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Abstract

Layout estimation is a challenge of segmenting a cluttered room image into floor,
walls and ceiling. We applied Double refinement network proved to be efficient in the
depth estimation to generate heat maps for room key points and edges. Our method is the
first not using encoder-decoder architecture for the room layout estimation. ResNet50
was utilized as a backbone for the network instead of VGG16 commonly used for the
task, allowing the network to be more compact and faster. We designed a special layout
score function and layout ranking algorithm for key points and edges output. Our method
achieved the lowest pixel and corner errors on the LSUN data set. The input image
resolution is 224*224.

Figure 1: Room layout estimation scheme
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1 Introduction

Room layout estimation finds its application in different areas including augmented reality,
robotics, indoor navigation [3].

The task is to find positions of the room corners and their connecting edges on a 2D
room image. RGB images are often used as a standard input, although RGBD input is also
possible [18]. The floor, ceiling and walls in a room are considered to be perpendicular that
sometimes is referred as ‘Manhattan assumption’[4]. Furniture and other clutter in the room
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are the main challenge, as they make some key points and lines invisible. The two basic
metrics for the room layout estimation are pixel and corner errors.
We estimate a room layout in two stages:

1. Key points and edges heat map estimation by a fully convolutional neural network.
2. Heat map post-processing.

We used Double refinement net [7] with pretrained ResNet50 backbone for key points
and edges heat maps estimation. The other room layout estimation methods [5, 10, 14,
15] use encoder-decoder architecture predominantly with VGG16 backbone. The encoder-
decoder architecture has a drawback of losing information on high-level features. For this
reason, we decided to use an iterative refinement structure where low and high level features
are analysed at different levels and then connected step-wise. This architecture is usually
applied for segmentation task [12, 16].

Double refinement network was initially proposed for the depth estimation, and we
demonstrated that it could be applied for more complex tasks without major changes. Be-
sides constructing an efficient network for the room layout estimation our purpose is to show
that methods used for the depth estimation are applicable for other areas.

The chosen architecture allows to combine depth and layout estimation in one network
which could be beneficial for robotics vision including odometry and re-localization map-
ping [11, 13, 20]. The other layout estimation methods use custom networks applied only
for the specific task of layout estimation.

The novelty of our method involves the utilization of ResNet50 as a backbone in lieu of
VGG16. ResNet50 is four times faster [2] than VGG16 (approx. 4 vs 15 GFLOPs) and has
significantly less (25 million vs 138 million) parameters, making the network we use more
compact and efficient than the architectures proposed in the state-of-the-art layout estimation
methods.

Our post-processing algorithm is the first to construct the layout on both key points and
edges heat maps. Edges heat maps were used in LayoutNet [22] for the regularization only.
The post-processing algorithm is faster and simpler in implementation than the state-of-the-
art handling with segmentation and edge maps [19].

We evaluated our results on the LSUN layout challenge validation dataset and surpassed
the state of the art results in pixel and corner errors. When tested on Hedau dataset, the
method achieved the second best results in pixel error.

The input image resolution is 224*224. The recent study [19] with the best state-of-the-
art results used the same input image resolution.

2 Related works

In this section we will focus on the recent (since 2015) room layout reconstruction methods.
We address to [1, 6, 17] to explore earlier methods.

It is worth mentioning a turning work of [8] were a dataset of 308 cluttered room images
was introduced. The dataset (also known as "Hedau‘) became an important benchmark for
the room layout reconstruction. The authors measured a first benchmark on the dataset by
modeling the room space with a parametric 3D box and then by iteratively localizing clutter
and refitting the box.
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Mallya [14] showed that the fully connected neural network predicted edges better than
the structured random forest. All layout reconstruction methods have shared the same pattern
from that moment on. A fully connected neural network generates a heat map, and a layout
is to be built on a post-processing stage. A summary of recent layout estimation methods is
presented in Table 1.

Input Output Output Architec- Layout
Net reso- . Loss const-
. semantic tensors ture .
lution ruction
Mallya VGGlS, Cross- layout
2015 7775777 | edges 1*277%777? pretrained entro raflk'n
[14] on NYUDv2 Py ne
Delay encoder- - lavout
2016 321*321 | segment 5*%321*321 | decoder, X yk'
5] VGG16 entropy ranking
encoder-
CFILE
2016 404404 segment 5%404*404 | decoder, _999_ lay01.1t
[15] edges 1*404*%404 | VGGI6, ranking
2 branches
Layout points 8*512*512 | encoder- cross- osition
Net [22] | 512*512 | edges 3%512%512 decoder, v Ease d
2018 room type | 11 2 branches 124
Room encoder-
Net [10] | 320%320 points 48%320%320 | decoder, Euclidean | position
2017 room type | 11 Segnet, distance based
recursive net
encoder-
Edge decoder,
semantic 2245994 segment 5*56*56 VGG16 Cross- layout
2019 edges 1*¥56*56 pretrained entropy ranking
[19] on ILSVRC,
2 branches
5-levels layout
DR 8%224%224 | iterative ranking,
(ours) 2245994 points 3%224%224 refinement, Cross- without
2019 edges in one ResNet50 entropy vani-
tensor pretrained on shing
ImageNet lines
Table 1: Room layout estimation algorithms characteristics

There are 3 types of heat maps namely segmentation, edges and key points. Each pixel
of a heat map contains the probability that a pixel of the original image belongs to a certain
class. Segmentation heat map consists of 5 layers: two for a floor and a ceiling and three
for walls. Edge heat map consists of one or three layers. Three layers heat map allows to
distinguish floor, walls and ceiling edges, whereas one layer heat map does not differentiate

among them.

