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Abstract 12 

The amount and spatial distribution of foliage in a tree canopy have fundamental functions in 13 

ecosystems as they affect energy and mass fluxes through photosynthesis and transpiration. 14 

They are usually described by the Leaf Area Index (LAI) and the Leaf Area Density (LAD), 15 

which can be measured through a variety of methods, including voxel-based methods applied 16 

to LiDAR point clouds. 17 

A theoretical study recently compared the numerical errors arising from different voxel-based 18 

estimation methods for Plant Area Density (PAD) based on Beer’s law-based, contact 19 

frequency and Maximum-Likelihood Estimation, showing that the bias-corrected Maximum 20 

Likelihood Estimator was theoretically the most efficient. However, this earlier study i) ignored 21 

wood volumes; ii) neglected vegetation clumping inside the voxel; iii) ignored instrument 22 

characteristics in terms of effective footprint, iv) was limited to a single viewpoint. In practice, 23 

retrieving LAD from PAD is not straightforward, vegetation is not randomly distributed in 24 

volumes of interest, beams are divergent and forestry plots are usually sampled from more than 25 

one viewpoint, to mitigate the effect of occlusion. 26 

In the present short communication, we extend the previous efficient formulation to actual field 27 

conditions to i) account for the presence of both wood volumes and wood hits, ii) rigorously 28 
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 2 

include correction terms for vegetation and instrument characteristics, iii) integrate multiview 29 

data. A numerical comparison with other methods commonly used to combine information 30 

from different viewpoints led to error reduction, especially in poorly-explored volumes, which 31 

are frequent in actual canopies. Beyond its concision, completeness and efficiency, this new 32 

formulation -which can be applied to multiview TLS, but also UAV LiDAR scanning- can help 33 

reducing errors in LAD estimation. 34 

Keyword: bias,  efficiency, element size, LAD, LAI, leaf and wood separation, LiDAR, multiple 35 

viewpoints, point cloud, TLS, UAV, voxel 36 

 37 

1. Introduction 38 

The amount and spatial distribution of foliage in a tree canopy have fundamental functions in 39 

ecosystems as they affect energy and mass fluxes through photosynthesis and transpiration 40 

(Norman and Campbell, 1989). Terrestrial LiDAR (Light Detection And Ranging), hereinafter 41 

referred to as TLS (Terrestrial Laser Scanning) recently emerged as a promising tool to estimate 42 

leaf/plant area density (LAD/PAD) distribution for individual plants and forest plots (Yan et al. 43 

2019, for a review). The approach is most often based on a traversal algorithm, which enables 44 

to compute the hits and “free paths” (i.e. distance travelled without interception) sampled by 45 

each beam in a given volume, which can be either voxels or crown volumes, and to derive 46 

different metrics to estimate the quantity of interest (e.g. Béland et al. 2011; Pimont et al. 2015; 47 

Bailey and Mahafee 2017a; Hu et al. 2018; Soma et al. 2018). 48 

 Among the different metrics suggested in the past, a recent comprehensive theoretical 49 

study (Pimont et al. 2018) has shown that the Modified Contact Frequency, first introduced in 50 

Béland et al. (2011), corresponds to the Maximum Likelihood Estimator “MLE” (Kay 1993) of 51 

the attenuation coefficient. This attenuation coefficient is the rate at which the point cloud 52 

density decays with vegetation interception, which is related to the LAD/PAD linearly, contrary 53 
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 3 

to the transmittance or the gap fraction used in Beer’s law-based methods. To date Beer’s law-54 

based methods, which inverts the transmittance equation, are still more popular than the MLE 55 

(Yan et al. 2019), while they do not take full advantage of the tridimensional information 56 

available in the point cloud, by ignoring free paths, and leads to additional complexity in the 57 

inversion when path length is not constant (Béland et al. 2014b; Pimont et al. 2018). This trend 58 

can probably be explained by the strong legacy of gap fraction approaches in this research field. 59 

The benefits of the MLE are that the formulation is more straightforward and efficient, without 60 

making assumption on the geometry of the volume of interest (Pimont et al. 2018). The method 61 

simply provides the most likely estimate of the attenuation coefficient, given the observation 62 

of free paths and hits, simply assuming that explored and unexplored regions exhibit similar 63 

random distributions of vegetation elements. The MLE approach, which relies on free paths, 64 

should not be confused with the PATH method (Hu et al. 2014; Hu et al. 2018), which uses the 65 

path-length distribution to identify crown volumes, in order to mitigate the impact of clumping 66 

in crown volumes, and which has to date only been applied to Beer’s law-based methods. One 67 

could notice, that the PATH method could be combined with MLE instead. 68 

 One limitation of the MLE as is, -but also of Beer’s law based methods-, is their biasness 69 

when the number of beams exploring a given voxel is limited (typically smaller than 30), or 70 

when vegetation elements are not small with respect to voxel size. Such biases can be 71 

theoretically corrected, leading to a bias-corrected MLE which is “efficient”, in the sense that 72 

it is unbiased and it exhibits the smallest variability theoretically reached by any unbiased 73 

estimator (Pimont et al. 2018). 74 

 This estimator, however, is based on theoretical assumptions: vegetation elements are 75 

assumed to be randomly distributed within volumes and TLS beams are infinitely thin. Hence, 76 

it typically requires additional corrections when applied to actual point clouds to account for 77 

LiDAR effective footprint in clumped vegetation elements (e.g. Soma et al. 2018), similarly to 78 
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 4 

other methods applied to voxels or tree crowns (Béland et al. 2011; Béland et al. 2014a; Hu et 79 

al. 2018; Yan et al. 2019). Also, the theoretical formulation presented in Pimont et al. (2018) 80 

neglects the presence of woody elements in the estimation of LAD, which should be accounted 81 

for separately, either using a separation between leaf and wood returns (Béland et al. 2011; 82 

Béland et al. 2014a) or “leaf-off” scans (Soma et al. 2018; Hu et al. 2018). To date, a theoretical 83 

framework for such inclusion is still missing. Another limitation of the theoretical formulation 84 

is that it was applied to an individual scan, whereas field applications often require the use of 85 

multiple viewpoints to mitigate the impact of vegetation occlusion. Several methods have been 86 

suggested to combine the information arising from the different scans, such as relying on the 87 

best viewpoint on a given voxel (i.e. the one with maximal beam number, Côté et al. 2011), 88 

combining all hits as if they belonged to the same scan (Béland et al. 2011), or weighting 89 

estimates from each scan according to the number of beams of each viewpoint (Pimont et al. 90 

2015; Hu et al. 2018). To date, the consequences of such combinations on LAD estimation have 91 

never been studied. 92 

 In the present short communication, we present a bias-corrected Maximum Likelihood 93 

Estimator for the LAD with multiview-LiDAR data in volumes of interest, which naturally 94 

extends the formulation presented in Pimont et al. (2018) to actual field data, with the presence 95 

of wood volumes, wood hits, correction terms to account for beam divergence and vegetation 96 

clumping, as well as to multiview data. The method is applied to an example virtual vegetation 97 

scene, and is compared to other common techniques used to combine information from different 98 

viewpoints, presented in Appendix C for brevity. 99 

 100 

2. Background and limitations of existing methods 101 

The theoretically-bias corrected estimator (TBC-MLE, from Pimont et al. 2018 and Soma et al. 102 

