Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2019 doi:10.20944/preprints201905.0274.v1

Article

EMERGENT CHALLENGES FOR SCIENCE SUAS
DATA MANAGEMENT: FAIRNESS THROUGH
COMMUNITY ENGAGEMENT AND BEST
PRACTICES DEVELOPMENT

t 3 4 5

Jane Wyngaard ¥(0*, Lindsay Barbieri >7(, Andrea Thomer 37, Josip Adams {0, Don Sullivan 5,
Christopher Crosby ¢, Cynthia Parr 77, Jens Klump 807, Sudhir Raj Shrestha’(”, and Tom
Bell010

1 Center for Research Computing, University of Notre Dame Notre Dame IN 46556, USA; jwyngaar@nd.edu 2

Rubenstein School of Environment and Natural Resources and Gund Institute for Environment University
of Vermont, Burlington VT 05401, USA; Ikbar@uvm.edu 3 School of Information, University of Michigan
MI 48109, USA; athomer@umich.edu* UAS Project Office, U.S. Geological Survey, Denver, Colorado,
80225, USA; jdadams@usgs.gov > NASA Ames Research Center; donald.v.sullivan@nasa.gov °
UNAVCO CO 80301; crosby@unavco.org 7 Agricultural Research Service National Agricultural Library
United States Department of Agriculture ;Cynthia.Parr@ars.usda.gov® Mineral Resources,
Commonwealth Scientific and Industrial Research Organisation WA 6151; jens.klump@csiro.au Esri
Washington DC Regional Office Vienna VA 22182, USA; sshrestha@esri.com 10 Earth Research Institute,
University of California, Santa Barbara CA 93106, USA; tbell@ucsb.edu

*  Correspondence: jwyngaar@nd.edu; Tel.: +1-574-631-5163

1t These authors contributed equally to this work.

9

T

Abstract: The use of small Unmanned Aircraft Systems (sUAS ) as platforms for data capture has
rapidly increased in recent years. However, while there has been significant investment in improving
the aircraft, sensors, operations, and legislation infrastructure for such, little attention has been paid
to supporting the management of the complex data capture pipeline sUAS involve. This paper
reports on the outcomes of a four-year-long community-engagement-based investigation into what
tools, practices, and challenges currently exist for particularly researchers using sUAS as data capture
platforms. The key results of this effort are: (1) SUAS captured data — as a set that is rapidly growing
to include data in a wide range of Physical and Environmental Sciences, Engineering Disciplines, and
many civil and commercial use cases — is characterised as both sharing many traits with traditional
remote sensing data and also as exhibiting — as common across the spectrum of disciplines and
use cases —novel characteristics that require novel data support infrastructure. And (2), given this
characterisation of sUAS data and its potential value in the identified wide variety of use case, we
outline eight challenges that need to be addressed in order for the full value of sUAS captured data
to be realized. We then conclude that there would be significant value gained and costs saved across
both commercial and academic sectors if the global SUAS user and data management communities
were to address these challenges in the immediate to near future, so as to extract the maximal value
of sSUAS captured data for the lowest long-term effort and monetary cost.

Keywords: sUAS; drone; RPAS; UAV; Data; Management; FAIR; Community; standards; practices

1. Introduction

Small Unmanned Aircraft Systems sUAS — also known as Remotely Piloted Aircraft Systems
(RPAS), Unmanned Aerial Vehicles (UAV), or often colloquially as ‘drones’ — are rapidly becoming a
ubiquitous tool for data collection across a wide range of private and public applications worldwide.
This application space includes multiple academic fields (electrical, chemical, and civil engineering;
environmental sciences; and others) for which sUAS are changing how and which data are captured.

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.
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While this new platform shares much in common with traditional remote sensing techniques, the
particular combination of varied spatiotemporal resolutions, operational practices, and wide spectrum
of heterogeneous data being collected with sUAS has led to a unique set of data management challenges.
Additionally, various global efforts and technological advances in the sphere of data management
are opening unique opportunities for enhancing the potential of sUAS as an environmental sensing
technology.

This paper compiles four years of extensive community engagement around the complexities,
nuances, and importance of sUAS data management; and seeks to lay the motivations and foundations
for future global sUAS user community engagements. We do so by: (1) outlining the potential value
gains of normalising good data management practices for sUAS collected data, (2) detailing the unique
complexities of sUAS data while pointing to analogous sectors and existing resources that might be
leveraged, and (3) identifying key challenges and needs from the community in order to expand the
value potential for sUAS data. Henceforth we will use “sUAS data” to refer to the primary research
data captured on-board sUAS, rather than data relating solely to the sUAS platform itself. In many
cases the former requires and therefore includes the latter.

To provide context for later sections, the remainder of this section outlines the current state of
sUAS use in academia and the corresponding state of SUAS data management. Following which,
Section 2 details the authors” engagement with the global community on this topic by: summarising
what methods of community engagement were undertaken, including detailing which geographical
regions and domains of expertise were included; and highlighting others working in this space and
the resources that are currently available. Drawing on the outcomes of this engagement, Section 3
presents the core characteristics of sSUAS captured data which inform the need for sUAS specific data
management practices and infrastructure. Finally, Section 4 discusses the community distilled key
challenges arising from Section 2 and 3, before Section 5 concludes.

1.1. Current use of sSUAS in research

The rapid adoption of sUAS for scientific data collection has been driven largely by the flexible
functionality now possible due to key technological advances: lowered hardware costs, increased
battery energy density, widespread sensor miniaturisation, and the availability of sophisticated
autopilot hardware and software. Lagging but globally following these technological advances,
have been new national and international aviation regulations [1]. Collectively, the above mean it is
now possible and highly attractive for even small and modestly funded research teams to incorporate
sUAS data into their investigations.

As platforms for scientific data collection, sUAS offer several functional advantages when
compared with many traditional methods: (i) the ability to collect higher spatial and or temporal
resolution data; (ii) a reduced impact on sensitive environments being monitored; (iii) lowered risks to
workers and equipment involved in data collection in dangerous environments; (iv) a highly flexible
platform from which a wide range of parameters might be monitored simultaneously, and (v) access to
many data that what would otherwise be practically inaccessible, all (vi) often at a significantly lower
cost than traditional methods might incur [2-4]. sUAS datasets are therefore generally parameter rich
and uniquely high resolution datasets, that consequently potentially offer unique and novel reuse
value across multiple academic, commercial, governmental, and non profit use cases.

The value of these advantages to primary data users is evident in the number and domain variety
of recently published peer-reviewed articles that include various terms for sUAS (see Figure 1 and
2). And this growth is more than matched by the commercial sUAS sector, with some forecasts
estimating a market value of USD 100 billion in the next few years [5-8]. This market is driving the
rapid advancement of sUAS (flight platforms, sensor miniaturisation, wireless telemetry, sophisticated
autonomous navigation, operations, and legislation) to meet the needs of commercial sSUAS use in:
Agriculture, Mining, Civil Engineering and Infrastructure, Search and Rescue and Disaster Responses,
Cargo and Data Delivery, Conservation, Entertainment, and many more use cases.


https://doi.org/10.20944/preprints201905.0274.v1
https://doi.org/10.3390/rs11151797

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2019 d0i:10.20944/preprints201905.0274.v1

30f18

= Total sUAS publications = sUAS publications with data mentioned

2500

2000

1500

1000

Number of publications

1995 2000 2005 2010 2015

Year

Figure 1. sUAS publications in web of science through 2018: As sUAS have become more prevalent as
platforms for scientific data collection, there has been a corresponding increase in their prominence
within the academic peer-reviewed literature. This chart shows this growth in blue, with the number
of publications found in a Web of Science literature search on the topic of sSUAS . By comparison, the
number of sUAS publications that also referenced the management of data, is shown in red at a much
lower rate. Graph generation including the list of search terms are included in footnote !

SCIENCE TECHNOLOGY OTHER TOPICS
1.89
AGRICULTURE

21
PHYSICAL GEOGRAPHY

2.5% ENGINEERING
CHEMISTRY & ELECTROCHEMISTRY 779

6.3%

GEOLOGY

ENVIRONMENTAL SCIENCES ECOLOGY

IMAGING SCIENCE PHOTOGRAPHIC TECH

55,

INSTRUMENTS INSTRUMENTATION

6.0%

COMPUTER SCIENCE

11.9%

AUTOMATION CONTROL SYSTEMS
5 25,

6.2

TELECOMMUNICATIONS
6.4%

ROBOTICS

6.6%

REMOTE SENSING
R

Figure 2. Percent publications in the 15 most prominent Web of Science research areas through 2016:
Based on the same search terms as Figure 1, this categorises the total number of publications returned
into the academic field under which they were published through 2016. Graph generation including
the list of search terms are included in footnote 2
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These advances are being made across and through novel and developing commercialisation
models as the industry evolves. As a result business models include the sale of both products and
services, and both proprietary and open source sUAS solutions. For researchers, each of these models
offers a variety of value trade-offs: from fully customizable and purpose built solutions giving full
access to all metadata, at the cost of development effort and time; through to less configurable but
ready to fly platforms, or full data capture flight and post processing analytics services. The latter
generally also involves higher monetary costs, and provides less contextual information with their
data but are easily and rapidly deployed.

1.2. Current sUAS data management

Research data management infrastructure and procedures have always been important but
have become more complex and costly as the quantity of available data has significantly increased
[9,10]. Why and how sUAS data management is critical to realising its full value is an outcome of
this community-engaged work, discussed in more detail in Section 3. However, sUAS users who
have attempted to publish their data are familiar with why it is also particularly challenging. A
typical sUAS -based project, for instance, will involve multiple stakeholders (e.g. scientists, engineer,
pilot), technologies (e.g. SUAS , controllers, computers, software systems, sensors, paper notebooks),
parameters (e.g. flight platform attitude, scientific sensor calibration date and processes, scientific
parameters, comensual environmental conditions), and complex processes (e.g. data triage, data
compression, data pre- and post- processing), many of which can impact the interpretation of the
data. Capturing information about multiple of these disparate components is commonly necessary
for initial data product generation and interpretation, and many are required for data publication
and future reuse. Unfortunately, scholarly and scientific sSUAS users represent a relatively small user
market with niche needs. Consequently the challenges of sSUAS data management have not yet been
widely addressed either by industry stakeholders or researchers who are largely still exploring sUAS
capabilities and potential value.