Key point is an intersection point between edges or between an edge and an image bound-
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ary. If key points are close enough their heat maps overlap which significantly deteriorates
layout reconstruction and accuracy. For that reason, a key points heat map should contain
multiple layers (one layer for each key point).

Most of the recent post-processing methods [5, 14, 15, 19] use layout ranking procedure
to construct a final layout. This procedure has two attributes: layouts generation and a score
function. Our method is the only layout ranking method where combinatorical approach is
used instead of vanishing points and lines estimation. The other methods [5, 14, 15] utilized
vanishing points and lines approach. [19] uses in addition a predefined pool of 4000 layouts.

The only methods where layout ranking is not applied are RoomNet [10] and LayoutNet
[22]. They predict a room type according to LSUN classification (fig. 1 in [19] and fig. 2
in [10]). RoomNet output tensor has 48 layers. The method does not require any complex
post-processing, but the official code is not available, making the test impossible.

LayoutNet has only 8 layers which is a maximum number of points in a layout. The same
layer may be associated in LayoutNet with key points for different room types, allowing to
reduce the total number of output layers from 48 to 8. Zou[22] was the first estimated edge
heat maps separately for the floor, wall and ceiling.

Although the details of post-processing are not described in [22] they may be found in the
official GitHub repository [21]. The post-processing of LayoutNet does not need multiple
layout generation or vanishing lines detection that was a serious progress. The complexity of
key points post-processing is due an ambiguity between the right (left) and the middle wall.

3 Heat map estimation via double refinement net

3.1 Network architecture

A standard way of image key point representation is a heat map. Heat map has usually
the same resolution as the original image, and the number of layers depends on the neural
network structure. Ground truth points are to be projected on the map as a blur usually
distributed under a Gaussian distribution.

We choose Double refinement network [7] for the heat map estimation. The network has
proven to be efficient in depth estimation for RGB monocular image. The experiments [18]
showed that employing depth reduces the layout error by 6% and the clutter estimation by
13% for NYUv2 data set. The architecture of the double refinement network adapted for our
task is shown in Fig. 2.

We follow the same layout order for key points and edges while training as it was done in
LayoutNet [22]. The Double refinement network architecture enables key points and edges
heat map generation in one tensor. As our method does not use room type detection, we have
only one output branch instead of three in LayoutNet.

The task of layout reconstruction from a heat map is ill-posed in Hadamard sense due
to the fact that the layout does not depend continuously on a heat map and the solution is
not unique. For this reason, cross-entropy and Euclidean distance are used as loss-functions.
It is important to emphasize that the connection between loss function and basic metrics is
complex and low loss on a validation set does not necessarily mean good metrics.

The net was trained with the following loss:

L= £points + A‘Cedges (H
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Figure 2: Double refinement network [7] for the room layout estimation
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where pGT is the ground truth heat map, p is the predicted heat map
Ledges = CE(e,eGT) 3)

CE - cross entropy function, CE,, - weighted cross-entropy with weight w=1.5,
p is a key points heat map estimated, p=output_tensor[:8, :, : 1],

e is an edges heat map estimated, e = output_tensor[8:,:, :],
output_tensor = 11%¥224%224 - a result from double refinement net,

pGT - key points ground truth heat map, eGT - edges ground truth heat map.

3.2 Implementation details

The network was implemented in PyTorch. The training was performed with Adams using
the following parameters: learning rate = le-4, amsgrad = True, weight decay = 0.0001,
batch size = 16. A bigger batch size leads to the over-fitting.

The network was trained and validated on the LSUN dataset for the room layout esti-
mation. The dataset contains 4000 prospective images of different rooms such as bedroom,
hotel room, dining room, living room, office, conference room and classroom. There are
394 images for validation. The labeled data set contains a room type and coordinates of
corners. We did not use Hedau dataset for training. Input images were rescaled to 224*224
pixels image size as they have different resolution. The best state-of-the-art results [19] were
achieved using the same resolution.

We used ResNet50 backbone pretrained on the ImageNet. Freezing and sequential un-
freezing the ResNet layers does not improve validation loss and metrics. The presented
results were achieved at the 6th epoch.

We used albumentations library for the data augmentation. The following photomertic
augmentation were used along with horizontal flip of an image: Gaussian noise, additive
Gaussian noise, random contrast, random brightest, IAA sharpen, IAA emboss, hue satura-
tion value.
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To enhance the layout reconstruction we apply the network for both original and flipped
images and then combine results.

4 Post-processing

The post-processing of the heat maps produced by the neural net consists of two steps:
1. