1 2 3 4	FRONT MATTER
5	Melanopsin ⁺ RGCs are fully resistant to NMDA-
6	induced excitotoxicity.
7 8	Running title: m*RGCs Long-term effects of NMDA-induced excitotoxicity.
9 10 11	AUTHOR LIST AND AFFILIATIONS:
11	Pasteiz Videl Villages*1 Johnny Di Bigrdomonics*1 Ivan A Mirellas de Imporiel Ollaret Arture
12 13	Beatriz Vidal-Villegas ^{*1} , Johnny Di Pierdomenico ^{*1} , Juan A Miralles de Imperial-Ollero ¹ , Arturo Ortín-Martínez ^{1,3} , Francisco M Nadal-Nicolás ^{1,4} , Jose M Bernal-Garro ¹ , Nicolás Cuenca Navarro ² ,
13	Maria P Villegas-Pérez ¹ , Manuel Vidal-Sanz ^{**1} .
15	Munu i Vinegus i crez / Munuei Vidui Sunz
16	¹ Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria
17	(IMIB)-Virgen de la Arrixaca, Murcia, Spain.
18	² Department of Physiology, Genetics and Microbiology and Multidisciplinary Institute for Environmental
19 20	Studies "Ramón Margalef", University of Alicante, Alicante, Spain. ³ Present address: Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network,
20	Ontario, Canada.
22	⁴ Present address: Retinal Neurophysiology Section, John Edward Porter Neuroscience Research Center,
23 24	National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
25	*Joint first authors
26	** Correspondence: <u>manuel.vidal@um.es</u>
27	
28	
29 30	Abstract
30 31	Abstract
32	We studied short- and long-term effects of intravitreal injection of N-methyl-D-aspartate (NMDA) on
33	melanopsin-containing (m ⁺) and non-melanopsin-containing (Brn3a ⁺) retinal ganglion cells (RGCs).
34	In adult SD-rats, the left eye received a single intravitreal injection of 5μ L of 100nM NMDA. At 3 and
35	15 months, retinal thickness was measured <i>in vivo</i> using SD-OCT. Ex vivo analyses were done at 3,
36	7, 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for Brn3a and
37	melanopsin, the total number of Brn3a ⁺ RGCs and m ⁺ RGCs were quantified and their topography
38	represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were
39	78,903±3,572 and 2,358±144 (mean ± SD; n=10), respectively. In the NMDA injected retinas,
40	Brn3a ⁺ RGCs numbers diminished to 50% and 25%, at 3 and 14 days, respectively, but there was no
41	further loss up to 15 months. The number of immunoidentified m ⁺ RGCs decreased significantly at 3
42	days, recovered between 3-7 days and was back to normal thereafter. OCT measurements revealed a
43	significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induce a
44 45	rapid loss of 75% of Brn3a ⁺ RGCs, a transient downregulation of melanopsin expression but not
45 46	m ⁺ RGC death, and a thinning of the inner retinal layers.
46	K

47 Key words

48 NMDA, excitotoxicity, Glaucoma, melanopsin-RGCs, intrinsically photosensitive-RGCs,
49 Brn3a*RGCs, adult albino rat, retina, SD-OCT.

- 50
- 51

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, 2<u>0, 3012; doi:10.3390/ijms2012301</u>;

52 Research Manuscript Sections:

53

55

54 <u>Introduction</u>

56 Light is converted by photoreceptors (rods and cones) into electrical signals which are initially 57 processed at the outer synaptic layer of the retina where photoreceptor information is modulated by 58 horizontal cells and conveyed onto bipolar cells. Signals are further processed at the inner synaptic 59 layer where the bipolar information is modulated by amacrine cells and finally passed on to retinal 60 ganglion cells (RGCs) in the innermost retinal layer. RGCs, the only ones whose axon leaves the 61 retina, convey the information processed in the retina to the retinorecipient nuclei of the brain. This 62 projection obtains relevant information from our visual world from the retina and provides it to the 63 brain to produce image-forming as well as nonimage-forming visual functions. Retinal information 64 that produces image-forming visual functions is carried out by the general population of RGCs that 65 have in common the expression of Brn3a, while the information necessary to produce nonimage-66 forming visual functions is carried out by a small subpopulation of RGCs that express the 67 photopigment melanopsin (m⁺RGCs) rendering them intrinsically photosensitive (ipRGCs); the so 68 called third photoreceptor cell-type of the retina [1].

69 In adult rodents, RGCs constitute less than 1% of all retinal cells [2-4]. Based on their morphology 70 (soma size and dendritic arborization), extension of their dentritic arborization into the inner synaptic 71 layer, electrophysiological responses to light stimulus within their receptive field, target region of the 72 brain and genetic background it has been proposed that the rodent retina may have up to 40 different 73 types of RGCs [5-8]. In the rat it has been estimated that excluding endothelial cells, the GCL is 74 composed of approximately 50% displaced amacrine cells (ACs), 10% glial cells, and 40% RGCs [9]. 75 Displaced ACs not only share their location in the retina with RGCs but overlap in size thus making 76 it difficult to distinguish RGCs from ACs, and this has obliged the use of retrogradely transported 77 neuronal tracers [10,11] or neuronal markers to identify RGCs. There are several markers that identify 78 large proportions of RGCS (pan-markers) or many RGC types, including Thy-1 [12], Brn3a [13,14], 79 RBPMS [15], class III beta-tubulin [16], Neuronal Nuclei (NeuN) [17] and Microtubule-associated 80 protein 1A (MAP 1A) [7,18]. In addition, there are several markers that allow to identify specific types 81 of RGCs, such as melanopsin [19] and others [7,8,20]. However, after retinal injury, many of the 82 physiological and morphological attributes of RGCs, including their dendritic arborization may 83 change [8,21,22], and the molecular markers may be downregulated, rendering the identification of 84 RGCs difficult [23-28].

85 The characterization of the expression of Brn3a by rodent RGCs has allowed identification of the 86 main population of RGCs that convey image-forming visual information to the brain, which 87 represents approximately 96% of the RGC population [14]. Nonimage-forming visual behaviours 88 depend on intrinsically photosensitive RGCs (ipRGCs), one type of RGC with a large dendritic arbor 89 that contains the photopigment melanopsin (m⁺RGCs), responsible for the circadian 90 photoentrainment, pupillary reflexes and the regulation of pineal melatonin secretion [1,29,30]. Six 91 subtypes of ipRGCs have been described to express at least small amounts of melanopsin (also known 92 as Opn4), and are named M1-M6 [31,32]. Antibodies against melanopsin allow the identification of 93 the large majority of ipRGCs, preferentially M1-M3, because M4, which corresponds to the ON α RGC 94 subtype [33,34], M5 [35] and M6 [32] express less Opn4 than M1-M3 and are difficult to identify with 95 standard immunohistochemistry [31,32,36-39]. In rats, the population of m⁺RGCs constitute 96 approximately 2.5 and 2.7% of the RGC population for pigmented and albino, respectively [13,14,19]. 97 Moreover, because Brn3a and melanopsin are hardly-ever expressed in the same RGC, 98 immunohistofluorescent studies using these two markers together allows the study, in parallel but 99 independently, of the responses of these two types of RGCs to different retinal injuries [28,40].

Glutamate excitotoxicity may be induced by the intravitreal injection of N-methyl D-Aspartate (NMDA) which results in the excessive stimulation of NMDA receptors, one of the three ionotropic glutamate receptor subtypes widely expressed by inner retinal neurons. Glutamate excitotoxicity is thought to play an important role in the loss of RGCs in various retinal injuries [41,42] including glaucoma [43-47], transient ischemia [48] and optic nerve injury [49,50], and may also play a key role eer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 3012; doi:10.3390/ijms20123012

in many CNS diseases involving neuronal death [51]. Excessive NMDA receptor stimulation may
result in alterations of the Na⁺/K⁺ homeostasis, excessive influx of large amounts of Ca²⁺ into the cell
[52] which may result in direct damage by activation of enzymes that damage DNA and cell
membranes [53] and by the induction of apoptosis through activation of c-AMP [54]. Animal models
of NMDA-induced retinal excitotoxicity are often used to explore molecular mechanisms of RGC
apoptosis and its protection [55-63].

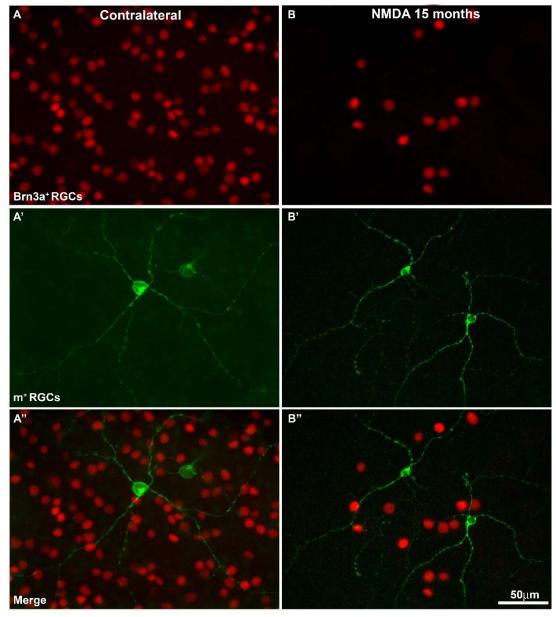
The susceptibility of RGCs to NMDA-mediated excitotoxicity has been studied previously in adult rats [55,59] and mice [56,64], as well as the effects of intravitreal NMDA on the specific type population of m⁺RGCs [56,64]. However, these were short term studies spanning up to 58 days after NMDA injection and thus the short- and long-term effects of NMDA excitotoxicity on the population of RGCs expressing Brn3a had not been investigated so far. Moreover, to what extent NMDAinduced neurotoxicity may result in long term effects on the retinal architecture and on the population of ipRGCs itself had not been previously investigated.

118 In the present studies we take advantage of recent techniques developed in the laboratory to 119 identify, count and map in the same retinal wholemounts the populations of RGCs expressing Brn3a 120 or melanopsin. Moreover, we use modern non-invasive techniques, such as the Spectral Domain 121 Optical Coherence Tomography (SD-OCT), to image and analyse retinal thickness longitudinally at 122 short (3months) and long (15 months) survival intervals. We investigate the responses of the general 123 population of RGCs (Brn3a⁺) and the population of ipRGCs (m⁺RGCs) to excitotoxicity induced by 124 the intravitreal injection of NMDA. Overall our studies indicate that the general population of 125 Brn3a+RGCs is quite sensible to NMDA mediated excitotoxicity and induces very rapidly the loss of 126 approximately 75% of the population. In contrast, m⁺RGCs after a transient downregulation of 127 melanopsin, show a remarkable capacity for survival of the entire m⁺RGC population, for periods of 128 up to 15 months. Examination of these retinas with SD-OCT reveals that NMDA-injected retinas 129 showed an important reduction in the thickness of the total and inner retina that was present at 3 130 months and progressed up to 15 months. Short accounts of this work have been published in abstract 131 format [65].

132

133 <u>Results</u>

We have included in this study a total of 51 rats whose left eye received an intraocular injection of 5 µl NMDA (100nM). The first 28 were analysed within the first 14 days after the injection while the remaining 23 were analysed at 15 months to investigate the long-term effects of the excitotoxic insult on the survival of two RGC populations, the Brn3a⁺RGCs and the m⁺RGCs. Five additional naïve rats were used as controls. In addition, SD-OCT was used to measure retinal thickness in both retinas of each animal at 3 and 15 months after NMDA injection.