As a result, individual researchers are developing their own ad hoc data management strategies.
This is problematic in the long term for multiple reasons. First, this substantially adds to the learning
curve of sUAS technologies: new-to-sUAS researchers must already navigate complex legal, technical,
and institutional spaces, and developing a data management strategy from scratch further increases
the required overhead. For researchers specifically seeking to take advantage of sUAS as a new and
otherwise more affordable means of data capture, the economic and time costs of developing robust
data management workflows can be prohibitive.

Second, the repeated reinvention of ad hoc data management workflows represents a significant
amount of effort. Not only is this an inefficient use of finite research resources, but these idiosyncratic
workflows pose a roadblock to the development of common tools and workflows. Without a collective
articulation of data management requirements, there is no alternative even for those motivated to
collaborate on the development of common better commercial and open source software and tools,
exacerbating the issue as more ad hoc workflows are developed and used.

Third and finally, the lack of common data practices risks diminishing the trustworthiness
and reproducibility of research based on sUAS data. Without shared data practices and methods
of documenting workflows, sUAS data based research is often plagued by poor or heterogeneous
documentation, unknown or non-standard quality control methods, and methodological uncertainty.

The current opacity of sUAS data workflows makes thorough scientific assessment and peer review
difficult.

1.3. Opportunities for sUAS data management

The described landscape presents a problematic picture, yet the rapid growth of sUAS as a
revolutionary sensor platform across multiple sectors has arrived at a highly opportune moment. Key
developments and shifts in social, political, and particularly academic attitudes worldwide present a
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unique opportunity to the sUAS user community. Specifically, the coincidence of the following present
an opportunity: (i) the push for open science and FAIR (Findable Accessible Interoperable Reusable) [9]
data, (ii) the corresponding maturing of data technologies, and (iii) the lack of momentum behind any
substandard normalised practices and the minimal amount of legacy sUAS data currently available
that would otherwise require significant effort to migrate or reprocess. The following elaborates on
each of these opportunities.

1.3.1. The push for open science and FAIRness

At the same time as SUAS are emerging as a standard tool for researchers, the broader research
community is building momentum in actively moving towards normalising open science and FAIR
data practices. This is evidenced by the wealth of work calling for better research practices [11-14]; the
numerous calls for improving reproducibility and cross disciplinary data use through better practices
[15-18]; and the many non-academic calls for data sharing from a range of government bodies [19-21].
The significant traction that the FAIR nomenclature has gained — as a succinct framing of core good
data management practices — further demonstrates this momentum [22-24].

1.3.2. The corresponding maturation of data technologies

As industry has moved to extract economic advantages from Big Data, the technologies required
to manage, manipulate, and mine value in large and heterogeneous, datasets of mixed quality have
significantly matured [25-27]. The breadth of associated tools available is extremely wide but a few
high-visibility and relevant examples include; the growth in capabilities and use of cloud resources
[28-31], Google’s beta Dataset search engine [32] with the required enabling dataset schema, the
international Earth and space science community’s effort to develop standards that connect researchers,
publishers and data repositories [33,34], and the increase in efforts to utilise Machine Learning tools
on classical Big Data for a multitude of applications including the geosciences [35,36].

1.3.3. The lack of norms or legacy sUAS data

The lack of community accepted best practices for sUAS data management is both a challenge and
an opportunity. As a new technology, researchers are still grappling with how best to use sUAS . This
provides a window of opportunity within which: the “cost” of adopting new practices is minimal, and
the net quantity of sUAS captured scientific data still relatively small, the cost of adopting new formats,
metadata standards, calibration methods — and all of the other crucial components of data archival
— will not be significantly added to by the need for backwards compatibility or mass re-ingestion
and processing of previously captured data. This window, however, is closing rapidly, as researchers
globally are creating all of these components for themselves in ad hoc and isolated manners, and
rapidly accumulating data.

2. Materials and Methods

In light of the above, over the past four years (2014 - 2019), the authors have pursued a
wide-ranging, largely volunteer based, effort to engage with the growing community of researchers
using sUAS for data collection on challenges of data management. Initially this involved looking to
both the emerging sUAS science community and to the many mature analogous domains for applicable
best practices, and included considering standards and conventions used by large scale government
and research institutions using both sUAS and more traditional remote sensing technologies. This
was followed by running multiple workshops and conference sessions with the aim of identifying
key needs and available resources for sUAS data management. The progression of core engagement
meetings involved are shown in Figure 2.1, at each of which we sought input from both academic and
commercial sUAS users, suppliers, and developers and data management professionals. This process
was largely driven by researcher needs, the perceived value opportunity, and community request and
interest. In the following sections the key threads of this engagement are summarised and groups are
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highlighted for the purposes of directing interested parties to possible resources or potential starting
points for future efforts.

2.1. Community engagement
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2.1.1. Earth Science Information Partners Federation

This effort was originally born out of a perceived need within the Earth Science Information Partners
(ESIP) Federation that resulted in the creation of the Drone Cluster [37] in 2015. ESIP is “an open,
networked community that brings together science, data and information technology practitioners. ESIP is
supported by NASA, NOAA, USGS, OGC, and 110+ member organizations” [38]. Since then this cluster
has run multiple sessions at ESIP meetings, hosted interns, and produced prototyping projects [39,40].
At the 2017 Summer ESIP meeting, the cluster held a 1-day workshop on sUAS data where individual
researchers and representatives from multiple commercial (ESRI, DJI, SenseFly, OGC), and federal
(NASA, NIST, NOAA, USGS) organisations attended and presented on their perspectives on sUAS
data management approaches [41].

2.1.2. Research Data Alliance

To engage a more global community (ESIP is a largely North American based organization), in late
2016 a sUAS Data Interest Group (IG) [42] was chartered within the Research Data Alliance (RDA).
“...build the social and technical bridges that enable open
sharing of data” [43]. Since review and endorsement, the IG has held sessions at each of the biannual
RDA plenaries; through these efforts, it has been possible to initiate working relationships with
multiple other RDA groups pioneering technological, legal, political, and ethical efforts in the global
push for better open data practices and tooling. Further, as an international organisation RDA holds

RDA is a multinational organisation funded to *
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biannual meetings in 2 global hemispheres, it has been possible to engage with a geographically far
larger distribution of researchers.

2.2. Additional key events and communities:

Through and beyond the RDA and ESIP, this effort has been bolstered by engagement with multiple
groups specifically examining issues related to sUAS data. In many cases these groups are creating
resources of value to the broader community, while others are exemplars for the SUAS community to
look to for guidance and foundations. The following seeks to highlight some of these for two reasons:
(1) to facilitate greater collaboration within and across domains where groups have developed a
resources others might reuse and build on, and (2) to propose possible foundational building blocks
from existing analogous efforts. It should be noted, however, that this list is not a complete set of all
relevant parties, and is biased by (a) the practical limitations of who the volunteer-based ESIP and
RDA efforts were able to reach, and (b) the reality that in many cases those doing notable work do not
currently have any public facing instance of such. Regardless of these limitations, Figure 3 summarises
which organisations and community groups have been key in identifying particular challenges to
sUAS data management, and the following sections briefly highlight some of the key community
groups for reference and further engagement.

2.2.1. Oceanographic Sciences

Underwater gliders are an remarkably analogous system to sUAS , and the oceanographic research
community has put significant effort into standardising their data management procedures. It may
consequently serve the sSUAS community well to adapt some of their tools and practices. Key
members of this effort include the US Integrated Ocean Observing System (IOOS) who have a glider
Data Assembly Center (DAC)[44] and have therefore defined a NetCDF standard to which glider data
submitted to their data archive must adhere. The UK Oceanids command and control data
system[45,46], alternatively, have a real time web portal interface to deployed science gliders. The tool
stack created to support this interface was built to enable the automation of both operations and
science data analytics (including data quality control and assurance processes) and is built largely on
standards by the Open Geospatial Consortium (OGC) and World Wide Web Consortium (W3C).

2.2.2. Atmospheric Science

In February 2017 NCAR’s Earth Observing Laboratory (EOL) hosted a workshop “...to collect
information about the needs of the NSF funded community in using sSUAS for atmospheric research...”.
While the workshop was focused on key issues other than data management, the final report [47]
emphasises the need for formal sensor qualification research and the creation of standardised use
procedures, an issue the International Society for Atmospheric Research using Remotely piloted
Aircraft (ISARRA)[48] is also discussing. For instance, the impact of placement of common
atmospheric sensors on multi-rotors on data quality has now been the subject of multiple
studies[49-52]).

2.2.3. Agricultural Sciences

The commercial field of precision agriculture is actively investigating solutions particularly for data
analytics and integration from not just sUAS but also the many diverse sensor streams now feeding
commercial precision farming. An AgGateway 2017 meeting highlighted these challenges in a panel,
and commercial sUAS providers such as Sensefly are working with ESRI and Pix4D analytics tool
providers to develop de facto standards for image metadata [53]. This work includes considering
mechanisms for embedding parameters regarding crop type, and status, and also factors such as
current weather. The United States Department of Agriculture is also exploring standardised
protocols, vocabularies, and metadata schema for sUAS data capture [54,55].
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Figure 3. The above diagram is a summarised view of the many different communities the authors
have interacted with in considering sUAS data management. Additionally, it calls out the eight key
challenges to sUAS data management that this paper highlights. These eight challenges are discussed
in detail in Section 3, but are listed here in order to identify primary sources for engagement. Each
community, organisation, and field listed here has called out these challenges through reports, papers,
posters, conference sessions, community calls, and a multitude of informal conversations at various
meetings, flying fields, and hallways. The grouping by discipline or role is an indication of the context
within which this effort engaged with each; but in many cases these communities and organisations
are contributing to multiple fields and act in multiple roles.
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2.2.4. Traditional Remote Sensing

Data management infrastructure built to manage both large scale and small format satellites and
manned aircraft are not entirely portable to sUAS applications for various reasons discussed in Section
3. However, while many studies continue to explore where sUAS are and are not the optimal remote
sensing solution; a great deal of traditional remote sensing expertise, knowledge, and infrastructure
can be drawn on in building infrastructure for sUAS data. The clearest instance of this is perhaps the

use of Photogrammetric techniques in stitching sUAS imagery and the use of standardised spectral
band processing algorithms and indices for sUAS data interpretation. An example of specific
knowledge transfer from remote sensing to sUAS is the work by the EU based OPTIMISE [56] who
have been working on standardised spectral information systems for many years, and who have most
recently expanded to include practices for sUAS mounted spectral sensors. Their engagement with the
spectral sensing community, including an in-depth survey of optical SUAS practices and community
knowledge is ongoing, with initial survey results available in[57]. Similarly the United States
Geological Survey, who have extensive experience using manned aircraft, have one of the few publicly
accessible sUAS data management plans[58] based largely on their historical experience and domain
knowledge.