2018) 103 
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 5 

Here, we briefly summarize the PAD estimation in the mathematical framework proposed by 104 

Pimont et al. (2018), in which a correction factor was included to account for the effective 105 

footprint in clumped vegetation (Soma et al. 2018). This factor H varies with the distance of 106 

measurement and the voxel size. Observations suggest that H decreases with distance to 107 

scanner, to compensate the increase in effective footprint caused by beam divergence and 108 

variation in return detection, which induces an increase of the apparent area of vegetation 109 

elements (Béland et al. 2014a; Soma et al. 2018). Also, H increases with the voxel size, to 110 

compensate the effect of vegetation clumping inside voxels, which causes discrepancies to the 111 

theoretically random distribution of vegetation elements, as a consequence of Jensen’s 112 

convexity inequality (Béland et al. 2014a; Bailey and Mahafee 2017a; Soma et al. 2018).  It 113 

also depends on the scanner and to a lesser extent, on vegetation caracteristics (Soma et al. 114 

2018), although the element size and shape can at least partially be accounted for, through the 115 

notion of “effective” free path 𝑧" (Pimont et al. 2018, see Eq. 3 below and Appendix A). 116 

 When H is known (for example from laboratory experiments in Soma et al. 2018) and 117 

the projection function G is separately estimated (e.g. Béland et al. 2011; Bailey and Mahafee 118 

2017b), the PAD in a single voxel from a single viewpoint can be estimated as follows: 119 

 
𝑃𝐴𝐷 =

𝐻
𝐺
𝛬 (1) 

where 𝛬 is an estimator of the attenuation coefficient, 𝐺 is the leaf projection factor, and H is 120 

the correction factor for both voxel size and distance to scanner. 121 

For a given viewpoint, the attenuation coefficient can be estimated from the Maximum 122 

Likelihood estimator (MLE). It is equal to the number of hits Ni divided by the sum of free 123 

paths Σ𝑧 (Fig. 1), which are computed with a traversal algorithm. 124 

 
𝜆 =

𝑁𝑖
Σ𝑧

 (3) 

The free path sum is the total distance actually travelled by beams inside a voxel, before their 125 

eventual interceptions by a vegetation element, which can be either leaf or wood (Fig. 1). 126 
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 6 

 127 

Figure 1. Scheme of the information provided by the traversal algorithm which is used to 128 

compute the MLE of the attenuation coefficient: number of hits Ni (blue dots) and free paths 129 

(distances z travelled by the beams, blue lines) in each voxel. The dotted lines represent pulse 130 

trajectory. 131 

 132 

This first estimator is similar to the Modified Contact Frequency introduced in Béland et al. 133 

(2011). Such estimator is biased when the beam number is low or when vegetation elements 134 

are not infinitely small and can be corrected with a more sophisticated estimator 𝛬, referred to 135 

as the theoretically-bias corrected MLE (TBC-MLE, Pimont et al. 2018, Soma et al. 2018). In 136 

this estimator, each free path 𝑧 is replaced by the effective free path 𝑧": 137 

 
𝑧" = −

𝑙𝑜𝑔 1 − 𝜆3𝑧
𝜆3

 (3) 

where 𝜆3 is the attenuation coefficient of a single element of vegetation (see appendix A for an 138 

estimation of 𝜆3 for cylindrical needles or elliptical flat leaves). Obviously, 𝑧" ≈ 𝑧 when 𝜆3 is 139 

very small (i.e. the turbid medium assumption). 140 

 141 

z4
Scan

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2019                   doi:10.20944/preprints201905.0287.v1

Peer-reviewed version available at Remote Sensing 2019, 11, ; doi:10.3390/rs11131580

https://doi.org/10.20944/preprints201905.0287.v1
https://doi.org/10.3390/rs11131580


 7 

 For the purpose of the present study, the TBC-MLE of the PAD (Soma et al. 2018) is 142 

slightly rearranged, to ease generalization to multiple viewpoints, which is proposed in the next 143 

section: 144 

 
𝑃𝐴𝐷 =

𝐻
𝐺
𝛬 =

𝐻
𝐺 𝑧"

Ni −
𝑧"789:

𝑧"
 (4) 

In Eq. 4, 𝑁𝑖 is the number of hits in the voxel, whereas Σ𝑧" is the effective free path sum, and 145 

Σ789:𝑧" is the effective free path sum for beams with hits inside the voxel (hence ;<𝒉𝒊𝒕𝒔
A;<

 ranges 146 

between 0 and 1). The second term in brackets corresponds to the bias-correction term 147 

suggested in Pimont et al. (2018), which can be neglected when the beam number is high (i.e. 148 

larger than 30). This estimator is unbiased when N>5 and reaches the Cramer-Rao bound, 149 

meaning it is the most efficient unbiased estimator, given the available information (Pimont et 150 

al. 2018). 151 

In this formulation, 𝐻Ni is close to the number of hits centered on a leaf, first introduced in 152 

Béland et al. (2011) to account for beam divergence. The overall formulation, however, is 153 

slightly different, since Béland et al. (2011) ignored beams with partial hits in the free path sum. 154 

In section 3, we rigorously incorporate H and G in the mathematical derivations. 155 

 156 

Theoretical variance and 68% confidence interval of the TBC-MLE 157 

Mathematical derivations presented in Pimont et al. (2018) led to an estimator of the variance 158 

of 𝑃𝐴𝐷. Such variance estimator is useful to quantify the accuracy of a given LAD estimate, in 159 

terms of random errors caused by LiDAR sampling in the voxel (which magnitude decreases 160 

with beam number N): 161 

 
𝜎CDE
F =

𝐻
𝐺

F
𝜎G
F =

1
𝑁𝑖

1
𝐺/𝐻Σ𝑧"

𝑁𝑖 −
𝑧"𝒉𝒊𝒕𝒔

𝑧"

F

 (5) 
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In Eq. 5, the contribution of the variance due to the variability of element positions in a 162 

vegetation sample is neglected for simplicity. For the interested reader, an empirical model for 163 

this quantity was presented in Pimont et al. (2018), in the case of “square flat” leaves. 164 

A related metric of interest is the radius of the 68% confidence interval of the LAD estimate, 165 

which is given by (Pimont et al. 2018): 166 

 

∆𝑃𝐴𝐷 =
𝐻
𝐺
∆𝛬 =

1
𝐺/𝐻

𝑁𝑖 + 12 −
𝑧"𝒉𝒊𝒕𝒔

Σ𝑧"

𝑁𝑖 + 12 Σ𝑧" 1 + 1
𝑁

 (6) 

The rationale for the ½ terms is to avoid that the confidence interval radius equals 0 when Ni = 167 

0, which would be incorrect (indeed, there is non-zero chance that additional beams hit some 168 

potential vegetation elements). This confidence interval is referred to as “Agresti-Coull” in 169 

Pimont et al. (2018) and leads to a lower bound of 3

FA;< 3LMN
 when Ni=0. It expresses that the 170 

estimation is more accurate as Σ𝑧" increases, but never reaches 0, even for a high number of 171 

beams N.  172 

 173 

Accounting for wood returns 174 

As most applications focus on LAD -not PAD-, several methods have been developed to 175 

account for wood elements. For example, the authors of Béland et al. (2011) counted only hits 176 

related to leaf, thanks to a separation of leaf and wood returns based on return intensity. This is 177 

equivalent to the introduction of a multiplicative factor equals to the leaf hit fraction F: 178 

 
𝐹 =

NiP

Ni
 (7) 

However, as for the beams for which hits were not centered on the leaf, free paths corresponding 179 

to wood returns were ignored in the sum of free path in Béland et al. (2011). 180 

Another approach was to determine the LAD as a difference between “leaf on” and “leaf off” 181 

conditions (Soma et al. 2018; Hu et al. 2018). This approach relies on the implicit assumption 182 
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 9 

that the total attenuation coefficient of vegetation elements is the sum of the attenuation 183 

coefficients of respectively leaf and wood elements, which requires an assumption of random 184 

distribution for both leaf and wood elements, which is obviously incorrect in the case of logs 185 

or large branches. 186 

In both approaches, the volume occupied by logs and branches inside voxel was neglected. In 187 

section 3, we rigorously include wood volumes and leaf hits in the mathematical derivations. 188 

 189 

Multiview estimation 190 

When several points clouds are available (each with an index 𝑗 ∈ 1; 𝐽 ), the most basic method 191 

to deal with multiview data is to select the “best viewpoint” (i.e. the scan j, which sampled a 192 

given voxel with the highest number of beams 𝑁U), as in Côté et al. (2011). This estimator, here 193 

shown for an LAD estimator, referred to as “Nmax”, is defined as: 194 

 𝐿𝐴𝐷WXYZ = 𝐿𝐴𝐷UXYZ, with 𝑗𝑚𝑎𝑥 so that  𝑁UXYZ = 	maxUbc
𝑁U  (8) 

 This approach is unbiased, provided that each individual estimator is unbiased (e.g. when 𝑁 >195 

5 with the TBC-MLE, Pimont et al. 2018). However, information from other scans is ignored, 196 

which is not optimal, especially when several viewpoints explore a given voxel with similar 197 

numbers of beams. 198 

 A more sophisticated method, referred to as “N-weighted” (NW) is based on a weighted 199 

average of each estimates 𝐿𝐴𝐷U (from the different viewpoints), the weights being equal to 𝑁U, 200 

as suggested in Hu et al. (2018):  201 

 
𝐿𝐴𝐷Wf =

1
𝑁UUbc

𝑁U	𝐿𝐴𝐷U
Ubc

 (9) 

No information is ignored with this second approach, since all viewpoints contribute to the final 202 

estimation. 203 
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In section 3, we rigorously collect the information from different view points in the 204 

mathematical derivations. 205 

 206 

3. Generalized Maximum-Likelihood Estimation for LAD from multiview-LiDAR data 207 

The generalized formulation 208 

This section details our new formulation of the estimation of Leaf Area Density from 209 

multiview-LiDAR data within a volume of interest, which can be either a voxel or a crown 210 

volume, but it is simply referred to as “the voxel” for simplicity. It relies on similar assumptions 211 

as above, with three noticeable differences. First, we explicitly consider the subvolume 𝑉h of 212 

the voxel V occupied by wood elements (Fig. 2). Within a voxel volume V, we assume that 213 

small leaf elements are randomly distributed in the subvolume 𝑉 − 𝑉h of 𝑉, which is not 214 

occupied by the wood. This subvolume containing the leaf elements has a volume fraction 215 

equals to: 216 

 
𝛼 = 1 −

𝑉h
𝑉

 (10) 

In general, 𝛼 is very close to 1, except when large branches or logs intersect the voxel. Here, 217 

no specific assumption is made on the topology of the wood volume 𝑉h , neither on how it is 218 

distributed with respect to the volume 𝑉 − 𝑉h in which leaves were present. 219 
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 220 

Figure 2. Scheme of the representation of wood volumes 𝑉h (in dashed blue), in the voxel of 221 

volume 𝑉. We assume that leaf elements are randomly distributed in volume 𝑉 − 𝑉h, which 222 

exhibits a very complex and unknown topology. 223 

 224 

Second, we assume that the effective attenuation coefficient in 𝑉 − 𝑉h, which corresponds to 225 

what is actually viewed by the scanner from viewpoint j, verifies 𝜆U =
jklDE
mk

 and that the factors 226 

for effective footprint on clumped vegetation 𝐻U and for leaf projection 𝐺U are known. Third, 227 

we assume that J point clouds are available (each with an index 𝑗 ∈ 1; 𝐽 ). It is important to 228 

acknowledge that correction factors can exhibit large variations with scanner position j given 229 

voxel, as distances to scanner and/or view angle differ. 230 

In appendix B, we apply similar mathematics as in Pimont et al. (2018) to leaf elements 231 

distributed inside 𝑉 − 𝑉h. For consistency with usual definitions, the LAD is still defined as the 232 

surface area of leaf elements divided by the voxel volume V, despite the leaves are not 233 

distributed in the whole volume V. This explains the presence of volume fraction 𝛼 in the 234 

following equations. From the distribution of “multiview” leaf hits, free paths, projection and 235 

correction factors, the objective here is to determine the most likely value of LAD (MLE), given 236 

VW

VW

VW
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the observations. The mathematical derivations slightly differ from Pimont et al. (2018), since 237 

there is not a single attenuation coefficient 𝜆 for which the MLE can be computed, but as many 238 

attenuation coefficients 𝜆U as viewpoints j. We thus directly compute the Maximum Likelihood 239 

Estimator “MLE” of the LAD (i.e. not of the attenuation coefficient 𝜆), which cancels the first 240 

derivative of log-likelihood (Kay, 1993, chapter 7) of the LAD and find (Eq. B6): 241 

 
𝑀𝐿𝐸lDEp = 𝛼

NiP

𝐺
𝐻 𝑧"

 (11) 

where 𝑁𝑖P = 𝑁𝑖UPU  is the total number of leaf hits (for all scans) and j
m
𝑧" =

jk
mk
𝑧"U
8Wk

8q3
c
Uq3  242 

is the sum of the products 
jk
mk
𝑧U8 for beams exploring 𝑉 − 𝑉h (Fig. 3). The “M” superscript 243 

corresponds to “Multiview”. Here, it is important to notice that, according to the mathematics, 244 

wood hits are ignored in the count of hits, but not in the free-path sum, contrary to what was 245 

suggested in Béland et al. (2011). Also, the correction factor j
m

, which accounts for differences 246 

between viewpoints, appears as a multiplicative factor in the free path sum. Hence, all hits 247 

should be considered equally in the hit sum, no matter the distance to scanner or the view angle, 248 

but the free paths should be modified to account for these differences. As for the wood hits, this 249 

slightly differ from the “center leaf hit” method presented in Béland et al. (2011, 2014). 250 

 251 

cAz4
Scan A

Scan B
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Figure 3. Scheme of the information provided by the traversal algorithm which is used to 252 

compute the MLE of LAD from multiview data from Scan A (in red) and Scan B (in blue): leaf 253 

hits (blue and red dots) and free paths (distances z travelled by the beams, blue and red lines) 254 

in the voxel. The dotted lines represent pulse trajectories. cA and cB represent the correcting 255 

factors for viewpoints A and B, which differs with distance to scanner and view angle. For 256 

simplicity, correction for effective free path (𝑧", Eq. 3) is ignored. NB: in this framework, no 257 

leaf can be distributed within the volume 𝑉f occupied by wood elements (in brown). Also, and 258 

contrary to Fig. 1, the hits corresponding to woody elements (e.g. 5th beam of scan 1) are ignored 259 

in the hit sum, but the corresponding free paths are accounted for the free-path sum, in which 260 

cA and cB  are used as multiplicative factors. 261 

 262 

As for a single viewpoint, this “MLE” is biased when the number of beams is low and a 263 

correction can be computed (Pimont et al. 2018). Generalizing this correction to the multiview 264 

LAD estimator (“M”) led to (Appendix B):  265 

 
𝐿𝐴𝐷p =

𝛼
𝐺
𝐻 𝑧"

NiP −
𝐺
𝐻 𝑧"P

𝐺
𝐻 𝑧"

 (12) 

With j
m
𝑧"P  corresponding to the sum of 

jk
mk
𝑧U8 for beams corresponding to leaf hits only. This 266 

formulation obviously generalized the single-scan estimator 𝐿𝐴𝐷U, as rewrote in Eq. 4. 267 

 268 

In practice, however, the formulation of Eq. 12 requires to discriminate each hit, depending 269 

whether it is foliage or wood in order to compute the bias correction term. A slightly more 270 

practical formulation can be achieved assuming that j
m
𝑧"P ≈ 𝐹 j

m
𝑧"789: , with the hit leaf 271 

fraction 𝐹 = rst

rs
: 272 
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𝐿𝐴𝐷p =

𝛼𝐹
𝐺
𝐻 𝑧"

Ni −
𝐺
𝐻 𝑧"789:

𝐺
𝐻 𝑧"

 (13) 

Similarly, generalizing Eq. 5 and 6, the variance of 𝐿𝐴𝐷p is: 273 

 

𝜎pF =
𝛼F

NiP	 𝐺
𝐻 𝑧"

F NiP −
𝐺
𝐻 𝑧"P

𝐺
𝐻 𝑧"

F

≈
𝛼F𝐹

Ni	 𝐺
𝐻 𝑧"

F Ni −
𝐺
𝐻 𝑧"789:

𝐺
𝐻 𝑧"

F

 (14) 

and the radius of the 68%-level confidence interval of LAD estimate is: 274 

 

∆𝐿𝐴𝐷p = 𝛼

NiP + 12 −
𝐺
𝐻 𝑧"P
𝐺
𝐻 𝑧"

NiP + 12
𝐺
𝐻 𝑧" 1 + 1

𝑁

≈ 𝛼

𝐹 Ni −
𝐺
𝐻 𝑧"789:

𝐺
𝐻 𝑧"

+ 12

𝐹Ni + 12
𝐺
𝐻 𝑧" 1 + 1

𝑁

 
(15) 

 

 

 
 

A numerical experiment to compare multiview formulations 275 

The 𝐿𝐴𝐷p differs from the “Nmax” multiview combination of 𝐿𝐴𝐷U (Eq. 8), but also from the 276 

“N-weighted”, which can be shown with a numerical expansion of Eq. 9. Beyond the concision 277 

and the mathematical support for Eq. 13, it is important to quantify the error reduction resulting 278 

from the new formulation in “field like” conditions. We thus conducted a numerical experiment 279 

corresponding to plausible field features, aiming at i) providing a brief validation of the “M” –280 

multiview- estimator of LAD presented above (Eq. 13), ii) comparing its performance with the 281 

two usual formulations to combine single-view estimates. All the details regarding this 282 

numerical experiment are provided in Appendix C for concision. In brief, we generated a 283 

“reference” LAD in a 10-m tridimensionnal mesh grid corresponding to plausible features in 284 

terms of LAI, clump size and vertical distribution. We simulated five point clouds from 285 

different view points. We then estimated the LAD using the three multiview formulations, after 286 

applying a traversal algorithm to each point cloud to compute the different statistics. We found 287 

that the new multiview estimator (LADx) was only marginally biased, even when the total beam 288 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2019                   doi:10.20944/preprints201905.0287.v1

Peer-reviewed version available at Remote Sensing 2019, 11, ; doi:10.3390/rs11131580

https://doi.org/10.20944/preprints201905.0287.v1
https://doi.org/10.3390/rs11131580


 15 

number was small (<2.2% when N < 10), contrary to the other formulations. For example, the 289 

“N-weighted” estimates (NW) reached a -15 % bias when N < 10. This poor performance was 290 

explained by the biases of some of the single-scan estimates, which typically occurred when 291 

less than 5 beams of a given viewpoint explored the voxel (and particularly with only 1 or 2 292 

beams). This situation was in practice quite frequent for voxels in which the total beam number 293 

was smaller than 10. Overall errors (expressed in RMSE) were also smaller with LADx, than 294 

for two other estimates. In particular, the differences between LADx and LADr|}~, which were 295 

observed for all classes of beam numbers, were consistent with the fact that the information 296 

from secondary viewpoints was ignored with “Nmax”. RMSE for 𝐿𝐴𝐷Wf were more than 297 

twice as big as for 𝐿𝐴𝐷p, when 𝑁 was lower than 30. Such differences were caused by 298 

infrequent, but very large overestimations observed with 𝐿𝐴𝐷Wf. 299 

  300 

4. Discussion 301 

The present work extends the method of the theoretically-bias-corrected Maximum Likelihood 302 

Estimator, initially introduced for the attenuation coefficient (Pimont et al. 2018), to the LAD. 303 

The new estimator accounts for vegetation element size, wood volume and hits, correction 304 

factors for effective footprint, vegetation clumping and orientation, and multiview data. It can 305 

be applied to any volume of interest, which can be for example either a voxel (Soma et al. 2018) 306 

or a crown volume (e.g. Hu et al. 2018 with a Beer’s law based method). As it naturally 307 

incorporates variations in view angle and distance to scanner, it should be applicable to UAV 308 

LiDAR data, provided that the traversal algorithm accounts for UAV travel path and that 309 

corresponding correction factors are known.  310 

 The novelty of the approach presented here lies in the fact that the Maximum Likelihood 311 

Estimation is applied directly to the LAD, rather than to the attenuation coefficient as in the 312 
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original method and that wood elements are explicitly considered as a volume in which no leaf 313 

can be present. This significant advance was permitted by the fact that the MLE does not assume 314 

a particular topology for the volume of interest (Pimont et al. 2018), so that it can be applied to 315 

a very complex –and unknown- volume (here, the volume of the voxel which is not occupied 316 

by woody elements). On the contrary, Beer’s law-based methods cannot be easily applied to an 317 

unknown geometry and does not take full advantage of all the information available in free 318 

paths (Pimont et al. 2018). In the present formulation, no assumption is made on the relative 319 

distribution of leaf and wood, the only assumption being that leaves are randomly distributed 320 

in the volume of the voxel that is not occupied by wood. The random distribution assumption 321 

is not fully realistic, but discrepancies can be corrected through factors to account for leaf 322 

orientation, subvolume clumping and LiDAR effective footprint (Soma et al. 2018), which were 323 

rigorously included in the new approach in a straightforward manner. Although presenting 324 

strong similarities with the modified contact frequency first implemented in Béland et al. 325 

(2011), the mathematical derivations suggest that beams corresponding to wood hits and those 326 

corresponding to non-central leaf hits should be accounted for in the free path sum, contrary to 327 

what was suggested in the earlier study. Another difference is the manner to account for 328 

vegetation element size correction suggested in Béland et al. (2014a), which is also different, 329 

as already pointed out in Pimont et al. (2018), with the notion of effective free path (Eq. 3). 330 

Much more significant differences should be expected, however, from the difference in free 331 

path sum computations, than from the difference in element size corrections. 332 

 In our formulation, one of the critical aspect is to be able to estimate a fraction of leaf 333 

hits F, as well as the leaf volume fraction 𝛼 (Eq. 13). The development of algorithms and 334 

methods for leaf and wood separation is a subject of active research (e.g. Takoudjou et al. 2018; 335 

Wang et al. 2018; Xi et al. 2018), which is a prerequisite to most methods aiming at retrieving 336 

wood volume (e.g. Raumonen et al. 2013). One could notice that determining the leaf fraction 337 
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F is less challenging that the classification of each individual hit as “leaf” and “wood”, in the 338 

sense that leaf fraction can be correctly estimated from a classification method which can 339 

exhibit significant omission/commission errors. In particular, the leaf fraction can be estimated 340 

on a subset of the point cloud, which could help to save computational resources. The correction 341 

factor 𝛼 for wood volumes can probably be neglected in most situations corresponding to 342 

foliage, since bulk density of thin twigs are on the order of 0.1 kgm-3, which corresponds to 343 

volume fraction on the order of 0.02 (Keane et al. 2005). However, such a correction is likely 344 

to be necessary when trunks or branches intersect the voxel, otherwise leading to LAD 345 

overestimation, even if the leaf fraction F is correctly estimated. In this context, tree models 346 

derived from LiDAR data (e.g. Raumonen et al. 2013) can provide the appropriate information. 347 

 Our numerical experiment enabled a theoretical validation of the new estimator in a 348 

simplified, but plausible context, as well as a comparison with other simple formulations used 349 

to combine multiview data, thanks to well-defined references (Yan et al. 2019). This numerical 350 

experiment extended the ones of Pimont et al. (2018), since the ray tracing and the traversal 351 

algorithms were applied within a virtual, but more realistic forestry plot, as in Grau et al. (2017) 352 

or Soma et al. (2019), rather than within individual voxels. We found that the multiview 353 

estimator performed better than the “Nmax” and “N-weighted” formulations, without requiring 354 

any additional complexity. Such a result was expected in terms of errors for the “Nmax”, since 355 

this basic approach ignored the information provided by secondary viewpoints. On the contrary, 356 

the counter performance of the “N-weighted” was relatively unexpected, leading to much higher 357 

errors, because of infrequent, but very large overestimations, when one of the poor viewpoints 358 

led to an outlier. 359 

 This later point highlights the importance of the use of unbiased estimators. More 360 

generally, the unbiasness and efficiency of estimators in the inner-canopy where point density 361 

is low is critical (Yan et al. 2019). Indeed, the numerical experiment presented in Appendix C 362 
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confirms that the distributions of beam numbers in voxels at various heights is very 363 

heterogeneous (Fig. 4). Above 6 meters, and up to the top of the canopy, the percentages of 364 

unexplored or poorly-explored voxels were very high. Of course, such statistics are highly 365 

dependent on the number of scans (here 5), the scanner angular resolution (here 0.036°) and the 366 

grid size (here 0.1 m). Such sensitivities, as well as their consequences on estimation accuracy 367 

are analyzed in details in Soma et al. (2019) and are beyond the scope of the present short 368 

communication, which aimed at presenting the new estimator. It was relevant, however, to 369 

recall the frequent occurrence of poorly-explored voxels, to highlight the importance of the 370 

results of the numerical experiment presented here. 371 

 372 

Figure 4. Vertical profiles of percentages of voxels with number of beams smaller than 2, 10, 373 

30 and 100, in the numerical experiment described in Appendix C (5 different view points 374 

located at 1 m above the ground). 375 

 376 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2019                   doi:10.20944/preprints201905.0287.v1

Peer-reviewed version available at Remote Sensing 2019, 11, ; doi:10.3390/rs11131580

https://doi.org/10.20944/preprints201905.0287.v1
https://doi.org/10.3390/rs11131580


 19 

5. Conclusion 377 

The study confirms the potential of the Maximum Likelihood Estimation method for LAD from 378 

LiDAR data, as already demonstrated in Pimont et al. (2018), or Zhao et al. (2015) in a slightly 379 

different context. The method makes the economy of transmittance computation and inversion 380 

as in Beer’s law based methods and is more efficient. Here, the estimators for LAD in volumes 381 

of interest (which can be either voxels or crown volumes, provided that vegetation is randomly 382 

distributed inside) are developed in the context where subvolumes can be occupied by wood, 383 

with correction factors for vegetation element size, subgrid clumping, LiDAR effective 384 

footprint, projection angle and with multiple viewpoints. The new framework can be applied to 385 

any multiview dataset in a straightforward manner, such as multiview TLS or UAV LiDAR 386 

scanning, provided that a traversal algorithm is available to compute hits and free path 387 

distributions, and that the different correction factors (vegetation element size, leaf orientation, 388 

leaf hit fraction, calibration factors, and wood volume fraction) are available. A numerical 389 

experiment was used to demonstrate the performance of the new estimator, which was 390 

favorably compared to other existing methods for the combination of multiple viewpoints. It 391 

should lead to less biased and more efficient estimates, provided that at least a few beams 392 

explore a voxel. 393 

 394 
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Appendix A. Estimation of 𝛌𝟏 for simple vegetation element shapes 469 

According to Pimont et al. (2018), the attenuation coefficient of a single vegetation element in a cubic voxel of 470 

size 𝛿 is: 471 

 𝜆3 ≈
𝑆3
𝛿�

 (A1) 

Where 𝑆3 is the cross-sectional area of a single vegetation element. 472 

For a needle of radius r and length l, this leads to: 473 

 
𝜆3 ≈

2𝜋𝑟𝑙
4𝛿�

 (A2) 

For a (small) needle of diameter 2r = 0.5 mm and length l = 5 cm, we have: 474 

 𝜆3 ≈ 2	10��𝛿�� (A3) 

For a flat leaf of radius r, this leads to: 475 

 
𝜆3 ≈

2𝜋𝑟F

4𝛿�
 (A4) 

For a (large) leaf of diameter 2r = 10 cm, we have: 476 

 𝜆3 ≈ 5	10��𝛿�� (A5) 

 477 

Appendix B. Optimized multiview estimator in a voxel of interest 478 

The following derivation generalized the approach suggested in section 3.4 and Appendix C in Pimont et al. (2018). 479 

More details on the rationale of the method are provided there. 480 

 481 

Here, we assume that we have M scans. We want to compute the ML estimator of LAD, from 𝑁U Uq3,p
 beams of  482 

different scans. For each scan j, the attenuation coefficient 𝜆U in volume of interest 𝑉 − 𝑉h corresponds to a 483 

projected area of leaf elements equal to 𝜆U 𝑉 − 𝑉h = 𝑐U𝐿𝐴𝐷	𝑉, with 𝑐U =
jk
mk

. Hence, 𝜆U =
�klDE

�
. The probability 484 

distribution of free path 𝑧 in the voxel in the context of randomly-distributed elements is: 485 

 
	𝑓U(𝑧; 𝛿) =

𝜆U 1 − 𝜆3𝑧 �k/�M�3																							(𝑙𝑒𝑎𝑓	ℎ𝑖𝑡)
1 − 𝜆3𝛿 �k/�M																										(𝑛𝑜	𝑙𝑒𝑎𝑓	ℎ𝑖𝑡)

	 (B1) 

Using the effective path 𝑧" = − P�� 3��M;
�M

, (B1) can be rewritten: 486 

 
	𝑓U(𝑧; 𝛿) =

𝜆U𝑒� �k��M ;<				(leaf	ℎ𝑖𝑡)
𝑒��k;<										(𝑛𝑜	𝑙𝑒𝑎𝑓	ℎ𝑖𝑡)

	 (B2) 
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Let us denote 𝑧"U
8
8q3,Wk

 the 𝑁U “effective” free paths of scan j.  487 

From Eq. 1, the likelihood of Z is: 488 

 
ℒ 𝐿𝐴𝐷; 𝑧U8 8q3,Wk	}��	Uq3,p

= 𝑓U 𝑧U8; 𝛿U8
Wk

8q3

p

Uq3

= 𝜆U𝑒
� �k��M ;<k

�

P"Y�	789:

𝑒��k;<k
�

��	P"Y�	789

p

Uq3

= 𝜆U
W8k

t
𝑒��k;<k

�
Wk

8q3

𝑒�M;<k
�

P"Y�	789:

p

Uq3

=
𝐿𝐴𝐷𝑐U
𝛼

W8k
t

𝑒�
lDE
� �k;<k

�
Wk

8q3

𝑒�M;<k
�

P"Y�	789:

p

Uq3

=
𝐿𝐴𝐷
𝛼

W8t

𝑐UW8k 𝑒��k;<k
�

Wk

8q3

lDE
�

𝑒�M;<k
�

P"Y�	789:

p
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(B3) 

Where 𝑁𝑖UP is the number of leaf hit for scan j and 𝑁𝑖P = 𝑁𝑖UPU  is the total number of hits. 489 

The ML estimator is the value 𝐿𝐴𝐷 that cancels the first derivative of ℒ (Kay, 1993, chapter 7). The logarithm of 490 

the likelihood is: 491 

 𝑙𝑜𝑔ℒ 𝐿𝐴𝐷; 𝑧U8 8q3,Wk	}��	Uq3,p

= 𝑁𝑖P log
𝐿𝐴𝐷
𝛼

+ 𝑁𝑖UPlog	(
p

Uq3

𝑐U) −
𝐿𝐴𝐷
𝛼

𝑐U𝑧"U
8

Wk

Uq3

p

Uq3

+ 𝜆3𝑧"U
8

P"Y�	789:

 

(B4) 

Derivating with respect to LAD and equating to zero provides: 492 

 
𝑑𝑙𝑜𝑔ℒ
𝑑𝐿𝐴𝐷

=
1
𝛼
𝑁𝑖P

𝐿𝐴𝐷
𝛼

−
1
𝛼

𝑐U𝑧"U
8

Wk

Uq3

p

Uq3

= 0 (B5) 

Hence,  493 

 
MLE¤¥¦ = 𝛼

𝑁𝑖P

𝑐𝑧"
 (B6) 

with 𝑁𝑖P = 𝑁𝑖UPU  the total number of leaf hits et 𝑐𝑧" = 𝑐U𝑧"U
8Wk

Uq3
p
Uq3  the sum of product 𝑐U𝑧"U

8  for all beams. 494 

 495 
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Hence, the ML estimator (also called modified contact frequency)  3
�
𝜆 = §

�;<
 can be generalized to multiple 496 

viewpoints. 497 

 498 

As explained in Pimont et al. (2018), the MLE exhibits a positive bias when the optical path explored within the 499 

voxel is limited. Following supplementary C in Pimont et al. (2018), we can adapt the bias correction to the 500 

multiview formulation. 501 

 502 

Since MLE¤¥¦ = αf 𝑁𝑖P, 𝑐𝑧"  with f x, y = ~
ª
, the unbiased estimator LAD| can be approximated as: 503 

 LADx

𝛼
=

𝑁𝑖P

𝑐𝑧"
−
1
2
𝜎W8t
F 𝜕F𝑓
𝜕𝑥F

𝑁𝑖P, 𝑐𝑧" −
1
2
𝜎 �;<
F 𝜕F𝑓

𝜕𝑦F
𝑁𝑖P, 𝑐𝑧" − 𝜎W8t, �;<

𝜕F𝑓
𝜕𝑥𝜕𝑦

𝑁𝑖P, 𝑐𝑧"  (B7) 

The different terms can be estimated as follows: 504 

 
−
1
2
σ𝑁𝑖𝑙
F ∂Ff
∂xF

𝑁𝑖𝑙, 𝑐𝑧" = −
1
2
σ𝑁𝑖𝑙
F ×0 = 0 (B8) 

 
−
1
2
𝜎 �;<
F 𝜕F𝑓

𝜕𝑦F
𝑁𝑖𝑙, 𝑐𝑧" = −𝜎 �;

F 𝑁𝑖𝑙

𝑐𝑧" � (B9) 

 
−σ𝑁𝑖𝑙, �;<

∂Ff
∂x ∂y

𝑁𝑖𝑙, 𝑐𝑧" = σrs, �;<
1
𝑐𝑧" F (B10) 

 505 

We now estimate σ �;<
F = 𝐸 𝑐𝑧" F − 𝐸 𝑐𝑧" F and σ𝑁𝑖𝑙, �;< = 𝐸 𝑁𝑖𝑙 𝑐𝑧" − 𝐸 𝑁𝑖𝑙 𝐸 𝑐𝑧"  506 

Because of beam independency and since 𝐸 𝑧F = F
°
𝐸 𝟏P"Y�789𝑧"  (Pimont et al. 2018, Eq. C13) and lDE

�
≈ 𝑁𝑖𝑙

�;<
 507 

(Eq. B6): 508 

 
𝐸 𝑐𝑧"

F
= 𝑐UF𝐸 𝑧"U

F =
U

𝑐UF𝑁U𝐸 𝑧"±
F

U

=
1

λU 1/𝑐U
2𝑁U

U

𝐸 𝟏P"Y�	789𝑐U𝑧"U ≈
𝛼
LAD

2 𝑐U𝑧"U
𝑙𝑒𝑎𝑓	ℎ𝑖𝑡U

=
2𝛼
LAD

𝑐𝑧"
𝑙𝑒𝑎𝑓	ℎ𝑖𝑡

 

(B11) 

Similarly,  509 

 𝐸 𝑁𝑖𝑙 𝑐𝑧" = 𝐸 𝟏P"Y�	789𝑐U𝑧"U =
U

𝑐𝑧"
𝑙𝑒𝑎𝑓	ℎ𝑖𝑡

 (B12) 

 510 

Hence, plugin in Eq. B7: 511 
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 LADx

𝛼
=

𝑁𝑖𝑙

𝑐𝑧𝑒
−

2𝛼
LAD 𝑐𝑧𝑒

𝑙𝑒𝑎𝑓	ℎ𝑖𝑡
− 𝑐𝑧𝑒

2 𝑁𝑖𝑙

𝑐𝑧𝑒 3

− 𝑐𝑧𝑒
𝑙𝑒𝑎𝑓	ℎ𝑖𝑡

− 𝑁𝑖𝑙 𝑐𝑧𝑒
1
𝑐𝑧𝑒 2 

(B13) 

 512 

Hence, since Eq. (B6): 513 

 
LADx =

𝛼
𝑐𝑧𝑒

𝑁𝑖𝑙 − 𝑐𝑧𝑒𝑙
𝑐𝑧𝑒

 

 

(B14) 

Appendix C. A numerical experiment to compare different Multiview formulations 514 

Method 515 
We conducted a numerical experiment, rather than using actual data, because attributing 516 

error source in actual data is often difficult in this research field (Grau et al. 2017; Yan et al. 517 

2019). The goals of this experiment were to  i) provide a theoretical validation of the “M” –518 

multiview- estimator of LAD presented above (Eq. 13), ii) compare its performance with the 519 

two usual formulations to combine single-view estimates	(“Nmax” and “N-weighted” 𝐿𝐴𝐷WXYZ 520 

and 𝐿𝐴𝐷Wf, Eq. 4 and 5). We first generated a “reference” LAD tridimensional field LADref in 521 

a mesh grid, with voxels of size equal to 0.1 m, corresponding to a cubic vegetation scene with 522 

a 10-m lateral extension and a 10-m height. LADref corresponded to a clumped spatial 523 

distribution simulated from RandomFields R package, which was parameterized to correspond 524 

to realistic features of natural vegetation. The mean clump size, which was representative of 525 

the tree crown diameter, was 4 m, whereas typical LAD vertical profiles, as well as a projection 526 

function were implemented. In order to get a more realistic reference field, the random field 527 

LADref was modified as follows. We multiplied it by a realistic vertical profile, to get limited 528 

vegetation under 3 m, and a peak in LAD around 7 m height (Fig. C1a). Also, the first decile 529 

of LADref values was set equal to 0 in order to generate actual gaps between crowns. Finally, 530 

random variations were also introduced to simulate the occurrence of small gaps (~1 m), 531 

representative of branch-scale heterogeneity inside tree crowns. These setting led to a clumped 532 
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vegetation scene with a 70% cover fraction and a vertical structuration (Fig. C1a). The LAI of 533 

the virtual scene was about 3.8, which corresponds to a mean LADref of 0.38 m-1 (the scene 534 

vertical extent was 10 m). Maximal LADref values reached 3.8 m-1. 535 

A leaf projection function was implemented to complete vegetation properties: 536 

 𝐺 𝜃, 𝑧 =
1
2
+ 0.4

𝑧
ℎ
cos 2𝜃  (C1) 

where 𝜃 was the angle between the beams and the vertical, which ranged between 0 and 𝜋. 537 

According to this setting, leaves were planophile near the canopy top (𝑧 ≈ ℎ), with G=0.9 for 538 

vertical beams (𝜃 ≈ 0 or 𝜃 ≈ 𝜋) and 0.1 for horizontal beams (𝜃 ≈ ¸
F
), and random near the 539 

ground (𝑧 ≈ 0), with G=0.5. 540 

At last, the leaf fraction was parameterized to account for wood and leaf association 541 

along the vertical axis following: 542 

 
𝐹 𝑧 = 0.1 + 0.8

𝑧
ℎ

F
 (C2) 

The leaf fraction was hence equal to 0.9 at canopy top (𝑧 ≈ ℎ) and 0.1 near the ground (𝑧 ≈543 

0). 544 
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The vertical profile of LADref, as well as a two-dimensional horizontal distribution of this 545 

vegetation field, are shown in Fig. C1a&b. They correspond to a LAI of 3.8 and a cover fraction 546 

of 70 %. 547 

 548 

Figure C1. Reference vegetation: (a) vertical profile of 𝐿𝐴𝐷º"�; (b) horizontal distribution of 549 

𝐿𝐴𝐷º"� at z=6 m.  550 

 551 

We then simulated virtual TLS scans processed at five different locations, with a 0.036° 552 

angular resolution. Simulations were based on turbid media assumption (assuming that 𝜆3 ≈ 0, 553 

for simplicity), which states that the probability of a beam to be intercepted increases 554 

exponentially with the optical depth (product of attenuation coefficient and distance travelled). 555 

For simplicity, the volume fraction of wood elements was neglected (𝛼 = 1).  The locations in 556 

which individual laser beams were intercepted were thus generated from random numbers, as 557 

in Pimont et al. (2018), but the approach was generalized to a heterogeneous vegetation scene, 558 

as in (Pimont et al. 2009). 559 

The reference attenuation coefficient 𝜆º"�,U	 related to LADref  for a given scan j depends on 560 

leaf projection, leaf fraction, vegetation heterogeneity and scanner properties (Inverting Eq. 1). 561 
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Let 𝑥U, 𝑦U, 𝑧U  be the coordinates of the scanner corresponding to scan j and 𝑥, 𝑦, 𝑧  the 562 

coordinates of the center of a voxel in the vegetation scene. The effective attenuation coefficient 563 

for both leaf and wood for scan j was: 564 

 
𝜆º"�,U 𝑥, 𝑦, 𝑧 = 𝐿𝐴𝐷º"� 𝑥, 𝑦, 𝑧

	𝐺U 𝑥, 𝑦, 𝑧
𝐹(𝑧)𝐻U 𝑥, 𝑦, 𝑧

 (C3) 

 A beam emitted from the scanner j in the direction of 𝑥, 𝑦, 𝑧  had the following projection 565 

function G (since	cos 2𝜃 = cos 𝜃 F − sin 𝜃 F): 566 

 
𝐺U 𝑥, 𝑦, 𝑧 =

1
2
+ 0.4

𝑧
ℎ
𝑧 − 𝑧U

F
− 𝑥 − 𝑥U

F
− 𝑦 − 𝑦U

F

𝑥 − 𝑥U
F
+ 𝑦 − 𝑦U

F
+ 𝑧 − 𝑧U

F (C4) 

We assumed that the distance effect (caused by an increase in effective footprint of the scanner, 567 

as identified in Soma et al. 2018) has the following effect on the attenuation coefficient: 568 

 
𝐻U 𝑥, 𝑦, 𝑧 = 1 − 0.05 𝑥 − 𝑥U

F
+ 𝑦 − 𝑦U

F
+ 𝑧 − 𝑧U

F
 (C5) 

which expressed that leaf area was overestimated by a factor 2 at a distance of 10 m to the 569 

scanner (𝐻U=0.5), which is in agreement with observations of Soma et al. (2018). 570 

We simulated five virtual point clouds corresponding to scanner located at 1 m from the 571 

ground and at each corner of the plot and one scan at the center: 𝑥3, 𝑦3, 𝑧3 =572 

7.5,7.5,1 	; 𝑥F, 𝑦F, 𝑧F = 7.5,2.5,1 	; 	 𝑥�, 𝑦�, 𝑧� = 2.5,2.5,1 	; 𝑥½, 𝑦½, 𝑧½ =573 