141

142 Rapid and massive loss of Brn3a⁺RGCs shortly after NMDA injection.

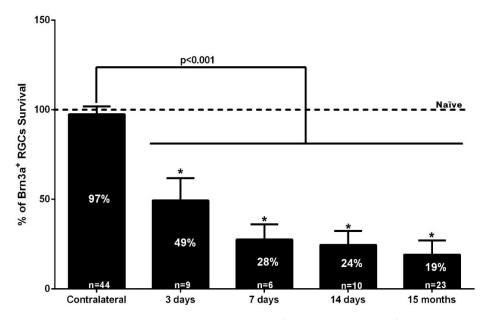
When the right and naïve retinas or the vehicle injected retinas, were examined under the fluorescence microscope, Brn3a⁺RGCs showed the typical distribution throughout the entire retina with higher densities on the superior retina, just above the optic nerve along the visual streak, as described in detail before [66-68]. Changing the fluorescent filter allowed to see m⁺RGCs distributed in a complementary fashion to Brn3a⁺RGCs and, as previously shown by this Laboratory [14,19], we were not able to see any doubly immunolabelled RGC, thus confirming that these markers are exclusive to one population (Figure 1).

150

Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 3012; doi:10.3390/iims201230/

Figure 1. Magnifications from flat mounted retinas showing Brn3a⁺RGCs (A-B) and m⁺RGCs (A'-B') and both signals (merge) (A"-B") in contralateral (A-A") and NMDA-treated retinas (B-B") analyzed at 15 months after the injection. Brn3a labels cell nuclei while melanopsin allows to see cell somata as well as primary dendrites on the plane of focus. When both images are overlapped (A"-B") one can appreciate the smaller density of m⁺RGCs compared to Brn3a⁺RGCs, as well as the fact that there are no doubly labelled RGCs. Note that 15 months after NMDA injection there are fewer Brn3a⁺RGCs. Scale bar= 50 µm.

151


Total numbers of Brn3a⁺RGCs (78,903±3,573 mean±SD, n=10) in the naïve retinas were comparable to those in the right fellow retinas of our experimental groups analysed at 3, 7 and 14 days (76,472±5,815 Brn3a⁺RGCs mean±SD, n=29), or 15 months (81,480±5,602 mean±SD, n=20) after NMDA injection, as well as to those obtained in previous studies from this Laboratory [13,14,19,69] (Figures 1, 2. Table 1).

The left NMDA-injected retinas showed significant decreases in the total numbers of Brn3a⁺RGCs.
By 3 days after NMDA injection, the total number of Brn3a⁺RGCs was 38,940±22,443 (n=9) which is significantly smaller than naïve controls and contralateral retinas (p≤0.001, Mann Whitney test).
There were further reductions at 7 (21,811±9,750 mean±SD, n=6) and 14 days (19,348±8,502 mean±SD, n=10) but these were not statistically significant when compared to 3 days, indicating that in this injury model RGC loss occurs early after NMDA injection but there is no further progression between

163 3 and 14 days (Figure 2, Table 1). Moreover, at 15 months, the left NMDA-injected retinas showed

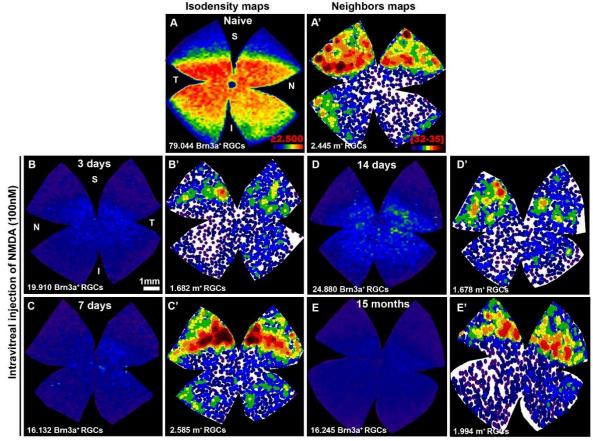
significantly lower numbers than their fellow retinas (15,099±8,595 mean±SD, n=23) that
corresponded to a survival of approximately 19%, although these values were not different from
those obtained at 14 days (Mann Whitney test, p=0,342), indicating that there is no further loss of
Brn3a+RGCs between 14 days and 15 months. (Figures 1, 2, 3, Table 1).

168

Figure 2. Bar graph showing the percent vs. intact retinas of the total numbers of Brn3a⁺RGCs ± standard deviation quantified in the contralateral uninjured and experimental retinas analyzed 3, 7, 14 days (d) or 15 months (m) after the intraocular injection of 100 nM NMDA. The number of Brn3a⁺RGCs in the intact naïve retinas was considered 100%. The number of analyzed retinas is shown at the bottom of each bar. Statistically significant differences were observed (Kruskal-Wallis test, p<0.001) between values obtained in intact retinas (Naïve) or right eye retinas (Contralateral) and retinas examined at 3, 7, 14 days or 15 months. However, no significant differences were observed (*Kruskal-Wallis test, p>0.05) between experimental groups analyzed at 3, 7, 14 days or 15 months, which suggests that NMDA-induced Brn3a⁺RGCs does not progress between 3 days and 15 months.

169

170 Retinal distribution of Brn3a⁺RGCs in the NMDA injected retinas did not adopt any particular 171 spatial pattern, their loss was diffuse and distributed over the entire retinas (Figure. 3), although 172 occasionally there was a smaller density in the superior temporal quadrant that could be explained 173 by the proximity to the intraocular puncture and thus, a region exposed to a greater concentration of 174 the injected NMDA.


After a transient downregulation of melanopsin, m⁺RGCs appear fully resistant to NMDAinjection.

Total numbers of m*RGCs (2,358±143 mean±SD, n=10) in the naïve retinas were comparable to those obtained in the right fellow retinas of our experimental groups analysed at 3, 7 and 14 days (2,257±228 m*RGCs mean±SD, n=29), or at 15 months (2,166±96 mean±SD, n=9) after NMDA injection, as well as to those obtained in previous studies from this Laboratory [13,19,69] (Figures 1,3,4 Table 2).

182

By 3 days after intravitreal injection of NMDA, the total number of m⁺RGCs was 1,516±312 (n=10), a
significant reduction when compared to naïve or contralateral retinas (p≤0.001, Kruskal Wallis test)
(Figure 2). Surprisingly, the total number of m⁺RGCs at 7 or 14 days after NMDA injection was
2,105±445 (n=7) or 2,419±257 (n=11), showing a significant increase when compared to the values
observed at 3 days, and reached comparable values to those of control retinas by 14 days (p>0.05
Kruskal Wallis, test). By 15 months after NMDA-injection, the left retinas showed a total number of
m⁺RGCs (2,027±134 mean±SD, n=11) comparable with the data obtained in their right fellow retinas

190 (2,166±96 mean±SD, n=9) (Mann Whitney test, p=0.518).

Figure 3. A-E. Isodensity maps showing the retinal topography of Brn3a⁺RGCs in intact retinas (A) or in representative retinas analyzed at 3 (B), 7 (C), 14(D) days or 15 (E) months after intravitreal injection of 100nM NMDA. A'-E'. Neighbor maps illustrating the distribution of m⁺RGCs in the same retinas shown in A-E. Isodensity maps color scale ranges from 0 (purple) to $\geq 2,500$ (red) cells/mm². Neighbor map color scale, each color represents an increase of 4 neighbors in a radius of 0.0552 mm from purple (0-4 neighbors) to dark red (32-35 neighbors). Below each map is shown the total number of Brn3a⁺RGCs or m⁺RGCs counted. S: superior, I: inferior, N: nasal, T: temporal. Scale bar= 1mm

192

We interpret this abrupt decrease and subsequent recovery of the total number of m⁺RGCs as a transient downregulation of melanopsin, shortly after intravitreal injection of NMDA, that recovers up to normal levels of expression and total number of m⁺RGCs by 7, 14 days and 15 months. In addition, these results also indicate that m⁺RGCs are resistant to NMMD-induced excitotoxicity. In contrast with the Brn3a⁺RGC population, whose total numbers were reduced to approximately one quarter to one fifth of their normal values, the m⁺RGCs show a complete population that is comparable to that found in their fellow contralateral and in naïve retinas (Figures. 1,3,4, Table 2).

200

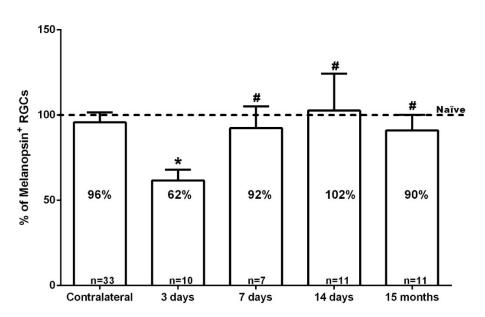
201 In Vivo SD-OCT measurements

202 We wanted to examine the effects of the NMDA-induced retinal degeneration on the retinal layers 203 and thus retinas were analysed at 3 and 15 months with SD-OCT to determine the total and inner 204 retinal thickness. Figure 5 shows representative SD-OCT images from both eyes in two representative 205 experimental rats analysed longitudinaly in vivo 3 and 15 months after NMDA-injection. The SD-OCT 206 provided measurements of the 31 sections acquired, and we selected three sections located superior, 207 central or inferior for its analysis. Because the measurements of these three sections were comparable 208 within each individual retina and time interval examined, the values from these 3 sections were 209 pooled and used as a value for each retina and time point.

- 210
- 211

Peer-reviewed version available at *Int. J. Mol. Sci.* **2019**, *20*, 3012; <u>doi:10.3390/ijms20123</u>

			7	Fotal numb	ers of Brn	3a⁺RGCs				
	Naïve		3 days		7 d	7 days		14 days		onths
Retinas	RE	LE	RE	LE	RE	LE	RE	LE	RE	LE
1	80293	82587	72071	46569	74963	24880	71159	16434	89717	14852
2	80399	79044	79209	52957	77604	12227	80940	13785	93939	9538
3	78344	71826	78178		72411	33105	78786	10593	88081	24936
4	74865	77395	79256	19910	66564		73895	39166	81353	21955
5	84031	80247	82406	15648	66086	31097	77579	16132	78436	22369
6			74244	15721	63952	9238	82321		68961	1951
7				62993	71202	20321	87289	15318	83471	5796
8				62344			80773	22261	80699	21478
9				61640			84397	20945		16245
10				12681			80789	12209		24937
11							76135	26641	74808	16594
12									88721	8588
13									75941	1990
14										2754
15									80213	10950
16									81595	5404
17									80424	5584
18									79487	25879
19									79093	25486
20									77667	21966
21									81417	11286
22									83543	25152
23									82032	21587
Mean	789	903	77561	38940	70397	21811	79460	19348	81480	15099
± SD	35	72	3757	22443	5038	9751	4631	8502	5602	8595
Total RE				M	ean 78677	SD 62	260			


Table 1. Total number of Brn3a+RGCs.

212

213 Total retinal (TR) thickness (as measured in µm from the inner side of the nerve fibre layer to the 214 outer limit of the outer segment layer) was significantly smaller in the NMDA-injected retinas as 215 compared to their contralateral fellow retinas at 3 (185±4 versus 212±3.2; n=23) and 15 (162±6.1 versus 216 196±6.1; n=23) months. In fact, the thinning of the TR was mainly due to the thinning of the inner 217 retina (IR) (as measured in μ m from the inner side of the nerve fibre layer to the outer limit of the 218 inner nuclear layer). The IR thickness in the left NMDA-injected eyes was significantly smaller than 219 in their fellow retinas at 3 (83±3.7 versus 97±4.2; n=23) and 15 (71±2.8 versus 91±3.4; n=23) months 220 (Figures. 5,6).