Finally, the ESA and NASA's culture of making data appropriately open [59,60] and of using or
publishing open source software [61,62] are arguably models for sUAS to follow. While manned
aircraft engineering standards are not often directly applicable to sUAS, the development processes,
decision metrics, and operational practices used are increasingly applicable as sUAS are integrated
into controlled airspaces. Furthermore, manned aircraft data processing tool stacks are often built on
widely used standards such as those from the OGC’s Aviation Domain Working Group[63]; again
sUAS would likely do well to follow this example.

2.3. Earth Space Science Informatics (ESSI)

As a field of commerce and research ESSI spans effectively all of the organisations and groups
identified in Figure 3. The organizations particularly named here are specifically grouped as
organizations or projects who are currently working particularly on the practicalities of embedding
metadata and hosting, serving, and providing cloud analytics services for sUAS data. However, these
are not the only organisations working in this space as other passages in this section indicate.
Open Aerial Map[64] is a webportal for sUAS data that has arisen out of the non-governmental sector,
largely driven by citizen disaster response use of sUAS . As such their focus is visible band imagery
from non-scientific SUAS platforms. OpenTopography[65] provides DOIs and a searchable interface to
community contributed data topography data. It is not solely focused on sUAS data is focused on
high resolution data,largely but not exclusively captured using lidar. Data sets contributed consist of
source imagery (for photogrammetry), point clouds, and raster derivatives. Radiant Earth[66] is a
large scale project seeking to become a global portal and cloud analytics provider of remote sensing
data. sUAS data are not a focus but some community members have experimented with contributing
visible imagery to their systems and using their tools for analytics. UASPSE (Unmanned Plant
Sciences, and Education)[67] project is a National Science Foundation funded project focused on sUAS
data for Agricultural research and supporting community access to such data.

All four of these portals are providing a service to a community that can be built on. The common
biggest weakness across these is that while some support the submission of metadata none provide
any guidance on what is required or even suitable and due to the lack of community formalisation
these metadata are largely not machine readable. The need for common practices regarding
embedding metadata into SUAS data particularly near the source has been the subject of many
conversations within this engagement effort. This has covered both the need for common parameters
and schema but also available technical approaches with various commercial drone and software
providers, namely: the open source Linux Foundation managed Dronecode project[68], DJI, Sensefly,
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Black Swift Technologies[69], and as described above we have followed the work of Esri and Pix4D in
developing standards for use within their tool sets.

3. Results

Emerging from the above described engagement efforts have been two key results: (1) how sUAS data

are unique and consequently in part require custom management solutions, and (2) eight challenges to

be addressed in order to access the full potential value of sUAS data. As describe, these results are not

the outcomes of a formalised study or survey but are the clearest results to emerge from the focused 4

year effort to engage with the relevant community members (shown in Figure 2.1), and summarised in
Figure 3.

