybrid nanoparticles, whereas there was no inhibition detected around the pure TiO$_2$ nanoparticles. Similar results also were observed by Dhanalekshmi et al. [54] for Ag/TiO$_2$ core/shell hybrid nanoparticles against *E.coli* and *S.aureus* bacteria. Zhang et al. [55] reported TiO$_2$ nanoparticles with highly dispersed Ag clusters are entirely restricted the *E. coli* bacterial growth [55]. Barudin et al. [56] indicated that Ag-TiO$_2$ nanoparticles exhibited the superior antibacterial activity, as compared to the lone individual TiO$_2$ nanoparticles, under visible light irradiation [56].

In this work, for *E.coli* bacteria, under light irradiation Ag/TiO$_2$ nanohybrids have the higher antibacterial activity than that in darkness (Table 2, with concentration of 8 and 16 mg/mL), due to the hybridization of AgNPs and TiO$_2$ NPs. Besides, in dark, the inhibition zones of Ag/TiO$_2$ nanohybrids increase with their concentration, due to the increase of AgNPs in the nanohybrids.
Figure 5. Photographs of antibacterial test against *S. aureus* bacteria (agar-well diffusion method) for pure TiO$_2$ and Ag loaded TiO$_2$ nanoparticles (a and b: without light irradiation; c and d: without light irradiation). Concentrations of 8, 16 and 40 mg/mL.
Figure 6. Photographs of antibacterial test against *E. coli* bacteria (agar-well diffusion method) for Ag loaded TiO$_2$ nanoparticles: a) without light irradiation; b) under light irradiation. Concentration of 8, 16 and 40 mg/mL.

Table 1: Antibacterial activity against *S. aureus* bacteria of TiO$_2$ nanoparticles and Ag loaded TiO$_2$ nanoparticles

<table>
<thead>
<tr>
<th>Concentrations (mg/mL)</th>
<th>Inhibition Zone (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without light irradiation</td>
<td>under light irradiation</td>
</tr>
<tr>
<td>TiO$_2$ nanoparticles</td>
<td>Ag decorated TiO$_2$ nanoparticles</td>
<td>TiO$_2$ nanoparticles</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2: Antibacterial activity against *E. coli* bacteria of TiO$_2$ nanoparticles and Ag loaded TiO$_2$ nanoparticles

<table>
<thead>
<tr>
<th>Concentrations (mg/mL)</th>
<th>Inhibition Zone (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without light irradiation</td>
<td>under light irradiation</td>
</tr>
<tr>
<td>TiO$_2$ nanoparticles</td>
<td>Ag decorated TiO$_2$ nanoparticles</td>
<td>TiO$_2$ nanoparticles</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

3.2.2. ZnO and Ag/ZnO nanoparticles

It was reported in literature that ZnO has the inherent gain of broad antibacterial activities against virus, bacteria, fungus and spores [57-59]. Stoimenov et al. [60] defined that ZnO nanoparticles attached on the bacterial surface due to electrostatic force of attraction. We expect that the hybridization of AgNPs with ZnO NPs may exhibit the superior antibacterial activity, as compared to the lone individual NPs [45].

Figures 7 and 8 show the photographs of antibacterial test for nano-ZnO and Ag/ZnO NPs against *S. aureus* and *E. coli* bacteria, without and with light irradiation, respectively. Tables 3 and 4 show their corresponding inhibition zones. As shown in Figures 7 and 8, ZnO NPs did not exhibit inhibitory effects on both bacteria with or without light irradiation (at concentrations of 10-40 mg/mL).

For Ag/ZnO nanohybrids, as shown in Tables 3 and 4, light irradiation increases the diameter of inhibition zone for both *S. aureus* (at 8 mg/mL) and *E. coli* (at 8, 16, 40 mg/mL) bacteria. Similarity, Mariana Ibanescu et al. [61] reported the antimicrobial property of Ag/ZnO nanocomposites against both *E. coli* and *M. luteus* bacteria. The authors found that small amounts of silver could significantly enhance the antimicrobial activity. The photocatalytic activity of Ag/ZnO nanocomposites could contribute to their high antimicrobial activity. Nagaraju et al. [62] also indicated the high
antimicrobial activity of Ag-ZnO NPs against both *E. coli* and *S. aureus* bacteria. The inhibition zone could be observed at the concentration of 500 µg Ag-ZnO NPs. Wei et al. [63] also described the high antibacterial activity of Ag-ZnO hybrid nanofibres against *E. coli* and *P. aeruginosa* bacteria.