The TR thickness of the fellow retinas diminished significantly between 3 (212 \pm 3.2; n=23) and 15 (196 \pm 6.1; n=23) months, a finding that is in agreement with recent studies in adult albino rats showing a physiological thinning of the TR and IR of approximately 16 and 6 µm, respectively, with age [69]. However, superimposed to the physiological age-related thinning of the retina, in the experimental NMDA-injected retinas there was further significant thinning of the TR (23 µm) and IR (12 µm) between 3 and 15 months (Figures. 5, 6).

227

Figure 4. Bar graph showing the percent vs. intact retinas of the total number of m⁺RGCs ± standard deviation quantified in the contralateral uninjured and experimental retinas analyzed 3, 7, 14 days or 15 months after the intraocular injection of 100 nM NMDA. The number of analyzed retinas is shown at the bottom of each bar. *Significant differences compared to naïve, contralateral retinas and other timepoints (Kruskal-Wallis test, p<0.001). [#] The percent of m⁺RGCs in the experimental groups analyzed at 7d, 14 days or 15 months did not differ significantly from their contralateral fellow retinas (Mann-Whitney Test, p>0.05).

228

229

230 <u>Discussion</u>

231

232 Here we have investigated the short- and long-term responses of the populations of Brn3a⁺ and 233 melanopsin expressing (m⁺) RGCs after an excitotoxic insult to the retina. Our studies show that 234 following an intraocular injection of 100 nM NMDA, there is a rapid and massive loss of the general 235 population of Brn3a+RGCs; by 3, 14 days or 15 months, the surviving population represents 236 approximately 49%, 28% or 19%, respectively of the original population. When examined with SD-237 OCT there was an important reduction in the thickness of the total and the inner retina at 3 months 238 that further progressed up to 15 months. Compared to the population of Brn3a⁺RGCs, m⁺RGCs show 239 by 3 days a transient downregulation of melanopsin that recovers over the next weeks, and by 14 240 days or 15 months the numbers of m⁺RGCs are comparable to their contralateral fellow eyes.

241 When studying the responses of RGCs to retinal injuries it is important to be able to identify 242 different types of RGCs to understand how these respond to injury [40,70]. Here we use modern 243 techniques developed in the Laboratory to count, image and represent the retinal topography of two 244 RGC populations that can be readily identified with Brn3a and melanopsin [40,71]. Recent studies 245 from this Laboratory have demonstrated that in the adult rat, retinal injuries induce a transient 246 downregulation of melanopsin [28], followed by the expression of melanopsin in injured neurons 247 surviving long periods of time [9,19,72,73]. Of the six main subtypes of ipRGCs M1-M6, 248 immunocytochemistry against melanopsin identifies mainly M1-M3 because they show higher levels 249 of melanopsin expression [32-35,37,38] and thus when interpreting our data, we should take into 250 account that our immunohistochemical methods identify primarily the M1-M3 ipRGC subtypes. In 251 fact, although not analysed in this work, it is conceivable that most of our results refer to the M1 and 252 M2 subtypes which are the most abundant and readily identified with melanopsin antibodies 253 [37,38,74].

254

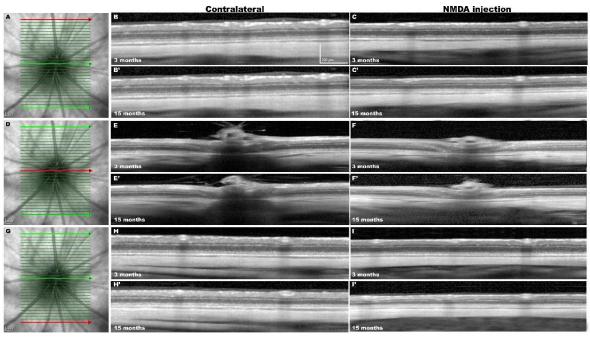
Peer-reviewed version available at *Int. J. Mol. Sci.* **2019**, <u>20, 3012; doi:10.3390/ijms201230</u>

				Total	l numbers	of melano	psin⁺RGCs			
D	Naive		3 days		7 days		14 days		15 months	
Retinas	RE	LE	RE	LE	RE	LE	RE	LE	RE	LE
1	2434	2201	2135	2062	2163	1678	2034	2409		1994
2	2373	2445	1972	1293	2496	1650	2026	2276		2018
3	2366	2103	2294	1187	1962	1860	2055	2149	2154	1997
4	2362	2249	2547	1682	2262	1971	2242	2425	2297	1987
5	2612	2433	1966	1043	2040	2174	2566	2585	2207	1904
6			2183	1448	2471	2662	2363	2145	2016	1857
7				1719	2612	2746	1950	2661	2267	2019
8				1473			2537	2701	2022	2284
9				1850			2267	1955	2156	1961
10				1411			2559	2660	2196	2004
11							2467	2652	2181	2273
Mean	2	358	2183	1453	2287	2106	2279	2420	2166	2027
± SD	1	44	219	371	247	446	235	257	95	133
Total RE					Me	an 2257	SD 229			

Table 2. Total numbers of m⁺RGCs.

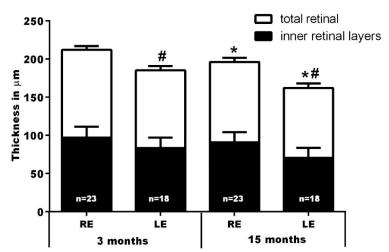
255

256 Intravitreal injection of NMDA induces Brn3a⁺RGC death


257 The loss of RGCs observed after the injection of NMDA in our studies is comparable to that found 258 by others in mice [56,64] or rat [50,55,75] analysed at survival intervals ranging 3-58 days. We noticed 259 certain inter-animal variability in the total number of surviving Brn3a⁺RGCs at 3 days after NMDA 260 injection, that was also reported by others [55,64] and could be due to an individual animal 261 susceptibility, or to the fact that RGC loss has not concluded by that time interval. Inter-animal 262 variability following other types of retinal injuries, such as intraorbital optic nerve cut or crush, an 263 insult that results in axotomy of the entire RGC population, have been shown [9,76]. Another possible 264 explanation for the inter-animal variability could be the fact that intravitreal injections may suffer a 265 small reflux of the injected volume rendering the concentration of NMDA not exactly equal for all 266 eyes. We have not investigated shorter survival intervals than 3 days, after NMDA injection, but other 267 studies have suggested that following NMDA injection RGC loss appears as early as 6 hours after 268 injection [77]. It is currently thought that NMDA induced excitotoxicity results in activation of the 269 NMDA receptor and this leads to a massive influx of Ca⁺⁺ that acts as a second messenger to activate 270 pathways that lead to apoptotic neuronal death [78], although the exact signalling pathways involved 271 in NMDA-induced RGC death are not completely understood [58].

272

273 Intravitreal injection of NMDA induces a progressive retinal thinning


274 RGC degeneration results in the loss of neural processes that extend into the inner synaptic layer 275 where they contact cone-bipolar and amacrine cells of different types forming an extensive neuropil 276 that makes up a substantial proportion of the inner synaptic layer's volume. Our results indicate that 277 NMDA-induced retinal excitotoxicity results in a significant decrease of the total (TR) and inner (IR) 278 retinal thickness. This thinning was already apparent in the left NMDA-injected experimental retinas 279 by 3 months when compared to their fellow retinas. The retinal thinning may be explained because 280 over 75% of the Brn3a*RGC population is missing and their dendrites have degenerated thus 281 prompting a thinning of the IPL [75], but also because NMDA-excitotoxiticy results in loss of 282 amacrine cells, as shown with TUNEL and morphometric techniques in adult pigmented mice [82-283 84] and albino rats [75,85]. The thinning of the TR and IR observed in the fellow retinas between 3 284 and 15 months is consistent with the physiological thinning of the adult SD rat retina with age [69]. 285 However, superimposed on this physiological thinning, in the experimental retinas there was a 286 progressive thinning of the TR and IR between 3 and 15 months, indicating a continuing retinal degeneration prolonged beyond the time of NMDA injection and the period of Brn3a*RGC loss which
concluded by 3 days after the injection. A possible explanation for the progressive thinning of the IR
could be the secondary amacrine cell loss that follows RGC death observed after NMDA-induced
neurotoxicity. Indeed, approximately 72% of the RGC types in the mice retina are coupled to ACs
[86] which may possibly facilitate secondary cell loss of calretinin, calbindin and choline
acetyltransferase immunopositive ACs via gap junctions [84].

293

Figure 5. In vivo SD-OCT images from the same contralateral and experimental retinas analyzed 3 and 15 months after NMDA injection. (A, D, G) Representative images of the ocular fundus of the contralateral retina and position of the 31 sections acquired. The superior (A), central (D) or inferior (G) retinal sections are marked in red. (B, C, E, F, H, I) Representative sections acquired (in red) from SD-OCT volume raster scan in contralateral (B, E, H) and NMDA injected (C, F, I) retinas examined longitudinally at 3 (B-I) and at 15 (B'-I') months after NMDA injection

294 295

Figure 6. Graph bars showing the reduction of the mean±SD thickness (μm) of the total (from inner side of the nerve fibre layer to outer segment layer) and inner (from the inner side of the nerve fibre layer to outer margin of inner nuclear layer) retina after NMDA intravireal injection into the left eye, measured in the volume scan analyses shown in Figure. 5. *Significant differences compared to the same eyes analyzed at 3 moths (One way Anova Kruskal-Wallis test, p<0.001). *Significant differences when compared to their contralateral eyes at the same time interval (Mann-Whitney Rank Sum Test, p<0.001). RE, right fellow eye. LE, left eye (NMDA-injected).

eer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 3012; doi:10.3390/ijms20123012

296 m⁺RGCs resilience to retinal disease and injury

297 In the adult rat m⁺RGCs only represent approximately 2,7% or 2,5% of the total population of 298 RGCS in albino or pigmented, respectively [14,19,69]. Yet, the availability of specific molecular 299 markers for this type of RGCs has made it possible to learn in a very short period of time a great deal 300 about the morphological and functional properties of these neurons, including their idiosyncratic 301 response to different types of inherited or acquired retinal lesions [40]. A number of different 302 laboratories have shown that ipRGCs demonstrate a much better survival against a variety of retinal 303 injuries than the general population of RGCs [87], and this particular resilience has been shown 304 against ocular hypertension in rats [39,88] or mice [89], optic nerve crush or cut in rats [90,91] or mice 305 [35,73,92,93], and transient ischemia of the retina in rats [81]. However, ipRGCs do not appear to be 306 particularly resilient in inherited models of retinal degeneration [94-96], mitochondrial optic 307 neuropathies [97] or degenerative diseases [74] such as Alzheimer [98], Parkinson [99] or Hungtinton 308 [100] disease [74]. A detailed characterization of the RGC responses to NMDA-induced excitotoxicity 309 may shed light into the paradigm of the different responses of different population of RGCs to injury; 310 why some populations die while others survive.

311

312 m⁺RGCs are resistant to NMDA-induced retinal excitotoxicity

313 Our results demonstrate that following a transient downregulation of melanopsin expression, the 314 total number of m⁺RGCs by 14 days or 15 months is comparable to their contralateral fellow eyes, 315 thus indicating an outstanding endurance to NMDA-induced excitotoxicity. Survival of the entire 316 m⁺RGC population by 15 months after NMDA injection is underscored in view of the important inner 317 retinal degeneration and loss of approximately 81% the Brn3a⁺RGC population. The degeneration of 318 RGCs following NMDA-induced excitotoxicity had been explored in adult pigmented mice analyzed 319 at 6 [64] or from 1 to 21 [56] days, respectively. However, these studies showed slight differences in 320 terms of the survival of the m⁺RGC population. DeParis and colleagues [64] found that 6 days after 321 NMDA injection there is a full component of m⁺RGC population surviving in the retina with no 322 downregulation of the expression of melanopsin, while Wang and colleagues [56] reported by 21 323 days after NMDA injection the loss of approximately one half of the m⁺RGC population. These 324 differences may be explained by the diverse amount of NMDA injected (3µl of 10 mM NMDA versus 325 1µl of 40 mM NMDA).

326 The downregulation of melanopsin expression that occurs after retinal injury requires further 327 consideration. Our studies reveal that following NMDA injection there is a transient downregulation 328 of melanopsin that recovers fully by 14 days. A similar transient downregulation of melanopsin has 329 been described in previous studies from this Laboratory in adult rats following optic nerve injury 330 [91], transient elevation of the intraocular pressure [81], the use of retrogradely transported neuronal 331 tracers [101] or acute light-induced retinal degeneration [72]. The differences between our results and 332 those observed by DeParis and colleagues [64] may be a species-specific response of m⁺RGCs, because 333 in parallel studies of m⁺RGCs survival in adult mice following intraorbital optic nerve injury we did 334 not find a transient downregulation of melanopsin [28,73].

335 Of all the retinal injuries examined so far, m⁺RGCs best afford NMDA-induced excitotoxicity. The 336 reasons for the remarkable resilience of ipRGCs to survive different types of injury-induced retinal 337 degeneration remain an open issue for future studies but several hypotheses have been forwarded to 338 explain m⁺RGCs resilience. One hypothesis proposes that these ipRGCs have large dendrites and 339 axon collaterals within the inner synaptic layer, and thus their intra-retinal connections may be 340 enough to provide trophic support for survival in the absence of brain target derived trophic support 341 [29,87,90,102]. Although it has been postulated that the absence of NMDA receptors in m⁺RGCs could 342 explain its particular resistance to NMDA mediated excitotoxicity, it has been shown that all RGCs 343 express NMDA receptor [103] including m⁺RGCs [63,104] and that the particular resilience of 344 m⁺RGCs is not related to pigmentation, genetic background, the presence of photoreceptors or the 345 activation of the endogenous survival JAK/STAT pathway [64]. Other possible explanations include 346 the activation of PI3K/AKT pathway after optic nerve cut or ocular hypertension [105], but this was 347 not apparent in NMDA-induced excitotoxicity [64]. Melanopsin itself could be thought to have an 348 effect on cell survival, but the fact that many ipRGCs survive with a transient, but lower, expression

349 of melanopsin makes this unlikely. Another hypothesis explains the resilience on the basis of their 350 neurotransmitter (PACAP) and it is hypothesized that PACAP would act as a neuroprotectant 351 conferring these neurons their particular resistance, since exogenous administration of PACAP 352 protects RGCS against optic nerve transection [106], ocular hypertension [107] or NMDA 353 administration [108]. It could also be possible that different types of RGCs may have different 354 responses to a same insult, thus arguing in favour of a type-specific susceptibility. For example, recent 355 studies using genetic markers to identify different types of RGCs have shown that the type of α RGCs 356 is particularly resistant to NMDA induced neurotoxicity [8] or to optic nerve crush [35,39], in contrast 357 to the very low survival of Junction adhesion molecules B expressing RGCs (J-RGCs) [8]. Moreover, 358 recent studies indicate that among subtypes of ipRGCs there are different susceptibility to specific 359 insults; for instance, in a mouse model of Huntington's disease (HD), M1 were reduced compared to 360 non-M1 ipRGCs which survived to HD progression [109]. Furthermore, in a mouse model of ocular 361 hypertension subtypes of α RGCs were found to have different susceptibility, with OFF-transient 362 α RGCs being more vulnerable than ON- or OFF-sustained α RGCs [22,70]. Overall, the particular 363 resilience of m⁺RGCs makes them a suitable candidate to study changes in protein expression after 364 injury to further our knowledge about what makes a neuron survive better than others, and this 365 would in turn result in the design of new neuroprotective strategies for RGCs against noxious stimuli. 366 Thus, future studies are needed to decipher the molecular correlates that provide these neurons with 367 a self-built neuroprotection against various types of injury, including NMDA-induced RGC death.

368

369 Material and Methods

370

371 Animal handling and experimental groups

372 Experiments were prepared in 56 adult female SD rats (250g) obtained from the animal house (Murcia 373 University) and treated according to the European Union guidelines for Animal Care and use of 374 scientific purpose (Directive 2010/63/UE). All procedures were approved by the Ethical and Animal 375 Studies Committee of the University of Murcia, Spain. Animals had free access to food and water 376 and kept in a temperature and light controlled room with 12-hr/12-hr light/dark cycles. Animals were 377 anaesthetized with a mixture of xylazine (10mg/kg Rompun; Bayer, Kiel, Germany) and ketamine (60 378 mg/Kg bw, Ketolar; Pfizer, Alcobendas, Madrid, Spain). 0.5% proparacaine hydrochloride eye drops 379 (Alcon Co., Fort Worth, TX, USA) were used to achieve topical anaesthesia. After the surgical 380 procedures, an ocular ointment was placed over the corneas of both eyes to prevent corneal 381 desiccation (Tobrex®; Alcon-Cusí, S.A., Barcelona, Spain). Animals were divided into experimental 382 and control groups. The experimental group received an intraocular injection of NMDA and was 383 divided into four subgroups that were examined at 3 (n=10), 7 (n=7) or 14 (n=11) days, or 15 months 384 (n=23). Additional naïve rats (n=5) were used as controls. For animal sacrifice an overdose of sodium 385 pentobarbital injected intraperitoneally (Dolethal, Vetoquinol®, Especialidades Veterinarias, S.A., 386 Madrid, Spain).

387

388 Intraocular injections of NMDA

389 Retinal excitotoxicity was induced in the left eye of the experimental animals by intraocular injection 390 of 5 µl of 100nM NMDA N-methyl-D-Aspartate (NMDA) (M3262; Sigma-Aldrich Química S.A., 391 Madrid, Spain) dissolved in 0.1 M phosphate buffer saline (PBS) following standard techniques in 392 our Lab [110-112]. In brief, a small puncture in the sclera approximately 1 mm from the limbus was 393 made with a 30-gauge needle, and then NMDA was injected slowly with a Hamilton syringe whose 394 needle was introduced through the sclerotomy. After injection, the needle was withdrawn slowly 395 and an ointment (Tobrex pomada; Alcon S.A., Barcelona, Spain) was placed over the eyes to prevent 396 corneal dehydration until anaesthesia recovery. The contralateral non-injected eye was used as 397 control, 5 naïve rats (10 eyes) were also used as controls. Preliminary experiments (data not shown) 398 allowed us to try increasing doses of NMDA to find one that would result in consistent RGC death. 399 Previous studies from this Laboratory did not find any effect of the intraocular injection of vehicle

400 alone (0.1 M phosphate buffer saline, PBS) on the survival of the Brn3a⁺ or melanopsin⁺ RGC

eer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 3012; <u>doi:10.3390/ijms2012301</u>

401 populations (unpublished observations), and thus, we did not employ additional animals for this402 purpose.

403

404 In vivo measurements of the retinal thickness with SD-OCT

405 SD-OCT measurements were obtained to analyse changes in the thickness of the retina following 406 NMDA intraocular injection, and the eyes were imaged at 3 and 15 months, as previously described 407 in detail [69,113]. Rats were anaesthetized systemically, and eye drops were placed on both eyes to 408 induce mydriasis (Tropicamida 1%; Alcon-Cusí, S.A.) and to prevent corneal desiccation (artificial 409 tears). Rats were placed in prone position over a platform with their heads upright and turned to the 410 opposite side of the inspected eye. The head position was kept similar for all animals and, and for the 411 following examination the follow up tool of the OCT program was used to compare the same regions. 412 A custom-made permeable contact lens (3.5-mmposterior radius of curvature, 5.0-mm optical zone 413 diameter, 5.0-diopter [D] back vertex power) was placed on the cornea to maintain hydration and 414 thus clarity. Both retinas were imaged using SD-OCT according to the manufacturer instructions 415 (Spectralis; Heidelberg Engineering, Heidelberg, Germany). To adapt for the rat's eye, a 416 commercially available 78-D double aspheric fundus lens (Volk Optical, Inc., Mentor, OH, USA) was 417 mounted in front of the camera unit. Imaging was performed with a software package (EyeExplorer, 418 version 3.2.1.0; Heidelberg Engineering). Retinal thickness was measured using a scanning pattern 419 centred on the optic nerve head; a raster scan of 31 equally spaced horizontal B-scans (3000 µm 420 length). For each section total retinal (TR) (as measured from the inner limiting membrane to the 421 outer limit of the pigmented epithelial layer) and inner retinal (IR) (as measured from the inner 422 limiting membrane to the outer limit of the inner nuclear layer) thickness were measured at distances 423 of 1800 µm from optic disc.

424

425 Retinal dissection, immunohistochemistry and image acquisition

At different survival intervals, rats were sacrificed and perfused through the heart, first and briefly 426 427 with a solution of 0.9% ClNa and then slowly with a 4% paraformaldehyde solution in PBS. The 428 superior pole of the eye was marked with a small suture, and retinas were then dissected and 429 prepared as flattened wholemounts as previously described [114]. Retinas were double-430 immunodetected following previously described methods for Brn3a and melanopsin to identify 431 surviving RGCS expressing these two markers [14]. Primary antibodies were goat anti-Brn3a (1:750 432 dilution, C-20 Santa Cruz Biothechology, Heidelberg, Germany) and rabbit anti melanopsin (1:500 433 dilution, PAI-780, Invitrogen, Thermo Fisher Scientific, Alcobendas, Madrid, Spain). Secondary 434 antibodies were Alexa Fluor conjugated (donkey anti-rabbit Alexa 594, donkey anti-goat Alexa 488) 435 (Molecular Probes Thermo-Fisher, Madrid, Spain). After immunodetection retinas were mounted on 436 subbed slides with the vitreal side up and covered with antifading solution [14].

437

438 Photographic reconstructions of flattened whole-mount retinas were obtained under an 439 epifluorescence microscope (Axioscop 2 Plus; Zeiss Mikroscopie, Jena, Germany) equipped with a 440 computer driven motorized stage (ProScan H128 Series; Prior Scientific Instruments, Cambridge, 441 UK) according to previously described methods that are standard in the Lab [73,115]. A total of 154 442 frames were obtained in the microscope to reconstruct the whole retina. These reconstructions were 443 obtained under both filters to allow identification of Brna3a⁺RGCs and m⁺RGCs, respectively. 444 Following standard procedures in the Lab [71,116,117], wholemount reconstructions were further 445 processed to obtain automatically the total number of Brn3a+RGCs and their topographical 446 distribution was represented as isodensity maps. For the m⁺RGCs, these were quantified manually 447 and dotted on the photomontage with the aid of a graphic editing software Adobe Photoshop CS8.01 448 (Adobe Systems, Inc., San Jose, CA, USA). Dots were automatically identified, and their 449 topographical distribution represented as neighbour maps following previously described methods 450 [117].