3.1. sUAS data are unique and in need of unique management infrastructure

sUAS data are uniquely 5+ dimensional
All sUAS data is associated with a location in both time and 3-dimensional space. While location- and
time- stamped data are not unusual, multiple streams of simultaneously recorded values captured
from a moving 3-dimensional trajectory at sporadic temporal intervals are uncommon, and this is
what sUAS enable. Furthermore, to correctly interpret many sUAS data requires additional metadata,
such as the time-series stream of the sUAS attitude, or an instantaneous measure of local luminosity.
sUAS data is therefore unique for its mandatory 5+ dimensionality: multiple co-captured
geospatially-tagged measurements of varying precision, taken within multiple discretised time
periods, along a 3-dimensional trajectory.
sUAS data provide uniquely high spatiotemporal resolutions
sUAS are being used in the sciences largely as they are a low-cost way of quickly capturing high
spatial and temporal resolution data. For instance, spatially, even low cost sUAS can achieve
<5cm/pixel horizontal ground resolution imagery, and they have the entirely unique ability to sample
at similar resolutions in fully customised vertical profiles. Further, temporally, sUAS systems may be
deployed both repeatedly, and dynamically in response to real-time changing circumstances, with
periodicities ranging from minutes to years. This high temporal resolution is most visibly
advantageous in the use of sUAS in disaster response (e.g wildfires, flooding, or earthquakes), but it is
equally useful in scientific research that can be subject to both unforeseen changes in long planned
observations (e.g unpredictable wildlife activity, or unforeseen operational restrictions) and
spontaneous opportunities (e.g. an unanticipated flooding event of an area of interest). sUAS
consequently are providing a uniquely high resolution low cost offering that neither manned aircraft
systems or satellites — both of which require months of planning and very large budgets — nor ground
based sensors or other low altitude platforms (e.g. kites, balloons) can readily offer.
sUAS data are classically Big
sUAS data are Big in all four of the classic Big Data characteristic ‘Vs’ [70]. The variety in form,
function and veracity of sSUAS data is only limited by current sensor miniaturising technology and
regulations, but currently commonly includes both low cost and professional grade: multi- and hyper-
spectral imagery; multiple LIDAR and RADAR sensing technologies; a wide range of gas and
particulate matter sensors; mechanisms for water, genomics, and other physical sample capture; and
common time series parameters such as temperature, pressure, humidity, and the local characteristics
of radio frequency signals. The volume of data that sUAS can quickly capture is nontrivial, particularly
with spectral sensors, with a single flight able to return tens of GB of raw data. In many cases,
increasing the sampling rate at which sUAS mounted sensors can capture quality data means air
speeds may also be increased allowing larger areas to be covered. It is probable that this will drive
sensor engineering and consequently capture rates are likely to continue increasing going forwards as
technology improves. Between increasing capture rates and growth in the use of sUAS for data
capture, both instantaneous and net sUAS data velocities will most likely increase in the future.
sUAS data are increasingly created by small science
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Large unmanned system technologies such as unmanned planes or underwater gliders have
historically been accessible only to researchers working at large scale and often government based
research institutions with the resources to build and maintain large scale research facilities. However,
small sUAS have made it possible for small and modestly funded teams of researchers to use
unmanned technologies. The adoption of SUAS technology by these smaller and more ad hoc teams
has consequences for the management of these data both as it increases the quantity of data being
captured by researchers overall, and because it increases the need for common practices that cross
discipline boundaries. Whereas large scale research endeavors (sometimes called big science) often
have correspondingly robust plans and infrastructures for data archiving and management, smaller
scale teams (sometimes called small science or little science) have correspondingly ad hoc and
idiosyncratic data management practices [71,72].

3.2. Eight community distilled sSUAS data management challenges to be addressed

1. Sensor use procedures: Sensor specific, tested and qualified use procedural best practices and
standards are urgently needed in common human and machine readable languages. These best
practice methodology and procedural guidelines should be developed and provided either
by the manufacturer or the research community and include: mounting requirements on
various platforms, calibration, ground truthing, and maintenance procedures, sample rates,
flight patterns, and required metadata for data use and publication. The need for these and the
aforementioned emphasis on machine and human readability is both for user ease and so as
to enable greater automation in the capture of data provenance. As mentioned existing initial
work on this issue has already appeared within the atmospheric community [49,50] and the
Agricultural Sciences[53]. While these procedures, are largely currently not instantiated in open

machine readable forms, they represent a direction for others to follow and contribute further to.
2. Operational practices: Having best practices regarding operational protocols for scientific

research will lower the barrier to entry for new users, allow training materials to be standardised
for the many new training courses being created, and reduce the burden on operators which
can only lead to safer operations. Further, while many countries have now begun to settle on
regulations, many research organisations are still grappling with their own internal policies and
protocols. Researcher operational best practices, created based on the experience of those who
have been operating for longer, could serve to accelerate organisational protocol deployment
in a country agnostic manner. One examples of such that is readily accessible comes from
University of Exeter’s Remote Sensing Laboratory [73], and another is University of California’s
risk assessment and operating policy[74].

3. Analytics and Error correction procedures: Best practices and acceptable error tolerances for
primary sensor taxonomy branches and the associated processes need to be defined so as to
avoid unintentional — but easy to introduce — errors [75]. These are needed equally by tool
providers (commercial and open source) so as to allow them to build to a standard, and by user
community so as ensure correct data interpretation. Defining such will additionally contribute to

efforts to define sensor use best practices and metadata creation, capture, and archive tooling.
4. Data and metadata data formats: Guidelines regarding best practice metadata and data formats

would serve the community, not as any form of restriction, but rather as a simple means of
reducing workloads for both research sUAS operators and technical developers of: sensors,
sUAS platforms, and the many components necessary in a data management tool stack. Having
published recommended open formats based on community experience would similarly lower
the barrier to novel experiments and enable both open source and commercial developers to

create reusable tools.
5. Data and metadata provenance practices: Given that a typical sUAS data capture project

involves multiple: sensors, mechanical and electrical platforms, complex data transformations,
and stakeholders, and that information regarding each of these commonly has a bearing on how
a dataset should be interpreted. The provenance and workflow metadata — the record of the
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processes that created the data — are particularly important. Definitions of what parameters
are required to make a data value, set, or product reusable — in potentially other scenarios than
that for which it was originally captured or created — is necessary as both a practical guideline
for operations and to facilitate the creation of tools to support the automated capture of this
provenance.

6. Data product levels: Defining suggested data product levels for various data types would

facilitate both data archives and single researchers in determining what data should be archived,
at what quality levels, at what resolutions, and with what associated metadata as required for
likely reuse. This could be done for various primary parameter taxonomy branches, such for
spectral data captured for Agricultural Sciences, and for atmospheric time series for Atmospheric
Sciences.
A crucial and complex sub-component to data product level definitions is the potential ethics
driven policies that will govern sharing sUAS data. FAIR does not require open access, and
others are exploring the ethical implications of both FAIR and open data in general [76,77]. Not
least because of their historical military associations of sUAS but also due to the potential to
easily violate important privacy restrictions with sUAS mounted sensors, the community needs
to discuss both locally and internationally, what best practices might be for governing sUAS
data’s desirable degree and form of openness.

