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Abstract  

 

Optinalysis, as a method of symmetry detection, is a new algorithm that intrametrically (within 

elements or variables) or intermetrically (between elements or variables) computes and compares 

two or more univariate or multi-clustered or multivariate sequences as a mirror-like reflection of 

each other (optics-like manner), hence the name is driven. Optinalysis is based by the principles 

of reflection and moment about a symmetrical line which detects symmetry that reflects a 

similarity measurement. This proposed methodology was validated in comparison with Pearson 

method of skewness detection, and also with some algorithms for pairewise alignment and 

comparison of genomic sequences (Needle, Stretcher, Water, Matcher) on EMBL-EBI website. 

A results comparison shows that optinalysis is more advance, more sensitive, more inferential 

and simple alternative approach of skewness detection and pairewise sequence comparison.  
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Introduction 

 

Natural and man-made structural entities and objects are everywhere, the information 

about these interesting structures and objects are routinely gathered and collected all around us, 

we appreciates the beauty of their nature, shapes, patterns and orientations. We recognize, 

identify, compare and distinguish amongst them by our innate senses. We often make rational 

decisions about these structural entities and objects base on their symmetry and structural 

orientations. Therefore, measure of symmetry is of great and global concern and for a wider 

interest in a variety of disciplines with theoretical concepts in mathematics and statistics; 

practical applications in biology, chemistry, medicine, image analysis, archaeology, 

bioinformatics, geology, particle science, genetics, geography, law, pharmacy and physiotherapy 

(Goodall, 1991; Bookstein, 1991; Dryden and Mardia, 1998; Cootes and Taylor 2010; Dryden, 

and Mardia, 2016; and Zheng et al., 2017). Lines and points as components of a geometric 

concept were established and invented by Mathematicians. Symmetry, on the other hand, is 

everywhere around us. Almost all living creatures such as plants, animals, and even humans are 

symmetric to a certain degree of geometry (Dryden and Mardia, 2016).  

In the literal texts, going from Weyl (1952); Darvas (2007), a widely accepted general 

definition of symmetry is not claimed coverable by a single mathematical definition and there is 

much to learn and to explore before stating whether or not a unique definition is possible. Even 

the practical definitions of symmetry are often based on strong assumptions and exemplified 

rather than defined (Petitjean, 2007). However, strong assumptions, such as the existence of the 

euclidean structure for geometric symmetries, Riemannian distance, Minkowski distance, 

Mahalanobis distance, simple matching and Jaccard coefficient are some measures of similarity.  

Similar and symmetrical entities are invariance to transformational properties such as 

reflection, rotation, scaling, and translation. The decisions we made about this invariance under 

different transformations are based on strong assumption with no general formula to prove and 

explain. Petitjean (2007) associated the topic of symmetry with the classification of symmetries, 

which should be done on the basis of the symmetry group structure of the object and symmetry is 

considered as a quantity varying continuously. 

 In this paper, a new algorithm called Optinalysis, is proposed and explained. Optinalysis 

torches the most important aspects of statistical inferences on geometrical shapes and sequence 

comparisons. Optinalysis does not require assumption of normality, but it requires the existence 

or establishment of a clearly defined sequence order within and/or between the elements or 

variables of a sequence(s). Several examples were examined and analyzed, and in comparison 

with other standard methods, revealed that Optinalysis presented a uniquely new paradigm of 

sequence data analysis of univariate or multi-clustered or multivariate observations.   
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1.0 Theoretical Justification for the Algorithm of Optinalysis 

The paradigm of the concept of symmetry is the mirror image. My mirror image and I are 

symmetric pair to each other by their corresponding points that matches within and between 

them. Other kinds of symmetry exist, but this is the one to start with. It is called isosymmetry. 

To make this concept illustrative and precise, consider the case of one M letter (Figure 1) 

in a plane. Landmarks (elements) of letter M               may be related as follows: there is a 

straight line that separates these landmarks (the line of reflection) and each point      within M 

can be connected to a corresponding point       within M. The correspondence connects all 

points     and      in M such that corresponding points are equidistant from the line of 

reflection. Mardia et al. (2000) define this symmetry as object symmetry, and is also referred in 

this paper intrametric symmetry or shape symmetry.  

In another illustrative case of two M letters (Figure 2) in a plane. Letter M1 and M2 may 

be related as follows: there is a straight line that separates them (the line of reflection) and each 

point      in M1 can be connected to a corresponding point      in M2. The correspondence 

connects all points     and     in M1 and M2 and is such that corresponding points are 

equidistant from the line of reflection. Mardia et al. (2000) define this symmetry as matching 

symmetry, and is also referred in this paper intermetric symmetry or comparative symmetry. 

In space, the definition is similar, but with a plane of reflection. Scholarly works such as 

Weyl (1952), Darvas (2007), Kendall (1984), Watson (1986), Bookstein 1986, 1991); Fraasen 

and Bsa (1989); Kent (1994), Lele and Richtsmeier (1991) and Dryden et al. (2008) follows 

same line with this principle.   

 
Figure 1: Showing a symmetric correspondence within pair points of letter M. 

 

 
Figure 2: Showing a symmetric correspondence between pair points of two M letters.  
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The Algorithm of Optinalysis is within this tradition and concept of symmetry. 

Optinalysis attempted to detects symmetry within and/or between the corresponding points of 

pair of structural elements or variables of sequences. Optinalysis is however designed to 

intrametrically or intermetrically compare two or more multi-clustered or multivariate sequences 

as a mirror-like reflection of each other (optics-like manner).  

 

2.0 The principle of Optinalysis is Reflection and Moment  

All symmetrical structures reflect momentarily (i.e, in same moment or in same total 

moments) about a symmetrical plane/point. Reflection can be: (1) Normal reflection, 

characterized by a plane mirror reflection (equidistance reflection from the central node), (2) Re-

scaled reflection, characterized by the reduction in magnitude and increase in displacement or 

increase in magnitude and reduction in displacement. Therefore, reflection and moment are two 

companion mechanisms upon which the principle of Optinalysis operates.  

If the query moment is equal to the reflector moment, then two comparing entities are 

geometrically and statistically symmetrical intrametrically.  

         
     

And/or if the total query moments is equal to the total reflector moments, then two 

comparing entities are geometrically and statistically symmetrical intrametrically.  

               
       

If the query moment is equal to the reflector moment, then two comparing entities are 

geometrically and statistically symmetrical intermetrically.  

             

And/or the total query moments is equal to the total reflector moments, then two comparing 

entities are geometrically and statistically symmetrical intermetrically.  

                   
Suppose we refer to Figure 1-2, we find that intrametrically (within the sequence 

elements or variables), 

   is normally reflected momentarily about x-plane as     

   is normally reflected momentarily about x-plane as     

And also intermetrically (between the sequence elements or variables),  

   is normally reflected momentarily about y-plane as    

   is normally reflected momentarily about y-plane as    

   is normally reflected momentarily about y-plane as    

   is normally reflected momentarily about y-plane as    

   is normally reflected momentarily about y-plane as    

   is normally reflected momentarily about y-plane as    

In another case in Figure 3, we can find that intrametrically (within the sequence 

elements or variables),  

   is spherically reflected momentarily about y-plane as    

   is spherically reflected momentarily about y-plane as    

   is spherically reflected momentarily about y-plane as    

   is spherically reflected momentarily about y-plane as    
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Figure 3: A pseudo-symmetrical distribution with a spherically reflected elements  

 

3.0 Terms used and constructed  

3.1 Quantitative scale: (denoted by              ) are numbers arbitrarily assigned to rank 

every specific point, called the node, of a sequence, in a very logical manner, in such a way that 

every node has its own unique characteristic sensitivity to a changing magnitude. The symmetric 

status of a given shaped sequence remains invariant under any quantitative scaling provided that 

a uniform difference (common difference) is maintained between each scale point to its 

proceeding point (See Figure 4, and Table 1-2). 

3.2 Elements or Variables: (denoted by                ;               ) refer to the 

main components of a sequence (See Figure 4, and Table 1-2). 

3.3 Scalements: Denoted by ‘Sm’ it is expressed as the product of element or variable and its 

bearing quantitative scale (See Table 1-2).  

3.4 Node: Denoted by ‘n’. A node comprised of any specific quantitative scale’s units, its 

bearing element or variable (See Table 1-2). 

3.4.1 Left-sided and Right-sided Nodes: Left-sided and right-sided nodes describe 

respectively the nodes on which the elements or variables of left-sided and right-sided 

sequences are organized. The left-sided and right-sided sequences describe respectively 

the sequence on which the components of left-sided and right-sided nodes are organized 

(See Table 1-2). 

3.4.2 Pericentral Node: Denoted by ‘Pn’. It describes one of the left-sided or right-sided 

node that divide each of the component sequence (i.e, the left-sided and the right-sided 

sequence) into two equal halves. Pericentral node exists only if and only two sequences 

are paired intermetrically (See Table 1-2). 

4.3.3 The Central Node: Denoted by ‘Cn’ or ‘a*n’. It describes that point of the 

symmetrical plane or axis. It is the midpoint that divides a sequence or two paired 

sequences into two equal halves (See Table 1-2).  

3.5 Nodality: Denoted by ‘N’ is the total number of existing nodes in sets of sequences. Nodality 

directly correlates with the number of elements or variables (See Table 1-2).   
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Figure 4: A symmetrical shape showing the spread of the data around a mean.  

The same colored points show intrametric correspondence about a symmetrical line.  

 

4.0 Optinalysis   

Optinalysis is a new algorithm that intrametrically (within elements or variables) or 

intermetrically (between elements or variables) computes and compares two or more univariate 

or multi-clustered or multivariate sequences as a mirror-like reflection of each other (optics-like 

manner), hence the name is driven. Optinalysis is a useful tool for shape/pattern and comparative 

analysis. Intrametric optinalysis, also called shape optinalysis requires no pairing style to be 

chosen, because only one sequence is involved. But the intermetric optinalysis, also called 

computational optinalysis requires a suitable selection of a pairing style between the two 

sequences.  

 

4.1 Step-by-step Guidelines to Optinalysis 

Step-by-step guides to optinalysis are as follows:  

Step 1: Identify the sequence data set(s) to be analyzed. Optinalysis welcomes all 

numerical data from any measurement scales. For nominal data, a suitable and 

appropriate transformation method need must be used to convert the nominal values to 

numerical values.  

Step 2: Identify the elements or variables of the sequence(s) and establish or adopt any 

logical or empirical sequence order within the elements or variables. See further details in 

section item 5.1, 5.1.1, 5.1.2. 

Step 3: Resolve the sequences using any suitable and appropriate resolution methods. 

See further details in section item 5.2.  

Step 4: Assign symbolic annotations to the sequence(s) to show the head and tail of the 

sequence(s), and also the labeling of the sequence elements or variables. See further 

details in section item 3.2, 5.3.  

Step 5: Select an appropriate pairing style if intermetric symmetry (symmetry/similarity 

detection between two independent sequences) is involved. For intrametric symmetry 
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detection (symmetry/similarity detection within a sequence or between two dependent 

parts of a sequence), no pairing style is required. See further details in section item 5.3.  

Step 6: Select a controlled limit of normalization. Normalization can range from zero to 

any value. See further details in section item 5.4.  

Step 7: Assign a quantitative scale to the sequence(s). See further details in section item 

3.1.  

Step 8: Using the suitable equations, compute the Kabirian coefficient of symmetry 

(similarity), and the probabilities or percentages. See further details in section item 6.0, 

6.1.1, 6.1.2, 6.2, 6.3.  

 

5.0 Further Details on Some Important Algorithmic Steps  

5.1 Sequencing of the Data Set  

Sequencing here refers to the adoption or establishing a logical and empirical order to a set of 

elements or variables.  

5.1.1 Theoretical Sequence Order 
This sequence order is based on the geometrical orientations, or theoretical explanations 

or natural phenomena. For instance, nucleotide base and amino acid sequences, systematic 

numbering of shape landmarks coordinates, chemical concentrations, rating and ranking 

responses of a questionnaire, and etc are some examples of a theoretical sequences. In this case, 

the position and pattern orientation of each element or variable of the attribute is preserve and 

kept in its natural order.  

5.1.2 Ascending and Descending Sequence Order  

In this case, the position and pattern orientation of all the random elements or variables of 

a given data set are reorganized in ascending or descending order. It disregards the inherent order 

of the random data set. This can be important for establishing an empirical sequence order to 

random univariate observations.  

 

5.2 Resolution of univariate or multi-clustered or multivariate observations 

Resolution of univariate and multi-clustered or multivariate observations are computed for the 

following reasons: 

i. For constructing a shape or pattern to a shapeless sequence of univariate observations. To 

give a shape to a shapeless sequence of univariate observations, statistical functions such 

as mean differences of sequence, descaled mean differences of sequence, squared mean 

differences of sequence, and square root of squared mean differences of sequence can be 

used appropriately. Resolution by descaled mean differences is when all the scaling effect 

(positive and negative signs) is removed from the shaped sequence. Resolution by 

descaled mean difference is the same result as the square root of squared mean 

differences of sequence.  Table A1-A2 of the appendix presented some worked examples. 

ii. For simplification of repeated or replicated measurements of ordered sequence of multi-

clustered or multivariate observations. To simplify repeated or replicated measurements 

of multi-clustered or multivariate observations, statistical functions such as variance, 

standard deviation, standard error of mean and etc can be used appropriately.  

iii. For harmonizing the effect of co-factors of a structured or shaped distribution. 

Harmonization of co-factors’ effect can be achieved appropriately by some functions 

such as differential moment resolution, differential surface area resolution, differential 

centroid size resolution, and etc.   
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5.3 Existence of Sensitivity Points Necessitates for the Choice of Pairing Styles  

Sensitivity point is any node that when considered a variable can exert a certain degree of 

imbalances in the distribution of elements (variables) about a dividing line or plane. Each node 

has its own unique characteristic sensitivity which increases away from the central node and 

decreases towards the central node(s). Sensitivity of a point generally decreased with increase in 

sequence elements. Figure 5 is an illustrative example.  

The nodes with components          and          are the most sensitive points of the 

upper and lower stems respectively. The node with components R4D0C1 is the central node.  

 
Figure 5: Sensitivity points of sequence elements. 

 

Pairing style tells us how the sequences of two intermetric elements or variables 

pairewisely reflect. Sequences symmetry can be detected on different pairing style. The choice of 

appropriate pairing style depends on the consideration made on where (i.e, beginning or end of 

the sequence elements or variables) should be more sensitive to any imbalances/changes or 

otherwise.  

5.3.1 Head-to-head Pairing (H-H): one ends of the two pairing sequences called the 

heads (the start point) are both allowed to be on the most sensitive node.  

  

    

      

 

5.3.2 Tail-to-tail Pairing (T-T): one ends of the two pairing sequences called the tails 

(the end point) are both allowed to be on the most sensitive node.  

  

      

    

 

5.3.3 Head-to-tail Pairing (H-T) or Tail-to-head Pairing (T-H): one of the ends of the 

two pairing sequences called the head or tail (the start or end point) is allowed to be on the most 

sensitive node and other on the less sensitive node.  

 

5.4 Normalization  

Normalization refers to a deliberate positive or negative increase in magnitude of the 

central node of a given sequence distribution. A symmetrical distribution remains stable under 

any magnitude of central modulation. This explains that a symmetrical distribution is very 

flexible and stable to any limit of central modulation.  

Asymmetrical distribution can be transformed symmetrical if the central node is 

positively or negatively modulated to a certain minimum magnitude called a normalization value 

(±Nv). Therefore, central modulation and normalization promotes unimodality and minimizes the 

skewness. See Figure 6-8 for visually illustrative examples.  
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Figure 6: Asymmetrical distribution  

 

 
Figure 7: Transformed normalized distribution (By positive modulation)  
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Figure 8: Transformed normalized distribution (By negative modulation)  

 

6.0 Computations/Calculations 

6.1 Kabirian Coefficient of Symmetry and Similarity  

The Kabirian coefficients of symmetry and similarity      are values that quantify the 

magnitude and direction of balances or imbalances in the distribution of sequence elements or 

variables about a symmetric plane. It may exist in two value outcomes (from to central rotation) 

which translate the same significance level. It is calculated by intrametrically or intermetrically 

as described in Table 1-2 and equations 1-2.   

 

6.1.1 Computations in intrametric symmetry detection (shape optinalysis) 

As shown in Table 1, the Kabirian coefficient of symmetry that exists within the distribution of 

   elements or variables is given by the eq. (1) below. This is what quantifies intrametric 

symmetry and the approach is called shape optinalysis. 

 

   
   

 
 

 
 

       
      

 
 

 

          
       

                              

 

   
   

 
 

 
 

       
      

          
      

                                      

 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2019                   doi:10.20944/preprints201905.0295.v2

https://doi.org/10.20944/preprints201905.0295.v2


OPTINALYSIS 

11 
 

Table 1: Showing the computations in an intrametric symmetry detection (shape optinalysis)  
QS-Unit 

     
Element 

     
Scalement Function 

         
       

Node 

     
Remarks 

            )     

                  

                 Pericentral node 

                  

            )     

     
        

 )    Central node 

                    

              )     

             
 )    Pericentral node 

                       

                       

   
 
         

                 
       

  

 

6.1.2 Computations in intermetric symmetry detection (comparative optinalysis) 

As sown in Table 2, the Kabirian coefficient of similarity that exists between the two paired 

sequences,    and    is given by eq. (2) below. This is what quantifies intermetric similarity.   
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Table 2: Showing the computations in intermetric symmetry detection (comparative optinalysis) 
QS-Unit 

     
Elements 

     
Scalement Function 

              

Node 

     
Remarks 

            )     

                  

                 Pericentral node 

                  

            )     

            )    Central node 

                  

            )     

            )    Pericentral node 

                     

                     

   
 
                             

  

 

6.2 Confidence level (probability value) of similarity and symmetry  

The probability level of similarity or symmetry that exists within (intrametric) or between 

(intermetric) two comparing elements or variables can be calculated by the general formula 

below:  

Suppose                                      and       = unknown ( ). 

 

Table 3: Bivariate Optinalysis under some constant parameters  

QS-Unit 

     
Elements 

           

Scalement Function 

             
1         
2 0       

3 1 or (100)                  

   
 
  

                                

                            

 

By substituting these variables into equation 2 (Table 3 gives further details), we have 

   
      

   
       

        

     
 

Making   the subject of the formula, where   is represented as              or        
(or             or       ), we now have: 
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Equation (3) is appropriate to give positive outcomes if     is between 1 and tends to 0.66667 

 

In the other turn, suppose                                      and       = 

unknown ( ).  

 

Table 4: Bivariate Optinalysis under some constant parameters  

QS-Unit 

     
Elements 

           

Scalement Function 

             
1 1 or (100)                  
2 0       

3         

   
 
        or                        

                              

By substituting these variables into equation 2 (Table 4, gives further details), we have  

   
      

  
       

        

    
 

Making   the subject of the formula, where   is represented as              or        
(or             or       ), we now have: 

By probability as: 

            
            

        
                                           

            
            

        
                                          

 By percentages as: 

             
                

        
                                    

             
                

        
                                    

Equation (3) is appropriate to give positive outcomes if     is between 1 and tends to 2, and all 

negative value results.  

  

6.3 Confidence level (probability value) of dissimilarity or asymmetry  

 By probability as:  

                                                                                  

                                                                                  

 By percentages as:  
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6.4 Interpreting the Result of Optinalysis 

Obtaining Kabirian coefficient equals to 1, >1, <1 indicates absolute symmetry or similarity 

(equal heaviness around the symmetrical line, at the left-sided sequence), asymmetry or 

dissimilarity (more heaviness below the symmetrical line), also asymmetry or dissimilarity (more 

heaviness above the symmetrical line, at the right-sided sequence) respectively. The probabilities 

or percentages obtained are the significance level at which the distribution of the 

elements/variables or the deviation of elements/variables is symmetrical about a mean. 

 

7.0 Symbolic Notations in Optinalysis  

The following symbols are used to express the algorithm of Optinalysis and the related 

arguments in consideration. Some symbolic demonstrations are given below and their full 

descriptions or meaning were followed.   

Examples:  

Let the left sided optinalytically reflects head-to-head (H-H) with the right sided by a 

normalization of 1000 units, such that elements of sequence (A) are intermetrically similar to the 

elements of sequence (B) with a resultant Kabirian coefficient of 1 and thus 100% 

similar/identical.  

  

          

     

         
    

    

 

Let the left sided optinalytically reflects head-to-head (H-H) with the right sided by zero 

normalization, such that elements of sequence (A) are intrametrically symmetrical to the 

elements of sequence (A
/
) with a resultant Kabirian coefficient of 1 and thus 100% symmetrical.  

  

       

      

         
    

    

 

Let the left sided optinalytically reflects tail-to-tail (T-T) with the right sided by normalization of 

a 50 units, such that elements of sequence (A) are intermetrically similar to the elements of 

sequence (B) with a resultant Kabirian coefficient of 1 and thus 100% similar/identical.  

  

 

            

         
    

    

 

Let the left sided optinalytically reflects head-to-head (H-H) with the right sided by zero 

normalization, such that elements of sequence (A) are intrametrically asymmetrical to the 

elements of sequence (A
/
) by 65% and thus asymmetrical. 

  

       

     

       
   

   

 

Let the left sided optinalytically reflects tail-to-tail (T-T) with the right sided by zero unit 

normalization, such that elements of sequence (A) are intermetrically similar to the elements of 

sequence (B) by 2% and thus dissimilar.   
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 It should be generally noted that, the upper and lower sequence denotation defines which 

sequence is on the left-sided and right-sided orientation in the pairing respectively.  

8.0 Applications of Optinalysis and Method Validation 

8.1 In Skewness Detection   

Skewness measure is one of the very important aspects of statistics. In this subsection, new 

methods are presented for skewness detection using the algorithm of optinalysis. In this 

application, intrametric symmetry detection guidelines are used to measure how the sequence 

elements or variables spread around the mean or a symmetrical plane. Based on whether or not a 

sequence is resolved and the resolution approach used, four (4) types of skewness detection 

where identified as follows:  

i. Raw skewness: this does not requires not any resolution, and as such the data has a 

meaningful shape or pattern. Raw skewness is suitably detected for multi-clustered or 

multivariate sequence. Table 8 presented an example.  

ii. Absolute skewness: in this approach, the resolution approach for the construction of a 

shape to the sequence is the mean differences of the elements of the sequence. In this 

case, the positive and negative differences from the mean are taken into consideration. 

Absolute skewness is suitably detected for univariate sequence. Table 6-7 and Table A1-

A2 of appendix A presented examples.  

iii. Variance skewness: in this case also, the resolution approach for the construction of a 

shape to the sequence is the squared mean differences of the elements of the sequence. 

Variance skewness is suitably detected for univariate sequence. Table 6-7 and Table A1-

A2 of appendix A presented examples.  

iv. Standard skewness: in this case also, the resolution approach for the construction of a 

shape to the sequence is the square root of squared mean differences of the elements of 

the sequence. Standard skewness is suitably detected for univariate sequence. Table 6-7 

and Table A1-A2 of appendix A presented examples.  

 

8.1.1 Interpreting the Result of Skewness Measure 

Obtaining Kabirian coefficient equals to 1, >1, <1 indicates zero skewness, negative skewness 

(more deviations below the mean), positive skewness (more deviations above the mean) 

respectively. The probabilities or percentages obtained are the significance level at which the 

distribution of the elements/variables or the deviation of elements/variables is symmetrical about 

a mean. Figure 4 is an illustration of a distribution of integers (1, 2, 3, ……, 13) with a zero 

skewness, the resultant shape (resolved by a squared mean differences) looks perfectly 

symmetrical about the mean value of 7. The optinalysis foe skewness detection described here 

gives a similar result with the standard method with zero skewness.  

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2019                   doi:10.20944/preprints201905.0295.v2

https://doi.org/10.20944/preprints201905.0295.v2


OPTINALYSIS 

16 
 

 

Examples:  

Table 6-7 presented an example of recorded random observations of a univarite character. 

The data skewness was calculated using a Graphad Prism software of 8.0.2 version, and then by 

the algorithms of shape optinalysis. The four (4) resolution methods as explained previosly (raw, 

absolute, variance and standard skewness detections) were used. The results in Table A1-A2 of 

appendix A shows that skewness detection by shape optinalysis is a more advance approach over 

the method used in the software (Pearson method), because it provide further details about the 

significance level of skewness, and also different approaches to symmetry detection. Both the 

three (3) methods considrered (absolute, variance and standard skewness detections) shows the 

same direction of skewness. Pearson skewness test is consitently compared with the skewness 

detection by optinalysis of seaquences that were sequenced in an ascending sequence order 

(Table 6) but not the descending sequence order (Table 7).  

Table 8 presented an example of recorded frequencies (sequenced in multi-clusters of age 

groups) of age distribution of individuals in three (3) different populations A to C. The results of 

raw skewness detection by shape optinalysis in Table 8 shows that the frequencies of age 

distribution of individuals in each of the three (3) populations B and C are significantly 

(PSym>0.95) asymmetrical geometrically, while population A is significantly (PSym>0.95) 

symmetrical (similar) geometrically. Moreover, the histographic shape assessment of the age 

frequency distributions was compared to give same conclusion with the results (raw skewness) 

of optinalysis.  
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Table 6: Comparative results of skewness detection by Pearson and optinalysis methods  
 Results and Methods skewness detection 

Ungrouped data  Pearson Skewness   *Standard Skewness by Optinalysis **Variance Skewness by Optinalysis 

Ascending sequence order  Value Kc-value (H-H) PSym.-value PAsym.-value Kc-value (H-H) PSym.-value PAsym.-value 

(H)1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12(T) 0.0000 1.000000 1.0000 0.0000 1.000000 1.0000 0.0000 

(H)3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3(T) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 

(H)1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4(T) -3.4641 1.625000 0.1304 0.8696 4.386700 -0.2139 -0.7861 

(H)1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4(T) -1.9636 1.360465 0.3073 0.6927 2.423729 -0.0804 -0.9196 

(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7(T) 1.9636 0.790541 0.3073 0.6927 0.629956 -0.0804 -0.9196 

(H)1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7(T) 0.0000 1.000000 1.0000 0.0000 1.000000 1.0000 -2.0000 

(H)3, 4, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8(T) -1.5291 1.329545 0.3371 0.6629 2.093220 -0.0218 -0.9782 

(H)8, 8, 8, 8, 8, 8, 8, 8, 8, 11, 12, 13(T) 1.5291 0.801370 0.3371 0.6629 0.656915 -0.0218 -0.9782 

(H)2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 35(T) 3.2630 0.672332 0.0128 0.9872 0.588446 -0.1662 -0.8338 

(H)2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7(T) -3.4641 1.619718 0.1330 0.8670 4.283582 -0.2105 -0.7895 

(H)7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 35(T) 3.4641 0.722035 0.1300 0.8700 0.565152 -0.2122 -0.7878 

(H)2, 2, 2, 2, 2, 2, 9, 9, 9, 9, 9, 9(T) 0.0000 1.000000 1.0000 0.0000 1.000000 1.0000 0.0000 

*The sequences were resolved by square root of squared mean differences to design it a shape.  

**The sequences were resolved by squared mean differences to design it a shape.  
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Table 7: Comparative results of skewness detection by Pearson and optinalysis methods 
 Results and Methods skewness detection 

Ungrouped data  Pearson 

Skewness   

*Standard Skewness by Optinalysis **Variance Skewness by Optinalysis 

Descending sequence order  Value Kc-value (H-H) PSym.-value PAsym.-value Kc-value (H-H) PSym.-value PAsym.-value 

(H)12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1(T) 0.0000 1.000000      1.0000  0.0000 1.000000 1.0000 0.0000 

(H)3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3(T) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 

(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1(T) -3.4641 0.722222      0.1304  0.8696 0.564322 -0.2139 -0.7861 

(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1(T) -1.9636 0.790541      0.3073  0.6927 0.629956 -0.0804 -0.9196 

(H)7, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4(T) 1.9636 1.360465      0.3073  0.6927 2.423729 -0.0804 -0.9196 

(H)7, 6, 5, 4, 4, 4, 4, 4, 4, 3, 2, 1(T) 0.0000 1.000000      1.0000  0.0000 1.000000 1.0000 -2.0000 

(H)8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 4, 3(T) -1.5291 0.801370      0.3371  0.6629 0.656915 -0.0218 -0.9782 

(H)13, 12, 11, 8, 8, 8, 8, 8, 8, 8, 8, 8(T) 1.5291 1.329545      0.3371  0.6629 2.093220 -0.0218 -0.9782 

(H)35, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2(T) 3.2630 1.450496      0.2337  0.7663 3.326581 -0.1662 -0.8338 

(H)7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2(T) -3.4641 0.723270      0.1330  0.8670 0.566075 -0.2105 -0.7895 

(H)35, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7(T) 3.4641 1.625951      0.1300  0.8700 4.337196 -0.2122 -0.7878 

(H)9, 9, 9, 9, 9, 9, 2, 2, 2, 2, 2, 2(T) 0.0000 1.000000      1.0000  0.0000 1.000000 1.0000 0.0000 

*The sequences were resolved by square root of squared mean differences to design it a shape.  

**The sequences were resolved by squared mean differences to design it a shape.  
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Table 8: Raw skewness detection of a grouped (multi-clustered) data by shape optinalysis  

 y-axis (frequency of individuals) 

x-axis (age groups in years) Population A Population B Population C 
(H) 

1-5  100 10 100 

6-10  373 37 373 

11-15 447 44 447 

16-20 782 78 782 

21-25 810 81 810 

25-30 986 986 986 

31-35 1537 1537 1537 

36-40 1537 1537 1537 

41-45 986 986 986 

46-50 810 810 81 

51-55 782 782 78 

56-60 447 447 44 

61-65 373 373 37 

66-70 
(T) 

100 100 10 

Raw skewness (Significance) 
   

Kc-value (H-H) 1.000000 0.872818 1.170568 

PSym.-value 1.0000 0.5487 0.5487 

PAsym.-value 0.0000 0.4513 0.4513 

Histographic assessment  Symmetrical  Negative skewed  Positive skewed  

 

8.2 In Pairewise Genomic Sequence Comparison  

An inferential sequence comparison is a very important aspect of applied mathematics 

and statistics such as comparative genomics. In this subsection, new method for genomic 

sequence comparison was presented following a sequence transformation approach here 

proposed.  

 

Example: 

Suppose we have a reference genomic sequence (S0) and a set of mutant sequences (Sn=1-

24) as shown in the below nucleotide sequences:   

The shaded portions indicate a point of mismatch or mutation relative to the reference 

sequence. Since the algorithm of optinalysis works only with numerical values, an approach is 

proposed here to transform these nominal sequences to a numerical values based on their 

respective molecular mass (in g/mol) of each nucleotide base, as shown in Table 5 and appendix 

B.    

Let the reference sequence      optinalytically reflects head-to-head (H-H or 5′─5′) with 

the mutant sequences      with a normalization of zero unit, such that elements of sequence    

are intermetrically similar to the elements of sequence    with a resultant Kabirain coefficient of 

  and thus  % similar/identical.  
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Following the above argument, a pairewise comparison was made by comparative 

optinalysis. The results of the comparisons are presented in Table 9. To validate this method for 

suitability, other well known and adopted methods for pairewise genomic sequence comparison 

(Needle, Stretcher, Water, Matcher) were used on EMBL-EBI website, and the results of the 

analysis are presented in Table 9. The results in Table 9 show that optinalysis is more advanced 

over the all other algorithms of bioinformatics tools used here (i.e Needle, Stretcher, Water, 

Matcher) for biological sequence comparison.  These well known existing bioinformatics tools 

are not absolutely geometric (position specific variations) computationally and little or no 

sensitivity to changes in magnitude and positions of the nucloetide bases of the examplified 

sequences. Therefore, optinalysis is a simple and suitable alternative approach for biological 

sequence compariosons.  

Reference sequence 

S0 
(5’)

G T G A C T G A G C C T
(3’) 

Mutant sequences  

S1 
(5’)

A T G A C T G A G C C T
(3’) 

S2 
(5’)

G A G A C T G A G C C T
(3’)

 

S3 
(5’)

G T A A C T G A G C C T
(3’)

 

S4 
(5’)

G T G T C T G A G C C T
(3’)

 

S5 
(5’)

G T G A A T G A G C C T
(3’)

 

S6 
(5’)

G T G A C A G A G C C T
(3’)

 

S7 
(5’)

G T G A C T A A G C C T
(3’)

 

S8 
(5’)

G T G A C T G T G C C T
(3’)

 

S9 
(5’)

G T G A C T G A A C C T
(3’)

 

S10 
(5’)

G T G A C T G A G A C T
(3’)

 

S11 
(5’)

G T G A C T G A G C A T
(3’)

 

S12 
(5’)

G T G A C T G A G C C A
(3’)

 

S13 
(5’)

- T G A C T G A G C C T
(3’) 

S14 
(5’)

G - G A C T G A G C C T
(3’)

 

S15 
(5’)

G T - A C T G A G C C T
(3’)

 

S16 
(5’)

G T G - C T G A G C C T
(3’)

 

S17 
(5’)

G T G A - T G A G C C T
(3’)

 

S18 
(5’)

G T G A C - G A G C C T
(3’)

 

S19 
(5’)

G T G A C T - A G C C T
(3’)

 

S20 
(5’)

G T G A C T G - G C C T
(3’)

 

S21 
(5’)

G T G A C T G A - C C T
(3’)

 

S22 
(5’)

G T G A C T G A G - C T
(3’) 

S23 
(5’)

G T G A C T G A G C - T
(3’)

 

S24 
(5’)

G T G A C T G A G C C -
(3’)
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Table 5: Ordinal sequence transformation of nuclotide bases based on molecular mass    

Nucleotide bases and gabs Molecular mass  

Adenine (A) ≈ 135 g/mol 

Tymine (T) ≈ 126 g/mol 

Cytosine (C) ≈ 111 g/mol 

Guinine (G) ≈ 151 g/mol 
Uracil (U) ≈ 112 g/mol 

All other gabs 0 

 

Table 9: Pairewise comparisons and percentage similarity and identity of nucleotide sequences  

 Bioinformatics tools used/Reference 

sequence 

 

 Global Alignment Local Alignment  

 Needle Stretcher Water Matcher *Optinalysis 

Mutant Sequences S0 S0 S0 S0 S0 

S0 100.00% 100.00% 100.00% 100.00% 100.00% 

S1 91.70% 91.70% 100.00% 100.00% 98.14% 

S2 91.70% 91.70% 91.70% 91.70% 99.05% 

S3 91.70% 91.70% 91.70% 91.70% 98.45% 

S4 91.70% 91.70% 91.70% 91.70% 99.21% 

S5 91.70% 91.70% 91.70% 91.70% 98.17% 

S6 91.70% 91.70% 91.70% 91.70% 99.39% 

S7 91.70% 91.70% 91.70% 91.70% 99.07% 

S8 91.70% 91.70% 91.70% 91.70% 99.56% 

S9 91.70% 91.70% 91.70% 91.70% 99.38% 

S10 91.70% 91.70% 91.70% 91.70% 99.31% 

S11 91.70% 91.70% 91.70% 91.70% 99.54% 

S12 91.70% 91.70% 100.00% 100.00% 99.91% 

S13 91.70% 91.70% 100.00% 100.00% 83.09% 

S14 83.30% 91.70% 100.00% 100.00% 86.91% 

S15 91.70% 91.70% 91.70% 100.00% 85.71% 

S16 91.70% 91.70% 91.70% 91.70% 88.40% 

S17 91.70% 91.70% 91.70% 91.70% 91.45% 

S18 91.70% 91.70% 91.70% 91.70% 91.47% 

S19 91.70% 91.70% 91.70% 91.70% 91.17% 

S20 91.70% 91.70% 91.70% 91.70% 93.38% 

S21 91.70% 91.70% 91.70% 91.70% 94.03% 

S22 83.30% 91.70% 100.00% 100.00% 96.71% 

S23 83.30% 91.70% 100.00% 100.00% 97.79% 

S24 91.70% 91.70% 100.00% 100.00% 98.73% 

*Molecular mass approach of ordinal transformation was used.  
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Summary  

Optinalysis can be summarized as: 

 Optinalysis, as method of symmetry detection and similarity measurement, 

intrametrically (within elements or variables) or intermetrically (between elements or 

variables) computes and compares two or more univariate or multi-clustered or 

multivariate sequences as a mirror-like reflection of each other (optics-like manner).  

 Elements or variables of symmetrical structures reflect in same moment (or in same total 

moments) about a symmetrical line. 

 Lack of symmetry (asymmetry) exists when reflection is not in same moment (or toal 

moments) about a symmetrical line.  

 Kabirian coefficient of symmetry or similarity is the fundamental value that gives further 

calculations of the statistical inferences about symmetry or similarity level.  

 Symmetry detection reflects similarity measurement.  

 Optinalysis is suitable alternative for skewness measure and also a pairewise sequence 

analysis and comparisons.  

 The algorithm of shape optinalysis can be graphically summarized as illustrated in Table 

10. 

 The algorithm of comparative optinalysis can be graphically summarized as illustrated in 

Table 11.  

 

Table 10: Summary of the algorithm of shape optinalysis  
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Table 11: Summary of the algorithm of comparative optinalysis  
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Appendix A 

Table A1: Sequence order and resolution methods of univariate observations.   
 Resolution methods to design a shape to the sequences. 

Ascending sequence order Mean differences Square root of squared mean differences Squared mean differences 
(H)1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 12(T) 

(H)-5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 
2.5, 3.5, 4.5, 5.5(T) 

(H)5.5, 4.5, 3.5, 2.5, 1.5, 0.5, 0.5, 1.5, 2.5, 3.5, 
4.5, 5.5(T) 

(H)30.25, 20.25, 12.25, 6.25, 2.25, 0.25, 

0.25, 2.25, 6.25, 12.25, 20.25, 30.25(T) 
(H)3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3(T) 

(H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) (H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) (H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) 

(H)1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 4(T) 

(H)-2.75, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 
0.25, 0.25, 0.25, 0.25, 0.25(T) 

(H)2.75, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 
0.25, 0.25, 0.25, 0.25, 0.25(T) 

(H)7.56, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 

0.06, 0.06, 0.06, 0.06, 0.06(T) 
(H)1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 

4, 4(T) 

(H)-2.5, -1.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5, 0.5(T) 

(H)2.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5(T) 

(H)6.25, 2.25, 0.25, 0.25, 0.25, 0.25, 0.25, 

0.25, 0.25, 0.25, 0.25, 0.25(T) 
(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 

6, 7(T) 

(H)-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -
0.5, 0.5, 1.5, 2.5(T) 

(H)0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
1.5, 2.5(T) 

(H)0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 

0.25, 0.25, 0.25, 2.25, 6.25(T) 
(H)1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 

6, 7(T) 

(H)-3, -2, -1, 0, 0, 0, 0, 0, 0, 1, 2, 3(T) (H)3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3(T) (H)9, 4, 1, 0, 0, 0, 0, 0, 0, 1, 4, 9(T) 

(H)3, 4, 5, 8, 8, 8, 8, 8, 8, 8, 

8, 8(T) 

(H)-4, -3, -2, 1, 1, 1, 1, 1, 1, 1, 1, 1(T) (H)4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1(T) (H)16, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1(T) 

(H)8, 8, 8, 8, 8, 8, 8, 8, 8, 11, 

12, 13(T) 

(H)-1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4(T) (H)1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4(T) (H)1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 16(T) 

(H)2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 35(T) 

(H)-6.92, -1.92, -1.92, -1.92, -1.92, -1.92, -
1.92, -1.92, -1.92, -1.92, -1.92, 26.08(T) 

(H)6.92, 1.92, 1.92, 1.92, 1.92, 1.92, 1.92, 
1.92, 1.92, 1.92, 1.92, 26.08(T) 

(H)47.89, 3.69, 3.69, 3.69, 3.69, 3.69, 3.69, 

3.69, 3.69, 3.69, 3.69, 680.17(T) 
(H)2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 7(T) 

(H)-4.58, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 
0.42, 0.42, 0.42, 0.42, 0.42(T) 

(H)4.58, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 
0.42, 0.42, 0.42, 0.42, 0.42(T) 

(H)20.98, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 

0.18, 0.18, 0.18, 0.18, 0.18(T) 
(H)

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 35(T) 

(H)-2.33, -2.33, -2.33, -2.33, -2.33, -2.33, -
2.33, -2.33, -2.33, -2.33, -2.33, 25.67(T) 

(H)2.33, 2.33, 2.33, 2.33, 2.33, 2.33, 2.33, 
2.33, 2.33, 2.33, 2.33, 25.67(T) 

(H)
5.43, 5.43, 5.43, 5.43, 5.43, 5.43, 5.43, 

5.43, 5.43, 5.43, 5.43, 658.95(T) 
(H)2, 2, 2, 2, 2, 2, 9, 9, 9, 9, 

9, 9(T) 

(H)-3.5, -3.5, -3.5, -3.5, -3.5, -3.5, 3.5, 3.5, 
3.5, 3.5, 3.5, 3.5(T) 

(H)3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
3.5, 3.5(T) 

(H)12.25, 12.25, 12.25, 12.25, 12.25, 12.25, 

12.25, 12.25, 12.25, 12.25, 12.25, 12.25(T) 

*Descaled mean deviations refer to a form of sequence resolution that removes all the scaling effect (positive and negative signs) from a shaped sequence. 
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Table A2: Sequence order and resolution methods of univariate observations.   
 Resolution methods to design a shape to the sequences. 

Descending sequence order Mean differences Square root of squared mean differences Squared mean differences 
(H)12, 11, 10, 9, 8, 7, 6, 5, 4, 
3, 2, 1(T) 

(H)5.5, 4.5, 3.5, 2.5, 1.5, 0.5, -0.5, -1.5, -
2.5, -3.5, -4.5, -5.5(T) 

(H)5.5, 4.5, 3.5, 2.5, 1.5, 0.5, 0.5, 1.5, 2.5, 
3.5, 4.5, 5.5(T) 

(H)30.25, 20.25, 12.25, 6.25, 2.25, 0.25, 
0.25, 2.25, 6.25, 12.25, 20.25, 30.25(T) 

(H)3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 

3, 3(T) 

(H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) (H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) 
(H)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0(T) 

(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 1(T) 

(H)0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 
0.25, 0.25, 0.25, 0.25, -2.75(T) 

(H)0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 
0.25, 0.25, 0.25, 0.25, 2.75(T) 

(H)0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 

0.06, 0.06, 0.06, 0.06, 7.56(T) 
(H)4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 

2, 1(T) 

(H)0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
-0.5, -1.5, -2.5(T) 

(H)0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 1.5, 2.5(T) 

(H)0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 

0.25, 0.25, 0.25, 2.25, 6.25(T) 
(H)7, 6, 5, 4, 4, 4, 4, 4, 4, 4, 

4, 4(T) 

(H)2.5, 1.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 
-0.5, -0.5, -0.5, -0.5(T) 

(H)2.5, 1.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5, 0.5(T) 

(H)6.25, 2.25, 0.25, 0.25, 0.25, 0.25, 0.25, 

0.25, 0.25, 0.25, 0.25, 0.25(T) 
(H)7, 6, 5, 4, 4, 4, 4, 4, 4, 3, 

2, 1(T) 

(H)3, 2, 1, 0, 0, 0, 0, 0, 0, -1, -2, -3(T) (H)3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3(T) 
(H)9, 4, 1, 0, 0, 0, 0, 0, 0, 1, 4, 9(T) 

(H)8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 

4, 3(T) 

(H)1, 1, 1, 1, 1, 1, 1, 1, 1, -2, -3, -4(T) (H)1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4(T) (H)1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 9, 16(T) 

(H)13, 12, 11, 8, 8, 8, 8, 8, 8, 
8, 8, 8(T) 

(H)4, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1(T) (H)4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1(T) (H)16, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1(T) 

(H)35, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 2(T) 

(H)26.08, -1.92, -1.92, -1.92, -1.92, -1.92, 
-1.92, -1.92, -1.92, -1.92, -1.92, -6.92(T) 

(H)26.08, 1.92, 1.92, 1.92, 1.92, 1.92, 1.92, 
1.92, 1.92, 1.92, 1.92, 6.92(T) 

(H)680.17, 3.69, 3.69, 3.69, 3.69, 3.69, 

3.69, 3.69, 3.69, 3.69, 3.69, 47.89(T) 
(H)7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 2(T) 

(H)0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 
0.42, 0.42, 0.42, 0.42, -4.58(T) 

(H)0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 0.42, 
0.42, 0.42, 0.42, 0.42, 4.58(T) 

(H)0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 

0.18, 0.18, 0.18, 0.18, 20.98(T) 
(H)35, 7, 7, 7, 7, 7, 7, 7, 7, 7, 

7, 7(T) 

(H)25.67, -2.33, -2.33, -2.33, -2.33, -2.33, 
-2.33, -2.33, -2.33, -2.33, -2.33, -2.33(T) 

(H)25.67, 2.33, 2.33, 2.33, 2.33, 2.33, 2.33, 
2.33, 2.33, 2.33, 2.33, 2.33(T) 

(H)658.95, 5.43, 5.43, 5.43, 5.43, 5.43, 

5.43, 5.43, 5.43, 5.43, 5.43, 5.43(T) 
(H)

9, 9, 9, 9, 9, 9, 2, 2, 2, 2, 

2, 2(T) 

(H)3.5, 3.5, 3.5, 3.5, 3.5, 3.5, -3.5, -3.5, -
3.5, -3.5, -3.5, -3.5(T) 

(H)3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
3.5, 3.5, 3.5(T) 

(H)
12.25, 12.25, 12.25, 12.25, 12.25, 

12.25, 12.25, 12.25, 12.25, 12.25, 12.25, 

12.25(T) 

*Descaled mean deviations refer to a form of sequence resolution that removes all the scaling effect (positive and negative signs) from a shaped sequence.  
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Appendix B 

The ordinal transformed sequences of nucleotide bases by their molecular masses (g/mol)   

Reference sequence 

S0 
(H)

151 126 151 135 111 126 151 135 151 111 111 126
(T)

 

Mutant sequences   

S1 
(H)

151 126 151 135 111 126 151 135 151 111 111 126
(T)

 

S2 
(H)

151 135 151 135 111 126 151 135 151 111 111 126
(T)

 

S3 
(H)

151 126 135 135 111 126 151 135 151 111 111 126
(T)

 

S4 
(H)

151 126 151 126 111 126 151 135 151 111 111 126
(T)

 

S5 
(H)

151 126 151 135 135 126 151 135 151 111 111 126
(T)

 

S6 
(H)

151 126 151 135 111 135 151 135 151 111 111 126
(T)

 

S7 
(H)

151 126 151 135 111 126 135 135 151 111 111 126
(T)

 

S8 
(H)

151 126 151 135 111 126 151 126 151 111 111 126
(T)

 

S9 
(H)

151 126 151 135 111 126 151 135 135 111 111 126
(T)

 

S10 
(H)

151 126 151 135 111 126 151 135 151 135 111 126
(T)

 

S11 
(H)

151 126 151 135 111 126 151 135 151 111 135 126
(T)

 

S12 
(H)

151 126 151 135 111 126 151 135 151 111 111 135
(T)

 

S13 
(H)

0 126 151 135 111 126 151 135 151 111 111 126
(T)

 

S14 
(H)

151 0 151 135 111 126 151 135 151 111 111 126
(T)

 

S15 
(H)

151 126 0 135 111 126 151 135 151 111 111 126
(T)

 

S16 
(H)

151 126 151 0 111 126 151 135 151 111 111 126
(T)

 

S17 
(H)

151 126 151 135 0 126 151 135 151 111 111 126
(T)

 

S18 
(H)

151 126 151 135 111 0 151 135 151 111 111 126
(T)

 

S19 
(H)

151 126 151 135 111 126 0 135 151 111 111 126
(T)

 

S20 
(H)

151 126 151 135 111 126 151 0 151 111 111 126
(T)

 

S21 
(H)

151 126 151 135 111 126 151 135 0 111 111 126
(T)

 

S22 
(H)

151 126 151 135 111 126 151 135 151 0 111 126
(T)

 

S23 
(H)

151 126 151 135 111 126 151 135 151 111 0 126
(T)

 

S24 
(H)

151 126 151 135 111 126 151 135 151 111 111 0
(T)

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2019                   doi:10.20944/preprints201905.0295.v2

https://doi.org/10.20944/preprints201905.0295.v2