For the comparative study, under light irradiation at the low concentration (8 mg/mL), Ag/ZnO nanohybrids exhibit the higher antibacterial activity against both two bacteria, than Ag-Ag/TiO$_2$ nanohybrids. One possible explanation is the better homogeneous deposition of the smaller AgNPs on the surface of nano-ZnO particles, as compared to that of nano-TiO$_2$ nanoparticles (Figures 1 and 2).

Figure 7. Photographs of antibacterial test against *S. aureus* bacteria (agar-well diffusion method) for pure ZnO nanoparticles (a: without light irradiation; b: under light irradiation) and Ag loaded ZnO nanoparticles (c: without light irradiation; d: under light irradiation). Concentration of 8, 16 and 40 mg/mL.
Figure 8. Photographs of antibacterial test against *E. coli* bacteria (agar-well diffusion method) for ZnO nanoparticles (a—without light irradiation; b—under light irradiation) and Ag loaded ZnO nanoparticles (c—without light irradiation; d—under light irradiation). Concentration of 8, 16 and 40 mg/mL.

Table 3: Antibacterial activity against *S. aureus* bacteria of ZnO nanoparticles and Ag loaded ZnO nanoparticles

<table>
<thead>
<tr>
<th>Concentrations (mg/mL)</th>
<th>Inhibition Zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without light irradiation</td>
</tr>
<tr>
<td>ZnO nanoparticles</td>
<td>Ag decorated ZnO nanoparticles</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4: Antibacterial activity against *E. coli* bacteria of ZnO nanoparticles and Ag loaded ZnO nanoparticles

<table>
<thead>
<tr>
<th>Concentrations (mg/mL)</th>
<th>Inhibition Zone (mm)</th>
<th>without light irradiation</th>
<th>under light irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZnO nanoparticles</td>
<td>Ag decorated ZnO nanoparticles</td>
<td>ZnO nanoparticles</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Conclusions

The main findings of this work were as follows:

1. Silver decorated oxide nanoparticles have been successfully synthesized by using sodium borohydride as reducing agent, with the weight ratio of Ag precursors: oxide nanoparticles = 1:30.

2. The TEM images indicated that AgNPs (5-10 nm) were deposited on the surface of nano-TiO2 particles (30-60 nm). Whereas, the smaller AgNPs (<2 nm) were dispersed on the surface of nano-ZnO particles (10-30 nm).

3. UV-vis spectra indicated that the hybridization of Ag and oxide nanoparticles led to shift the absorption edge of oxide nanoparticles to the lower energy region (visible region).

4. The antibacterial tests indicated that both oxide nanoparticles did not exhibit inhibitory against bacteria, with or without light irradiation. However, the presence of AgNPs in their hybrids (at the concentration < 40 mg/mL) exhibited the higher inhibition zones under light irradiation, as compared to that in dark. At the high concentration of 40 mg/mL, the antibacterial behavior of these nanohybrids under light irradiation is similar to that in dark, indicating the dominated contribution of AgNPs to the antibacterial activity of these nanohybrids (at this high concentration).

5. As the comparative study, under light irradiation at the low concentration (8 mg/mL), Ag/ZnO nanohybrids exhibit the higher antibacterial activity against both two bacteria, than the Ag-Ag/TiO2 nanohybrids.

Author Contributions: Conceptualization and methodology, N.T.P.; N.T.A; synthesis of ZnO-AgNPs: T.V.V and N.T.V; Synthesis of TiO2-AgNPs: T.H.N; writing—original draft preparation, N.T.A; writing—review and editing N.T.P.; supervision, N.T.P.;

Funding: This work was financial supported by Natural Sciences and Engineering Research Council of Canada (NSERC).

Conflicts of Interest: The authors declare no conflict of interest.

References