7. Data management and analytics tools: As shown in 3, many of the relevant organisations
already have some portion of a sUAS data analytics and management tool stack. However,
the tools these bodies offer are only sUAS specific in a minority of cases. Rather, the majority
were developed for other data types and are now being adapted for sUAS . More resources
and effort are therefore necessary to accelerate these adaptations; and it is note worthy that
by addressing the above challenges, it would becomes significantly easier for resource pooling
across development efforts.

8. Data management education: As the domain grows there is an increasing demand for
introductory information that properly addresses the multitude of new expertise needed to
effectively use sUAS . In response many universities and other institutions are beginning to
formally train research sUAS operators. An acknowledged but core missing component of these
training curricula is any information on comprehensive consideration for science data good
practices. Bringing together data management training and sUAS training offers a convenient
opportunity, but one that depends heavily on investment being made first in the above challenges.

4. Discussion

As detailed in Section 3, the primary outcomes of engaging with the nascent sUAS community are: (a)
the identification of how sUAS data are unique and where there are shared characteristics with more
traditional data capture platforms, and (b) that as a result there are eight community identified
challenges to improving sUAS data management.

Regarding how sUAS data are unique, the following should be noted. (1) Though there are many
geospatial data formats that capture vector and raster data, stationary time series data, and high
dimensionality data, and while tool stacks exist for processing and managing these data, these tools
do not currently readily support the particular combination of metadata streams and multiple
parameter capture sUAS data often consist of or require for correct interpretation. Similarly (2), the
high spatial and temporal resolutions sUAS data are capable of capturing presents a new complicating
factor for data management infrastructure. These resolutions require both potentially new
multidimensional formats, schemas, and ontologies (or at least new workflow tools for handling the
novel combination of such sUAS data involved), and also demand high processing times, more
automated quality control, and new data product distribution tools. (3), considering that the majority
of tool stacks build for BigData assume operation on cloud or at least mains powered computing
resources, in many cases there is a need for real-time sUAS data processing on low power or low
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bandwidth edge compute devices. And finally, (4) research has shown [14,78-80], that the range of
data practices utilised by smaller teams should be considered a feature rather than a bug; this is
because the data workflows and practices must be customized to the unique contexts and goals of a
given group, project, and organizational structure. Standardized workflows across all smaller research
teams are neither achievable nor desirable. Consequently, sUAS data management solutions need to
be created with the necessarily diverse data practices of a small lab researcher specifically in mind, and
this is all the more so true given the wide spectrum of disciplines sUAS users include.
Regarding the challenges outlined. As new sensors, sUAS platforms, and analytics techniques
develop, it is clear that addressing solutions to these challenges will require updates and extensions.
However, initial efforts on each are the only way to ensure such periodic updates, extensions, and
community driven maintenance will be plausibly practical, sustainable, and backwards compatible to
any degree in the long term. Further, by initiating the development of solutions to any of the following
in a collaborative manner with a view to long term sustainability, partial solutions will be both
immediately accessible for use by others and accessible for extension, iteration, and improvement such
that gradually more complete solutions naturally arise. That is, provided long term maintainability
and extensibility are considered in initial work.

5. Conclusions

The use of SUAS for data capture is increasing rapidly, both for commercial applications and as a new
platform for data capture for a wide and diverse spectrum of research fields. As a nascent field with
many avenues of development underway to increase both operational and scientific platform maturity,
the issue of managing and optimising the data flow from sample to knowledge product has not been
extensively explored. This paper describes an effort to explore what resources are currently available
for handling sUAS data, what approaches are currently being used, and where there are challenges to
fully realising sUAS data’s value. As a largely unfunded effort subject largely to the authors abilities
to take advantage of opportunities that either arose organically or were commensal, this exploration
was not comprehensive. It has, however, engaged with a significant breadth of domain users,
developers, commercial participants, and analogous mature fields from which sUAS might learn. In
addition to finite scope, a key limitation in this engagement is that the majority of work was done in
North America, however, this was not exclusive, with 6 out of the 28 formal engagements listed
occurring elsewhere in the world. To the best of our knowledge this is the only effort to achieve the
above at any international scale.

There are two significant novel outcomes of this work. (1) The identification of the combination of
characteristics that sUAS data commonly exhibit, shows that while it shares many traits with more
traditional methods of data capture, the combined differences mean existing infrastructure as
currently developed and deployed is not capable of enabling users to fully realise the potential value
of sUAS data. These primary characteristics were: (i) sUAS data are uniquely 5+ dimensional, (ii)
sUAS data provide uniquely high spatiotemporal resolutions, (iii) SUAS data are classically Big, and
(iv) sUAS data are increasingly created by small science.

(2) The detailing of eight specific challenges that must be addressed in order for sUAS to become a
trusted, reliable, and optimally useful data capture platform: (i) Sensor use procedures, (ii)
Operational practices, (iii) Analytics and Error correction procedures, (iv) Data and metadata data
formats, (v) Data and metadata provenance practices, (vi) Data product levels, (vii) Data management
and analytics tools, (viii) Data management education.

Based on these, we conclude that a conscious and determined effort by a global selection of
researchers, to openly draft community driven data management best practices for the capture and
management of sUAS data, would likely realise many gains and be an important step towards
supporting the reproducibility and reliability of drone data research, as well as increasing the reuse of
sUAS data. In the immediate future, it would cost time and effort, but in the very near future it would;
(i) significantly reduce the total quantity of poorly curated sUAS data likely to otherwise be lost in the
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near future; (ii) minimise the length of what will otherwise be an extended period of partial and
inadequate data management tooling for sUAS users making operations inefficient over a longer
period of time than necessary; (iii) allow the community to circumvent the familiar larger and more
expensive challenges of legacy data rescue and community wide retooling, and retraining, (iv) lower
the barrier to entry for researchers entering the field and seeking to produce robust and reusable data;
(v) enable collaborative rather than disparate and ad hoc building of common sUAS data
infrastructure; and finally (vi) increase the transparency of sUAS data processing workflows. The
window of opportunity within which to craft such is finite and closing, given the immediate need for
data tooling and practices and already growing set of sUAS data.
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Appendix. References for Figure 2.1

Reference | Speaker Link
1 L Barbieri, ] Wyngaard | http://commons.esipfed.org/2015SummerMeeting
2 ] Wyngaard, L Barbieri | http://commons.esipfed.org/node/8799
3 M. Messinger, R. Hunt, | http://commons.esipfed.org/node/8798
L. Barbieri
4 T Corbett, L Barbieri, S | https://2016esipsummermeeting.sched.com/event/6uH7/drones-explore
Barberie -the-landscape-technical-physical
5 K Bhakta, W Teng https://osf.io/ub84e/
6 W Teng https:/ /2017esipwintermeeting.sched.com/event/9BKT /uassdrones-in
-agriculture
7 K Edmonds, W Teng https://www.lucidchart.com/documents/view /c99183b1-658a-4b36-8848
-490b89344800/0
8 Multiple speakers https:/ /osf.io/view/esipsummermeeting2017/
9 A Thomer, L Barbieri, ] | https://www.esipfed.org/meetings/upcoming-meetings/esip-winter
Wyngaard -meeting-2018
10 ] Wyngaard, A | https://digitalag.org/unmanning;ata.php
Thomer, L Barbieri
11 A Thomer, ] Wyngaard | https://www.esipfed.org/meetings/upcoming-meetings/esip-winter-meeting
-2018
12 L Barbieri http:/ /www.aggateway.org/eConnectivityActivities /Councils /
PrecisionAg.aspx
13 ] Wyngaard http:/ /optimise.dcs.aber.ac.uk/workshops-meetings/2017-3 /annual-workshop
-and-mc-meeting-february-2016/
14 L Barbieri https://ams.confex.com/ams/97 Annual /webprogram/Paper317061.html
15 L Barbieri, ] Wyngaard | https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/80038,
https:/ /agu.confex.com/agu/fm15/meetingapp.cgi/Paper/84585,
https:/ /agu.confex.com/agu/fm15/meetingapp.cgi/Paper/69625
16 L Barbieri, ] Wyngaard | https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/175599
17 L Barbieri, ] Wyngaard | https://agu.confex.com/agu/fm17/meetingapp.cgi/Session/30530
18 L Barbieri https:/ /agu.confex.com/agu/fm18/meetingapp.cgi/Paper/349789
19 ] Wyngaard, L Barbieri | http://www.codata.org/events/conferences/international-data-week-2016
20 L Barbieri, ] Wyngaard | https://www.rd-alliance.org/groups/small-unmanned-aircraft-systems%E2%
80%99-data-ig, https:/ /www.rd-alliance.org/blogs/drones-emerging-scientific
-tools-trade.html
21 L Barbieri https:/ /www.rd-alliance.org/ig-small-unmanned-aircraft-systems-data-rda-10th
-plenary-meeting
22 ] Wyngaard, K | https://www.rd-alliance.org/plenaries/rda-eleventh-plenary-meeting-berlin
Anderson -germany/rda-11th-plenary-programme
23 ] Wyngaard, T | https://www.eventbrite.ca/e/dronesdgood-international-data-week-tickets
Motshegwa -51720620769
24 ] Wyngaard, L Barbieri | https://rd-alliance.org/ig-small-unmanned-aircraft-systems%E2%80%99-data
-rda-12th-plenary-meeting
25 J Wyngaard, L Barbieri, | https://drive.google.com/drive/folders/1EUlcyfLAMPXwPhpdPL7]n
J Klump, T Bell, T | -Exn7JyuslW
Desell
26 L Barbierii https:/ /www.eol.ucar.edu/system/files/UAS.Workshop.20180206.pdf
27 C  Vardeman, A | https://github.com/Vocamp/dronedata
Thomer, ] Adams, L
Barbieri, ] Wyngaard
28 ] Wyngaard http:/ /www.c3dis.com/
29 L Barbieri http:/ /www.isarra.org/?page;d = 377
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