2.5,7.5,1 ; 𝑥�, 𝑦�, 𝑧� = 5,5,1 	. Their shooting patterns corresponded to a 0.036° angular 574 

resolution over the horizontal (ranging from 0 to 180°) and the vertical (ranging from 0 to 360°), 575 

so that each scan contains around 50 million beams, which is typical of the resolution used in 576 

the field (e.g. Pimont et al. 2015). For each beam, we simulated its eventual hit location with a 577 

ray-tracing algorithm: First, the optical path (i.e. initial potential to pass through vegetation) of 578 

each beam was randomly simulated according to the Beer-Lambert law (assuming infinitely 579 

small elements, i.e. 𝜆3 ≈ 0): 580 

 𝑙 = −log	(𝑝) (C6) 
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with p a random number within ]0;1], which corresponds to the initial chance to be intercepted 581 

by vegetation. We then computed the trajectory of this beam within the computational grid, 582 

from its initial position at scanner location, by computing the “amount” of optical path required 583 

to cross the next voxel. This amount was calculated by multiplying the reference attenuation 584 

coefficient of this voxel (computed from Eq. C3) by the length of the segment corresponding 585 

to the intersection of the beam and the voxel. When the residual optical path of the beam was 586 

shorter than this amount, a hit occurred within this voxel at a location corresponding to this 587 

residual optical path. On the contrary, when the remaining optical path was greater than this 588 

amount, it meant that the beam travelled farther than the voxel. The process was recursively 589 

applied to the next voxel, the “new” residual optical path corresponding to the remaining of the 590 

previous one. The process ended in case of hit, or when a beam reached the bounding box of 591 

the computational grid. In this later case, the beam was never intercepted in the computational 592 

grid, thus corresponding to a beam with no hit. This process was similar to the one used by 593 

(Pimont et al. 2009) to simulate photons trajectories to compute the radiative transfer from a 594 

flame through a voxelized heterogeneous vegetation scene with a MonteCarlo approach. Hence, 595 

five virtual point clouds were simulated in accordance with 𝜆"��,U, which accounted for both 596 

vegetation and instrument properties. 597 

Finally, we applied a traversal algorithm to each point cloud j to retrieve leaf hits and free 598 

path distributions in voxel (size equals to 0.1 m), in order to compute the different statistics 599 

required for the different multiview estimators of the LAD. In particular, the number of hits 𝑁𝑖, 600 

the number of sampling beams N and the free path lengths of individual beams were computed 601 

in each voxel. 602 

We computed the three multiview estimators (𝐿𝐴𝐷WXYZ,	𝐿𝐴𝐷Wf and 𝐿𝐴𝐷p). A two-603 

dimensional horizontal distribution of 𝐿𝐴𝐷p is shown in Fig. C2 to illustrate these estimates 604 

and can be directly compared to Fig. C1b. The blank pixels correspond to locations in which 605 
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voxels were not sampled by any beam, because of vegetation occlusion. The impact of such 606 

occlusion was discussed in details in Soma et al. (2019) and was beyond the scope of the present 607 

article. 608 

 609 

Figure C2. Estimated horizontal distribution of 𝐿𝐴𝐷p at z=6 m. This distribution could directly 610 

be compared to 𝐿𝐴𝐷º"� in Fig. C1b. Blank pixels correspond to unexplored voxels, which 611 

revealed occluded locations in the canopy. 612 

 613 

 The performance of the three multiview estimators were compared thanks to reference 614 

LAD values. We first evaluated their biases, by comparing estimated and reference LAD values, 615 

grouped per classes of total beam numbers exploring voxels (N). Indeed, Pimont et al. (2018) 616 

showed that the magnitude of the biases can strongly vary with the number of sampling beams. 617 

Then, we computed the Root Mean Square Error (RMSE) of the estimations in individual 618 

voxels. As for the bias, RMSE were computed per classes of total beam numbers exploring 619 
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voxels (N). Both biases and RMSE were expressed in percentage of the mean LAD in concerned 620 

voxels, in order to ease the interpretation of the results. 621 

Results 622 

The mean biases observed in voxels, computed for three classes of beam number N, are shown 623 

in Table C1. With the new multiview estimator (𝐿𝐴𝐷p), biases were smaller  than 1 % for 624 

𝑁 ≥ 10 and were only equal to 2.2% when 𝑁 < 10. The two other estimates exhibited biases 625 

of larger magnitudes, especially the “N-weighted” estimates (NW), which reached -15 % when 626 

𝑁 < 10. Such a result was quite surprising: as a weighted average of unbiased estimators 627 

(computed for each scan), one would have expected the NW estimator to be unbiased too. There 628 

was a simple explanation to this apparent paradox: when N was smaller than 10, it often 629 

corresponded to cases where the beam number exploring a voxel from one or several viewpoints 630 

was smaller than 5 and in particular equal to 1 or 2. In these cases, the single-view estimator 631 

was negatively biased (Pimont et al. 2018). For example, this bias was especially obvious when 632 

Nj=1 (in this case, it is equal to 0 when 𝑁𝑖P=0, but also when 𝑁𝑖P =1, since ;<t
;<

=1, see Eq. 5). 633 

 634 

Table C1. Mean biases (in % of the mean LADref) of the three estimators for three different 635 

classes of total beam number N. 636 

Range of beam number 𝐿𝐴𝐷WXYZ 𝐿𝐴𝐷Wf 𝐿𝐴𝐷p 

𝑁 ≥ 2	𝑎𝑛𝑑	𝑁 < 10 -6.0 % -15 % +2.2 % 

𝑁 ≥ 10	𝑎𝑛𝑑	𝑁 < 15 +0.8 % -2.8 % +0.4 % 

𝑁 ≥ 15 +0.0 % -0.4 % +0.0 % 

 637 

 638 

 The RMSE observed in voxels, computed for six classes of beam number N are shown 639 

in Table C2. With the multiview estimator (𝐿𝐴𝐷p), RMSE were smaller than those of the two 640 
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other estimates. In particular, differences between 𝐿𝐴𝐷p and 𝐿𝐴𝐷WXYZ were observed for all 641 

classes of beam numbers and were explained by the fact that the information from secondary 642 

viewpoints was ignored with “Nmax”, leading to larger RMSE. Differences between 𝐿𝐴𝐷p and 643 

𝐿𝐴𝐷Wf mostly occurred for 𝑁 ranging between 10 and 30, but RMSE for 𝐿𝐴𝐷Wf could be 644 

more than twice as big as for 𝐿𝐴𝐷p. More detailed analyses (not shown) show that these strong 645 

differences in performances were caused by a very limited number of voxels in which errors of 646 

𝐿𝐴𝐷Wf were very high, when compared to those of 𝐿𝐴𝐷p. This occurred when one of the 647 

𝐿𝐴𝐷U estimates with a very low number of beams (Nj lower than 5) was very far beyond the 648 

reference value (for example, when the mean free path from viewpoint j was unluckily very 649 

small for the Nj beams). In this configuration, very large overestimations could occur for the 650 

“N-weighted” estimator, despite of the weighting procedure, which was not able to dampen 651 

such outliers. As a result, the “NW” estimator led to higher RMSE than the “Nmax”, despite 652 

more information was used, which highlights the limits of the NW formulation. 653 

 654 

Table C2. Root Mean Square Error (in % of the mean LAD) of the three multiview estimators 655 

for six different classes of total beam numbers. 656 

Range of beam number 𝐿𝐴𝐷WXYZ 𝐿𝐴𝐷Wf 𝐿𝐴𝐷p 

𝑁 ≥ 2	𝑎𝑛𝑑	𝑁 < 10 450 % 410 % 416 % 

𝑁 ≥ 10	𝑎𝑛𝑑	𝑁 < 15 137 % 234 % 114 % 

𝑁 ≥ 15	𝑎𝑛𝑑	𝑁 < 30 99 % 183 % 83 % 

𝑁 ≥ 30	𝑎𝑛𝑑	𝑁 < 100 61 % 52 % 51 % 

𝑁 ≥ 100	𝑎𝑛𝑑	𝑁 < 1000 37 % 31 % 30 % 

 657 
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