- 451
- 452 Statistics

All data is expressed as means ± standard deviation (SD). Statistical analysis employed the program
GraphPad Prism® for windows (Version 5.01; GraphPad Software Inc., La Jolla, CA, EEUU) using
non-parametric tests (Kruskal Wallis and Mann Whitney). Differences were considered significant if
p<0.05.

457

458 <u>Conclusions</u>

459

Intravitreally administered NMDA in adult albino rats: i) induces a massive diffuse loss of
Brn3⁺RGCs already at 3 days that does not progress further; ii) Causes a thinning of the inner retina
by 3 months that further progresses up to 15 months; iii) Triggers a transient downregulation of
melanopsin expression, that is evident at 3 days and recovers fully by 14 days, and; iv) Does not

- 464 induce m⁺RGCs loss.
- 465

eer-reviewed version available at I<u>nt. J. Mol. Sci. **2019**, 20, 3012; doi:10.3390/ijms20123012</u>

- 466 <u>Back Matter</u>
- 467
- 468 Supplementary materials
- 469 None
- 470
- 471 Acknowledgements
- This study was supported by the Fundación Séneca, Agencia de Ciencia y Tecnología Región de
 Murcia (19881/GERM/15), and the Spanish Ministry of Economy and Competitiveness, Instituto de
 Calad Cadae III, Fanda Farman, de Decembra Marcine Marcine de Lacar Farman, (CAE2015)
- 474 Salud Carlos III, Fondo Europeo de Desarrollo Regional "una manera de hacer Europa" (SAF2015-475 67642 P. PI16/00280, PD16/00280, and PD16/00280/0016)
- 475 67643-P, PI16/00380, RD16/0008/0026 and RD16/0008/0016).
- 476
- 477 Author Contributions
- 478 BVV, JDP, MVS and NC conceptualized the study. BVV, JDP, FMNN, JAMO, AOM, JMBG, NC,
- 479 MPVP, and MVS planned and performed all experiments and analysed data. JAMO and AOM
- 480 performed preliminary experiments to set up the model. JMBG analysed retinas and performed
- 481 image analysis for RGC counts. BVV, JDP, NC and MVS wrote the paper with input from all authors.
- 482 MPVP, MVS provided research funds for the study.
- 483
- 484 Conflicts of Interests
- 485 None
- 486

eer-reviewed version available at Int. J. Mol. Sci. **2019**, 20, 3012; <u>doi:10.3390/ijms2012301</u>;

487	<u>Refere</u>	nces
488 489	1.	Lucce DL. Deircon CN. Person DM. Proum TM. Cooper HM. Creicler CA. Figueire
489 490	1.	Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O'Hagan, J.B., et al. Measuring and using light in the
490 491		melanopsin age. <i>Trends in neurosciences</i> 2014 , <i>37</i> , 1-9, doi:10.1016/j.tins.2013.10.004.
491	2.	Smith, C.A.; Chauhan, B.C. Imaging retinal ganglion cells: enabling experimental
492 493	۷.	technology for clinical application. <i>Progress in retinal and eye research</i> 2015 , 44, 1-14,
494		doi:10.1016/j.preteyeres.2014.10.003.
495	3.	Masland, R.H. The neuronal organization of the retina. <i>Neuron</i> 2012 , <i>76</i> , 266-280,
496	0.	doi:10.1016/j.neuron.2012.10.002.
497	4.	Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas,
498		A.R.; Kamitaki, N.; Martersteck, E.M., et al. Highly Parallel Genome-wide Expression
499		Profiling of Individual Cells Using Nanoliter Droplets. <i>Cell</i> 2015 , <i>161</i> , 1202-1214,
500		doi:10.1016/j.cell.2015.05.002.
501	5.	Baden, T.; Berens, P.; Franke, K.; Roman Roson, M.; Bethge, M.; Euler, T. The functional
502		diversity of retinal ganglion cells in the mouse. <i>Nature</i> 2016 , <i>529</i> , 345-350,
503		doi:10.1038/nature16468.
504	6.	Sanes, J.R.; Masland, R.H. The types of retinal ganglion cells: current status and
505		implications for neuronal classification. <i>Annual review of neuroscience</i> 2015 , 38, 221-246,
506		doi:10.1146/annurev-neuro-071714-034120.
507	7.	Rheaume, B.A.; Jereen, A.; Bolisetty, M.; Sajid, M.S.; Yang, Y.; Renna, K.; Sun, L.; Robson, P.;
508		Trakhtenberg, E.F. Single cell transcriptome profiling of retinal ganglion cells identifies
509		cellular subtypes. Nature communications 2018, 9, 2759, doi:10.1038/s41467-018-05134-3.
510	8.	Christensen, I.; Lu, B.; Yang, N.; Huang, K.; Wang, P.; Tian, N. The Susceptibility of Retinal
511		Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Frontiers in neuroscience
512		2019 , <i>13</i> , 219, doi:10.3389/fnins.2019.00219.
513	9.	Nadal-Nicolas, F.M.; Salinas-Navarro, M.; Vidal-Sanz, M.; Agudo-Barriuso, M. Two
514		methods to trace retinal ganglion cells with fluorogold: from the intact optic nerve or by
515		stereotactic injection into the optic tract. <i>Experimental eye research</i> 2015 , 131, 12-19,
516		doi:10.1016/j.exer.2014.12.005.
517	10.	. Thanos, S.; Vidal-Sanz, M.; Aguayo, A.J. The use of rhodamine-B-isothiocyanate (RITC) as
518		an anterograde and retrograde tracer in the adult rat visual system. Brain research 1987, 406,
519		317-321.
520	11.	. Vidal-Sanz, M.; Bray, G.M.; Villegas-Perez, M.P.; Thanos, S.; Aguayo, A.J. Axonal
521		regeneration and synapse formation in the superior colliculus by retinal ganglion cells in
522		the adult rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 1987,
523		7, 2894-2909.
524	12.	. Barnstable, C.J.; Drager, U.C. Thy-1 antigen: a ganglion cell specific marker in rodent retina.
525	10	Neuroscience 1984 , <i>11</i> , 847-855.
526	13.	Nadal-Nicolas, F.M.; Jimenez-Lopez, M.; Salinas-Navarro, M.; Sobrado-Calvo, P.;
527		Alburquerque-Bejar, J.J.; Vidal-Sanz, M.; Agudo-Barriuso, M. Whole number, distribution
528		and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and
529		pigmented rats. <i>PloS one</i> 2012 , <i>7</i> , e49830, doi:10.1371/journal.pone.0049830.
530	14.	Nadal-Nicolas, F.M.; Salinas-Navarro, M.; Jimenez-Lopez, M.; Sobrado-Calvo, P.; Villegas-
531		Perez, M.P.; Vidal-Sanz, M.; Agudo-Barriuso, M. Displaced retinal ganglion cells in albino
532	1 -	and pigmented rats. <i>Frontiers in neuroanatomy</i> 2014 , <i>8</i> , 99, doi:10.3389/fnana.2014.00099.
533 524	15.	. Rodriguez, A.R.; de Sevilla Muller, L.P.; Brecha, N.C. The RNA binding protein RBPMS is a
534 535		selective marker of ganglion cells in the mammalian retina. <i>The Journal of comparative</i>
222		neurology 2014 , 522, 1411-1443, doi:10.1002/cne.23521.

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, 20, 3012; <u>doi:10.3390/ijms201230</u>

536	16. Jiang, S.M.; Zeng, L.P.; Zeng, J.H.; Tang, L.; Chen, X.M.; Wei, X. beta-III-Tubulin: a reliable
537	marker for retinal ganglion cell labeling in experimental models of glaucoma. International
538	<i>journal of ophthalmology</i> 2015 , <i>8</i> , 643-652, doi:10.3980/j.issn.2222-3959.2015.04.01.
539	17. Dijk, F.; Bergen, A.A.; Kamphuis, W. GAP-43 expression is upregulated in retinal ganglion
540	cells after ischemia/reperfusion-induced damage. Experimental eye research 2007, 84, 858-867,
541	doi:10.1016/j.exer.2007.01.006.
542	18. McKerracher, L.; Vallee, R.B.; Aguayo, A.J. Microtubule-associated protein 1A (MAP 1A) is
543	a ganglion cell marker in adult rat retina. Visual neuroscience 1989 , 2, 349-356.
544	19. Galindo-Romero, C.; Jimenez-Lopez, M.; Garcia-Ayuso, D.; Salinas-Navarro, M.; Nadal-
545	Nicolas, F.M.; Agudo-Barriuso, M.; Villegas-Perez, M.P.; Aviles-Trigueros, M.; Vidal-Sanz,
546	M. Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in
547	the adult albino rat. <i>Experimental eye research</i> 2013 , <i>108</i> , 84-93, doi:10.1016/j.exer.2012.12.010.
548	20. Kim, I.J.; Zhang, Y.; Yamagata, M.; Meister, M.; Sanes, J.R. Molecular identification of a
549	retinal cell type that responds to upward motion. <i>Nature</i> 2008 , 452, 478-482,
550	doi:10.1038/nature06739.
551	21. Agostinone, J.; Di Polo, A. Retinal ganglion cell dendrite pathology and synapse loss:
552	Implications for glaucoma. <i>Progress in brain research</i> 2015 , 220, 199-216,
553	doi:10.1016/bs.pbr.2015.04.012.
554	22. Ou, Y.; Jo, R.E.; Ullian, E.M.; Wong, R.O.; Della Santina, L. Selective Vulnerability of
555	Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension.
556	<i>The Journal of neuroscience : the official journal of the Society for Neuroscience</i> 2016 , 36, 9240-
557	9252, doi:10.1523/JNEUROSCI.0940-16.2016.
558	23. Chidlow, G.; Casson, R.; Sobrado-Calvo, P.; Vidal-Sanz, M.; Osborne, N.N. Measurement of
559	retinal injury in the rat after optic nerve transection: an RT-PCR study. Molecular vision
560	2005 , <i>11</i> , 387-396.
561	24. Lonngren, U.; Napankangas, U.; Lafuente, M.; Mayor, S.; Lindqvist, N.; Vidal-Sanz, M.;
562	Hallbook, F. The growth factor response in ischemic rat retina and superior colliculus after
563	brimonidine pre-treatment. Brain research bulletin 2006 , 71, 208-218,
564	doi:10.1016/j.brainresbull.2006.09.005.
565	25. Agudo, M.; Perez-Marin, M.C.; Lonngren, U.; Sobrado, P.; Conesa, A.; Canovas, I.; Salinas-
566	Navarro, M.; Miralles-Imperial, J.; Hallbook, F.; Vidal-Sanz, M. Time course profiling of the
567	retinal transcriptome after optic nerve transection and optic nerve crush. Molecular vision
568	2008, 14, 1050-1063.
569	26. Agudo, M.; Perez-Marin, M.C.; Sobrado-Calvo, P.; Lonngren, U.; Salinas-Navarro, M.;
570	Canovas, I.; Nadal-Nicolas, F.M.; Miralles-Imperial, J.; Hallbook, F.; Vidal-Sanz, M.
571	Immediate upregulation of proteins belonging to different branches of the apoptotic
572	cascade in the retina after optic nerve transection and optic nerve crush. <i>Investigative</i>
573	ophthalmology & visual science 2009 , 50, 424-431, doi:10.1167/iovs.08-2404.
574	27. Agudo-Barriuso, M.; Lahoz, A.; Nadal-Nicolas, F.M.; Sobrado-Calvo, P.; Piquer-Gil, M.;
575	Diaz-Llopis, M.; Vidal-Sanz, M.; Mullor, J.L. Metabolomic changes in the rat retina after
576	optic nerve crush. Investigative ophthalmology & visual science 2013 , 54, 4249-4259,
577	doi:10.1167/iovs.12-11451.
578	28. Agudo-Barriuso, M.; Nadal-Nicolas, F.M.; Madeira, M.H.; Rovere, G.; Vidal-Villegas, B.;
579	Vidal-Sanz, M. Melanopsin expression is an indicator of the well-being of melanopsin-
580	expressing retinal ganglion cells but not of their viability. <i>Neural regeneration research</i> 2016 ,
581	11, 1243-1244, doi:10.4103/1673-5374.189182.
582	29. Vugler, A.; Semo, M.; Ortin-Martinez, A.; Rojanasakul, A.; Nommiste, B.; Valiente-Soriano,
583	F.J.; Garcia-Ayuso, D.; Coffey, P.; Vidal-Sanz, M.; Gias, C. A role for the outer retina in

eer-reviewed version available at *Int. J. Mol.* Sci. **2019**, *20*, 3012; <u>doi:10.3390/ijms2012301</u>

584		development of the intrinsic pupillary light reflex in mice. Neuroscience 2015, 286, 60-78,
585		doi:10.1016/j.neuroscience.2014.11.044.
586	30.	Hannibal, J.; Christiansen, A.T.; Heegaard, S.; Fahrenkrug, J.; Kiilgaard, J.F. Melanopsin
587		expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal
588		connectivity. <i>The Journal of comparative neurology</i> 2017 , <i>525</i> , 1934-1961, doi:10.1002/cne.24181.
589	31.	Berson, D.M.; Castrucci, A.M.; Provencio, I. Morphology and mosaics of melanopsin-
590		expressing retinal ganglion cell types in mice. <i>The Journal of comparative neurology</i> 2010 , <i>518</i> ,
591		2405-2422, doi:10.1002/cne.22381.
592	32.	Quattrochi, L.E.; Stabio, M.E.; Kim, I.; Ilardi, M.C.; Michelle Fogerson, P.; Leyrer, M.L.;
593		Berson, D.M. The M6 cell: A small-field bistratified photosensitive retinal ganglion cell. The
594		<i>Journal of comparative neurology</i> 2019 , 527, 297-311, doi:10.1002/cne.24556.
595	33.	Sonoda, T.; Lee, S.K.; Birnbaumer, L.; Schmidt, T.M. Melanopsin Phototransduction Is
596		Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron
597		2018 , <i>99</i> , 754-767 e754, doi:10.1016/j.neuron.2018.06.032.
598	34.	Estevez, M.E.; Fogerson, P.M.; Ilardi, M.C.; Borghuis, B.G.; Chan, E.; Weng, S.; Auferkorte,
599		O.N.; Demb, J.B.; Berson, D.M. Form and function of the M4 cell, an intrinsically
600		photosensitive retinal ganglion cell type contributing to geniculocortical vision. The Journal
601		of neuroscience : the official journal of the Society for Neuroscience 2012 , 32, 13608-13620,
602		doi:10.1523/JNEUROSCI.1422-12.2012.
603	35.	Duan, X.; Qiao, M.; Bei, F.; Kim, I.J.; He, Z.; Sanes, J.R. Subtype-specific regeneration of
604		retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling.
605		<i>Neuron</i> 2015 , <i>85</i> , 1244-1256, doi:10.1016/j.neuron.2015.02.017.
606	36.	Berry, M.; Ahmed, Z.; Logan, A. Return of function after CNS axon regeneration: Lessons
607		from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. <i>Progress</i>
608		in retinal and eye research 2018, 10.1016/j.preteyeres.2018.11.006,
609		doi:10.1016/j.preteyeres.2018.11.006.
610	37.	Schmidt, T.M.; Chen, S.K.; Hattar, S. Intrinsically photosensitive retinal ganglion cells:
611		many subtypes, diverse functions. <i>Trends in neurosciences</i> 2011 , 34, 572-580,
612		doi:10.1016/j.tins.2011.07.001.
613	38.	Schmidt, T.M.; Do, M.T.; Dacey, D.; Lucas, R.; Hattar, S.; Matynia, A. Melanopsin-positive
614		intrinsically photosensitive retinal ganglion cells: from form to function. The Journal of
615		neuroscience : the official journal of the Society for Neuroscience 2011 , 31, 16094-16101,
616		doi:10.1523/JNEUROSCI.4132-11.2011.
617	39.	Li, S.; Yang, C.; Zhang, L.; Gao, X.; Wang, X.; Liu, W.; Wang, Y.; Jiang, S.; Wong, Y.H.;
618		Zhang, Y., et al. Promoting axon regeneration in the adult CNS by modulation of the
619		melanopsin/GPCR signaling. Proceedings of the National Academy of Sciences of the United
620		States of America 2016 , 113, 1937-1942, doi:10.1073/pnas.1523645113.
621	40.	Vidal-Sanz, M.; Nadal-Nicolas, F.M.; Valiente-Soriano, F.J.; Agudo-Barriuso, M.; Villegas-
622		Perez, M.P. Identifying specific RGC types may shed light on their idiosyncratic responses
623		to neuroprotection. <i>Neural regeneration research</i> 2015 , <i>10</i> , 1228-1230, doi:10.4103/1673-
624		5374.162751.
625	41.	Lucas, D.R.; Newhouse, J.P. The toxic effect of sodium L-glutamate on the inner layers of
626		the retina. <i>A.M.A. archives of ophthalmology</i> 1957 , <i>58</i> , 193-201.
627	42.	Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. <i>Neuron</i> 1988 , <i>1</i> ,
628	10	623-634.
629	43.	Dreyer, E.B.; Zurakowski, D.; Schumer, R.A.; Podos, S.M.; Lipton, S.A. Elevated glutamate
630		levels in the vitreous body of humans and monkeys with glaucoma. <i>Arch Ophthalmol</i> 1996 ,
631		114, 299-305.

er-reviewed version available at *Int. J. Mol. Sci.* **2019**, 2<u>0</u>, 3012; <u>doi:10.3390/ijms2012301</u>

632	44.	Izzotti, A.; Bagnis, A.; Sacca, S.C. The role of oxidative stress in glaucoma. <i>Mutation research</i>
633		2006 , <i>612</i> , 105-114, doi:10.1016/j.mrrev.2005.11.001.
634	45.	Tezel, G. Immune regulation toward immunomodulation for neuroprotection in glaucoma.
635		<i>Current opinion in pharmacology</i> 2013 , 13, 23-31, doi:10.1016/j.coph.2012.09.013.
636	46.	Vorwerk, C.K.; Kreutz, M.R.; Bockers, T.M.; Brosz, M.; Dreyer, E.B.; Sabel, B.A.
637		Susceptibility of retinal ganglion cells to excitotoxicity depends on soma size and retinal
638		eccentricity. <i>Current eye research</i> 1999 , <i>19</i> , 59-65.
639	47.	Vorwerk, C.K.; Zurakowski, D.; McDermott, L.M.; Mawrin, C.; Dreyer, E.B. Effects of
640		axonal injury on ganglion cell survival and glutamate homeostasis. Brain research bulletin
641		2004 , 62, 485-490, doi:10.1016/S0361-9230(03)00075-3.
642	48.	Lam, T.T.; Siew, E.; Chu, R.; Tso, M.O. Ameliorative effect of MK-801 on retinal ischemia.
643	101	<i>Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular</i>
644		<i>Pharmacology and Therapeutics</i> 1997 , <i>13</i> , 129-137, doi:10.1089/jop.1997.13.129.
645	49	Schuettauf, F.; Naskar, R.; Vorwerk, C.K.; Zurakowski, D.; Dreyer, E.B. Ganglion cell loss
646	ч).	after optic nerve crush mediated through AMPA-kainate and NMDA receptors.
647		Investigative ophthalmology & visual science 2000 , 41, 4313-4316.
648	50	Kermer, P.; Klocker, N.; Bahr, M. Modulation of metabotropic glutamate receptors fails to
649	50.	
		prevent the loss of adult rat retinal ganglion cells following axotomy or N-methyl-D-
650	F 1	aspartate lesion in vivo. <i>Neuroscience letters</i> 2001 , <i>315</i> , 117-120.
651	51.	Almasieh, M.; Wilson, A.M.; Morquette, B.; Cueva Vargas, J.L.; Di Polo, A. The molecular
652		basis of retinal ganglion cell death in glaucoma. <i>Progress in retinal and eye research</i> 2012 , <i>31</i> ,
653		152-181, doi:10.1016/j.preteyeres.2011.11.002.
654	52.	Manev, H.; Favaron, M.; Guidotti, A.; Costa, E. Delayed increase of Ca2+ influx elicited by
655		glutamate: role in neuronal death. <i>Molecular pharmacology</i> 1989 , <i>36</i> , 106-112.
656	53.	Stavrovskaya, I.G.; Kristal, B.S. The powerhouse takes control of the cell: is the
657		mitochondrial permeability transition a viable therapeutic target against neuronal
658		dysfunction and death? Free radical biology & medicine 2005, 38, 687-697,
659		doi:10.1016/j.freeradbiomed.2004.11.032.
660	54.	Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs oppose synaptic
661		NMDARs by triggering CREB shut-off and cell death pathways. <i>Nature neuroscience</i> 2002, 5,
662		405-414, doi:10.1038/nn835.
663	55.	Gomez-Vicente, V.; Lax, P.; Fernandez-Sanchez, L.; Rondon, N.; Esquiva, G.; Germain, F.;
664		de la Villa, P.; Cuenca, N. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-
665		Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration. PloS one 2015, 10,
666		e0137826, doi:10.1371/journal.pone.0137826.
667	56.	Wang, S.; Gu, D.; Zhang, P.; Chen, J.; Li, Y.; Xiao, H.; Zhou, G. Melanopsin-expressing
668		retinal ganglion cells are relatively resistant to excitotoxicity induced by N-methyl-d-
669		aspartate. <i>Neuroscience letters</i> 2018 , 662, 368-373, doi:10.1016/j.neulet.2017.10.055.
670	57.	Pichavaram, P.; Palani, C.D.; Patel, C.; Xu, Z.; Shosha, E.; Fouda, A.Y.; Caldwell, R.B.;
671		Narayanan, S.P. Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal
672		Neurodegeneration. Frontiers in neuroscience 2018, 12, 956, doi:10.3389/fnins.2018.00956.
673	58.	Fahrenthold, B.K.; Fernandes, K.A.; Libby, R.T. Assessment of intrinsic and extrinsic
674		signaling pathway in excitotoxic retinal ganglion cell death. <i>Scientific reports</i> 2018 , <i>8</i> , 4641,
675		doi:10.1038/s41598-018-22848-y.
676	59.	Kobayashi, M.; Hirooka, K.; Ono, A.; Nakano, Y.; Nishiyama, A.; Tsujikawa, A. The
677		Relationship Between the Renin-Angiotensin-Aldosterone System and NMDA Receptor-
678		Mediated Signal and the Prevention of Retinal Ganglion Cell Death. <i>Investigative</i>
679		ophthalmology & visual science 2017 , 58, 1397-1403, doi:10.1167/iovs.16-21001.

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, 2*0*, 301<u>2; doi:10.3390/ijms2012301</u>

680	60.	Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric
681		oxide synthase contributes to NMDA-induced retinal ganglion cell death. Investigative
682		ophthalmology & visual science 2005 , 46, 4747-4753, doi:10.1167/iovs.05-0128.
683	61.	Lambuk, L.; Iezhitsa, I.; Agarwal, R.; Bakar, N.S.; Agarwal, P.; Ismail, N.M. Antiapoptotic
684		effect of taurine against NMDA-induced retinal excitotoxicity in rats. <i>Neurotoxicology</i> 2019,
685		70, 62-71, doi:10.1016/j.neuro.2018.10.009.
686	62.	Tsoka, P.; Barbisan, P.R.; Kataoka, K.; Chen, X.N.; Tian, B.; Bouzika, P.; Miller, J.W.;
687		Paschalis, E.I.; Vavvas, D.G. NLRP3 inflammasome in NMDA-induced retinal
688		excitotoxicity. <i>Experimental eye research</i> 2019 , <i>181</i> , 136-144, doi:10.1016/j.exer.2019.01.018.
689	63.	Ito, A.; Tsuda, S.; Kunikata, H.; Toshifumi, A.; Sato, K.; Nakazawa, T. Assessing retinal
690		ganglion cell death and neuroprotective agents using real time imaging. <i>Brain research</i> 2019,
691		1714, 65-72, doi:10.1016/j.brainres.2019.02.008.
692	64.	DeParis, S.; Caprara, C.; Grimm, C. Intrinsically photosensitive retinal ganglion cells are
693		resistant to N-methyl-D-aspartic acid excitotoxicity. <i>Molecular vision</i> 2012 , <i>18</i> , 2814-2827.
694	65	Vidal-Villegas, B., Miralles de Imperial-Ollero, J.A., Nadal-Nicolás, F.M., Ortín-Martínez,
695	00.	A., Bernal-Garro, J.M., Vidal-Sanz, M., Villegas-Pérez, M.P. Effectss of intravitreal injections
696		of N-Methyl-D-Aspartate on melanopsin and non-melanopsin containing retinal ganglion
697		cells in the adult rat. <i>Ophtalmic Res.</i> 2017 , 57,25.
698	66	Salinas-Navarro, M.; Mayor-Torroglosa, S.; Jimenez-Lopez, M.; Aviles-Trigueros, M.;
699	00.	Holmes, T.M.; Lund, R.D.; Villegas-Perez, M.P.; Vidal-Sanz, M. A computerized analysis of
700		the entire retinal ganglion cell population and its spatial distribution in adult rats. <i>Vision</i>
701		<i>research</i> 2009 , 49, 115-126, doi:10.1016/j.visres.2008.09.029.
701	67	
702	67.	Nadal-Nicolas, F.M.; Jimenez-Lopez, M.; Sobrado-Calvo, P.; Nieto-Lopez, L.; Canovas-
703		Martinez, I.; Salinas-Navarro, M.; Vidal-Sanz, M.; Agudo, M. Brn3a as a marker of retinal
		ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-
705		injured retinas. <i>Investigative ophthalmology & visual science</i> 2009 , <i>50</i> , 3860-3868,
706	(0)	doi:10.1167/iovs.08-3267.
707	68.	Ortin-Martinez, A.; Jimenez-Lopez, M.; Nadal-Nicolas, F.M.; Salinas-Navarro, M.; Alarcon-
708		Martinez, L.; Sauve, Y.; Villegas-Perez, M.P.; Vidal-Sanz, M.; Agudo-Barriuso, M.
709		Automated quantification and topographical distribution of the whole population of S- and
710		L-cones in adult albino and pigmented rats. <i>Investigative ophthalmology & visual science</i> 2010 ,
711		<i>51</i> , 3171-3183, doi:10.1167/iovs.09-4861.
712	69.	Nadal-Nicolas, F.M.; Vidal-Sanz, M.; Agudo-Barriuso, M. The aging rat retina: from
713		function to anatomy. <i>Neurobiology of aging</i> 2018 , <i>61</i> , 146-168,
714		doi:10.1016/j.neurobiolaging.2017.09.021.
715	70.	Della Santina, L.; Ou, Y. Who's lost first? Susceptibility of retinal ganglion cell types in
716		experimental glaucoma. Experimental eye research 2017, 158, 43-50,
717		doi:10.1016/j.exer.2016.06.006.
718	71.	Vidal-Sanz, M.; Galindo-Romero, C.; Valiente-Soriano, F.J.; Nadal-Nicolas, F.M.; Ortin-
719		Martinez, A.; Rovere, G.; Salinas-Navarro, M.; Lucas-Ruiz, F.; Sanchez-Migallon, M.C.;
720		Sobrado-Calvo, P., et al. Shared and Differential Retinal Responses against Optic Nerve
721		Injury and Ocular Hypertension. Frontiers in neuroscience 2017, 11, 235,
722		doi:10.3389/fnins.2017.00235.
723	72.	Garcia-Ayuso, D.; Galindo-Romero, C.; Di Pierdomenico, J.; Vidal-Sanz, M.; Agudo-
724		Barriuso, M.; Villegas Perez, M.P. Light-induced retinal degeneration causes a transient
725		downregulation of melanopsin in the rat retina. Experimental eye research 2017, 161, 10-16,
726		doi:10.1016/j.exer.2017.05.010.
727	73.	Sanchez-Migallon, M.C.; Valiente-Soriano, F.J.; Nadal-Nicolas, F.M.; Di Pierdomenico, J.;
728		Vidal-Sanz, M.; Agudo-Barriuso, M. Survival of melanopsin expressing retinal ganglion

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, 2<u>0, 3012; doi:10.3390/ijms2012301</u>

729		cells long term after optic nerve trauma in mice. Experimental eye research 2018, 174, 93-97,
730		doi:10.1016/j.exer.2018.05.029.
731	74.	Lax, P., Ortuño-Lizarán, I., Maneu, V., Vidal-Sanzm M., Cuenca, N. Melanopsin-containing
732		ganglion cells in the healthy and disease retina. International Journal of Molecular Sciences
733		2019 (Submitted).
734	75.	Huang, W.; Hu, F.; Wang, M.; Gao, F.; Xu, P.; Xing, C.; Sun, X.; Zhang, S.; Wu, J.
735		Comparative analysis of retinal ganglion cell damage in three glaucomatous rat models.
736		Experimental eye research 2018, 172, 112-122, doi:10.1016/j.exer.2018.03.019.
737	76.	Villegas-Perez, M.P.; Vidal-Sanz, M.; Rasminsky, M.; Bray, G.M.; Aguayo, A.J. Rapid and
738		protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult
739		rats. Journal of neurobiology 1993, 24, 23-36, doi:10.1002/neu.480240103.
740	77.	Endo, K.; Nakamachi, T.; Seki, T.; Kagami, N.; Wada, Y.; Nakamura, K.; Kishimoto, K.;
741		Hori, M.; Tsuchikawa, D.; Shinntani, N., et al. Neuroprotective effect of PACAP against
742		NMDA-induced retinal damage in the mouse. Journal of molecular neuroscience : MN 2011,
743		43, 22-29, doi:10.1007/s12031-010-9434-x.
744	78.	Lebrun-Julien, F.; Duplan, L.; Pernet, V.; Osswald, I.; Sapieha, P.; Bourgeois, P.; Dickson, K.;
745		Bowie, D.; Barker, P.A.; Di Polo, A. Excitotoxic death of retinal neurons in vivo occurs via a
746		non-cell-autonomous mechanism. The Journal of neuroscience : the official journal of the Society
747		for Neuroscience 2009, 29, 5536-5545, doi:10.1523/JNEUROSCI.0831-09.2009.
748	79.	Salinas-Navarro, M.; Alarcon-Martinez, L.; Valiente-Soriano, F.J.; Jimenez-Lopez, M.;
749		Mayor-Torroglosa, S.; Aviles-Trigueros, M.; Villegas-Perez, M.P.; Vidal-Sanz, M. Ocular
750		hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion
751		cell degeneration. <i>Experimental eye research</i> 2010 , <i>90</i> , 168-183, doi:10.1016/j.exer.2009.10.003.
752	80.	Cuenca, N.; Pinilla, I.; Fernandez-Sanchez, L.; Salinas-Navarro, M.; Alarcon-Martinez, L.;
753		Aviles-Trigueros, M.; de la Villa, P.; Miralles de Imperial, J.; Villegas-Perez, M.P.; Vidal-
754		Sanz, M. Changes in the inner and outer retinal layers after acute increase of the intraocular
755		pressure in adult albino Swiss mice. Experimental eye research 2010, 91, 273-285,
756		doi:10.1016/j.exer.2010.05.020.
757	81.	Rovere, G.; Nadal-Nicolas, F.M.; Wang, J.; Bernal-Garro, J.M.; Garcia-Carrillo, N.; Villegas-
758		Perez, M.P.; Agudo-Barriuso, M.; Vidal-Sanz, M. Melanopsin-Containing or Non-
759		Melanopsin-Containing Retinal Ganglion Cells Response to Acute Ocular Hypertension
760		With or Without Brain-Derived Neurotrophic Factor Neuroprotection. Investigative
761		ophthalmology & visual science 2016 , <i>57</i> , 6652-6661, doi:10.1167/iovs.16-20146.
762	82.	Lam, T.T.; Abler, A.S.; Kwong, J.M.; Tso, M.O. N-methyl-D-aspartate (NMDA)induced
763		apoptosis in rat retina. <i>Investigative ophthalmology & visual science</i> 1999 , 40, 2391-2397.
764	83.	Li, Y.; Schlamp, C.L.; Nickells, R.W. Experimental induction of retinal ganglion cell death in
765		adult mice. <i>Investigative ophthalmology & visual science</i> 1999 , <i>40</i> , 1004-1008.
766	84.	Akopian, A.; Atlasz, T.; Pan, F.; Wong, S.; Zhang, Y.; Volgyi, B.; Paul, D.L.; Bloomfield, S.A.
767		Gap junction-mediated death of retinal neurons is connexin and insult specific: a potential
768		target for neuroprotection. The Journal of neuroscience : the official journal of the Society for
769		Neuroscience 2014, 34, 10582-10591, doi:10.1523/JNEUROSCI.1912-14.2014.
770	85.	Siliprandi, R.; Canella, R.; Carmignoto, G.; Schiavo, N.; Zanellato, A.; Zanoni, R.; Vantini, G.
771		N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. <i>Visual neuroscience</i> 1992 ,
772	<i>.</i> .	8, 567-573.
773	86.	Volgyi, B.; Chheda, S.; Bloomfield, S.A. Tracer coupling patterns of the ganglion cell
774		subtypes in the mouse retina. <i>The Journal of comparative neurology</i> 2009 , <i>512</i> , 664-687,
775		doi:10.1002/cne.21912.

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, *20*, 301<u>2; doi:10.3390/ijms2012301</u>

776	87.	Cui, Q.; Ren, C.; Sollars, P.J.; Pickard, G.E.; So, K.F. The injury resistant ability of
777		melanopsin-expressing intrinsically photosensitive retinal ganglion cells. <i>Neuroscience</i> 2015,
778		284, 845-853, doi:10.1016/j.neuroscience.2014.11.002.
779	88.	Valiente-Soriano, F.J.; Nadal-Nicolas, F.M.; Salinas-Navarro, M.; Jimenez-Lopez, M.; Bernal-
780		Garro, J.M.; Villegas-Perez, M.P.; Agudo-Barriuso, M.; Vidal-Sanz, M. BDNF Rescues RGCs
781		But Not Intrinsically Photosensitive RGCs in Ocular Hypertensive Albino Rat Retinas.
782		Investigative ophthalmology & visual science 2015 , 56, 1924-1936, doi:10.1167/iovs.15-16454.
783	89.	Jakobs, T.C.; Ben, Y.; Masland, R.H. Expression of mRNA for glutamate receptor subunits
784		distinguishes the major classes of retinal neurons, but is less specific for individual cell
785		types. <i>Molecular vision</i> 2007 , <i>13</i> , 933-948.
786	90.	Perez de Sevilla Muller, L.; Sargoy, A.; Rodriguez, A.R.; Brecha, N.C. Melanopsin ganglion
787		cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. <i>PloS</i>
788		one 2014 , 9, e93274, doi:10.1371/journal.pone.0093274.
789	91.	Nadal-Nicolas, F.M.; Sobrado-Calvo, P.; Jimenez-Lopez, M.; Vidal-Sanz, M.; Agudo-
790		Barriuso, M. Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer.
791		Investigative ophthalmology & visual science 2015 , 56, 6095-6112, doi:10.1167/iovs.15-17195.
792	92.	Robinson, G.A.; Madison, R.D. Axotomized mouse retinal ganglion cells containing
793		melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral
794		nerve graft. Vision research 2004, 44, 2667-2674, doi:10.1016/j.visres.2004.06.010.
795	93.	Daniel, S.; Clark, A.F.; McDowell, C.M. Subtype-specific response of retinal ganglion cells
796		to optic nerve crush. <i>Cell death discovery</i> 2018 , <i>4</i> , 7, doi:10.1038/s41420-018-0069-y.
797	94.	Vugler, A.A.; Semo, M.; Joseph, A.; Jeffery, G. Survival and remodeling of melanopsin cells
798		during retinal dystrophy. Visual neuroscience 2008, 25, 125-138,
799		doi:10.1017/S0952523808080309.
800	95.	Esquiva, G.; Lax, P.; Cuenca, N. Impairment of intrinsically photosensitive retinal ganglion
801		cells associated with late stages of retinal degeneration. Investigative ophthalmology & visual
802		science 2013 , 54, 4605-4618, doi:10.1167/iovs.13-12120.
803	96.	Garcia-Ayuso, D.; Di Pierdomenico, J.; Esquiva, G.; Nadal-Nicolas, F.M.; Pinilla, I.; Cuenca,
804		N.; Vidal-Sanz, M.; Agudo-Barriuso, M.; Villegas-Perez, M.P. Inherited Photoreceptor
805		Degeneration Causes the Death of Melanopsin-Positive Retinal Ganglion Cells and
806		Increases Their Coexpression of Brn3a. <i>Investigative ophthalmology & visual science</i> 2015 , 56,
807		4592-4604, doi:10.1167/iovs.15-16808.
808	97.	La Morgia, C.; Ross-Cisneros, F.N.; Sadun, A.A.; Hannibal, J.; Munarini, A.; Mantovani, V.;
809		Barboni, P.; Cantalupo, G.; Tozer, K.R.; Sancisi, E., et al. Melanopsin retinal ganglion cells
810		are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain : a journal of
811		<i>neurology</i> 2010 , <i>133</i> , 2426-2438 , doi:10.1093/brain/awq155.
812	98.	Georg, B.; Ghelli, A.; Giordano, C.; Ross-Cisneros, F.N.; Sadun, A.A.; Carelli, V.; Hannibal,
813		J.; La Morgia, C. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but
814		not always. <i>Mitochondrion</i> 2017 , <i>36</i> , 77-84, doi:10.1016/j.mito.2017.04.003.
815	99.	Lax, P.; Esquiva, G.; Esteve-Rudd, J.; Otalora, B.B.; Madrid, J.A.; Cuenca, N. Circadian
816		dysfunction in a rotenone-induced parkinsonian rodent model. <i>Chronobiology international</i>
817		2012 , 29, 147-156, doi:10.3109/07420528.2011.649870.
818	100.	. Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and circadian rhythm disruption in
819		psychiatric and neurodegenerative disease. <i>Nature reviews. Neuroscience</i> 2010 , <i>11</i> , 589-599,
820	4.04	doi:10.1038/nrn2868.
821	101.	. Nadal-Nicolas, F.M.; Madeira, M.H.; Salinas-Navarro, M.; Jimenez-Lopez, M.; Galindo-
		*
822 823		Romero, C.; Ortin-Martinez, A.; Santiago, A.R.; Vidal-Sanz, M.; Agudo-Barriuso, M. Transient Downregulation of Melanopsin Expression After Retrograde Tracing or Optic

eer-reviewed version available at *Int. J. Mol.* Sci. **2019**, *20*, 3012; <u>doi:10.3390/ijms2012301</u>

824	Nerve Injury in Adult Rats. Investigative ophthalmology & visual science 2015, 56, 4309-
825	4323, doi:10.1167/iovs.15-16963.
826	102. Semo, M.; Gias, C.; Ahmado, A.; Vugler, A. A role for the ciliary marginal zone in the
827	melanopsin-dependent intrinsic pupillary light reflex. Experimental eye research 2014, 119,
828	8-18, doi:10.1016/j.exer.2013.11.013.
829	103. Zhang, J.; Diamond, J.S. Subunit- and pathway-specific localization of NMDA receptors
830	and scaffolding proteins at ganglion cell synapses in rat retina. The Journal of neuroscience
831	: the official journal of the Society for Neuroscience 2009, 29, 4274-4286,
832	doi:10.1523/JNEUROSCI.5602-08.2009.
833	104. Jakobs, T.C.; Libby, R.T.; Ben, Y.; John, S.W.; Masland, R.H. Retinal ganglion cell
834	degeneration is topological but not cell type specific in DBA/2J mice. The Journal of cell
835	biology 2005, 171, 313-325, doi:10.1083/jcb.200506099.
836	105. Li, S.Y.; Yau, S.Y.; Chen, B.Y.; Tay, D.K.; Lee, V.W.; Pu, M.L.; Chan, H.H.; So, K.F. Enhanced
837	survival of melanopsin-expressing retinal ganglion cells after injury is associated with the
838	PI3 K/Akt pathway. Cellular and molecular neurobiology 2008, 28, 1095-1107,
839	doi:10.1007/s10571-008-9286-x.
840	106. Seki, T.; Nakatani, M.; Taki, C.; Shinohara, Y.; Ozawa, M.; Nishimura, S.; Ito, H.; Shioda, S.
841	Neuroprotective effect of PACAP against kainic acid-induced neurotoxicity in rat retina.
842	Annals of the New York Academy of Sciences 2006, 1070, 531-534,
843	doi:10.1196/annals.1317.074.
844	107. Nakatani, M.; Seki, T.; Shinohara, Y.; Taki, C.; Nishimura, S.; Takaki, A.; Shioda, S. Pituitary
845	adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat
846	Muller cells. Peptides 2006, 27, 1871-1876, doi:10.1016/j.peptides.2005.12.011.
847	108. Belenky, M.A.; Smeraski, C.A.; Provencio, I.; Sollars, P.J.; Pickard, G.E. Melanopsin retinal
848	ganglion cells receive bipolar and amacrine cell synapses. The Journal of comparative
849	neurology 2003, 460, 380-393, doi:10.1002/cne.10652.
850	109. Lin, M.S.; Liao, P.Y.; Chen, H.M.; Chang, C.P.; Chen, S.K.; Chern, Y. Degeneration of
851	ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors
852	Before Motor Impairment. The Journal of neuroscience : the official journal of the Society
853	for Neuroscience 2019, 39, 1505-1524, doi:10.1523/JNEUROSCI.0571-18.2018.
854	110. Aviles-Trigueros, M.; Sauve, Y.; Lund, R.D.; Vidal-Sanz, M. Selective innervation of
855	retinorecipient brainstem nuclei by retinal ganglion cell axons regenerating through
856	peripheral nerve grafts in adult rats. The Journal of neuroscience : the official journal of the
857	Society for Neuroscience 2000, 20, 361-374.
858	111. Lindqvist, N.; Peinado-Ramonn, P.; Vidal-Sanz, M.; Hallbook, F. GDNF, Ret, GFRalpha1
859	and 2 in the adult rat retino-tectal system after optic nerve transection. Experimental
860	neurology 2004, 187, 487-499, doi:10.1016/j.expneurol.2004.02.002.
861	112. Di Pierdomenico, J.; Garcia-Ayuso, D.; Jimenez-Lopez, M.; Agudo-Barriuso, M.; Vidal-Sanz,
862	M.; Villegas-Perez, M.P. Different Ipsi- and Contralateral Glial Responses to Anti-VEGF
863	and Triamcinolone Intravitreal Injections in Rats. Investigative ophthalmology & visual
864	science 2016, 57, 3533-3544, doi:10.1167/iovs.16-19618.
865	113. Rovere, G.; Nadal-Nicolas, F.M.; Agudo-Barriuso, M.; Sobrado-Calvo, P.; Nieto-Lopez, L.;
866	Nucci, C.; Villegas-Perez, M.P.; Vidal-Sanz, M. Comparison of Retinal Nerve Fiber Layer
867	Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino
868	Rats. Investigative ophthalmology & visual science 2015, 56, 4487-4498, doi:10.1167/iovs.15-
869	17145.
870	114. Ortin-Martinez, A.; Salinas-Navarro, M.; Nadal-Nicolas, F.M.; Jimenez-Lopez, M.; Valiente-
871	Soriano, F.J.; Garcia-Ayuso, D.; Bernal-Garro, J.M.; Aviles-Trigueros, M.; Agudo-Barriuso,
872	M.; Villegas-Perez, M.P., et al. Laser-induced ocular hypertension in adult rats does not

eer-reviewed version available at *Int. J. Mol. Sci.* **2019**, *20*, 3012; <u>doi:10.3390/ijms2012301</u>

873	affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of
874	cone-photoreceptors. Experimental eye research 2015, 132, 17-33,
875	doi:10.1016/j.exer.2015.01.006.
876	115. Sanchez-Migallon, M.C.; Valiente-Soriano, F.J.; Nadal-Nicolas, F.M.; Vidal-Sanz, M.;
877	Agudo-Barriuso, M. Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection
878	or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor. Investigative
879	ophthalmology & visual science 2016, 57, 81-93, doi:10.1167/iovs.15-17841.
880	116. Vidal-Sanz, M.; Salinas-Navarro, M.; Nadal-Nicolas, F.M.; Alarcon-Martinez, L.; Valiente-
881	Soriano, F.J.; de Imperial, J.M.; Aviles-Trigueros, M.; Agudo-Barriuso, M.; Villegas-Perez,
882	M.P. Understanding glaucomatous damage: anatomical and functional data from ocular
883	hypertensive rodent retinas. Progress in retinal and eye research 2012, 31, 1-27,
884	doi:10.1016/j.preteyeres.2011.08.001.
885	117. Vidal-Sanz, M.; Valiente-Soriano, F.J.; Ortin-Martinez, A.; Nadal-Nicolas, F.M.; Jimenez-
886	Lopez, M.; Salinas-Navarro, M.; Alarcon-Martinez, L.; Garcia-Ayuso, D.; Aviles-Trigueros,
887	M.; Agudo-Barriuso, M., et al. Retinal neurodegeneration in experimental glaucoma.
888	Progress in brain research 2015, 220, 1-35, doi:10.1016/bs.pbr.2015.04.008.
889	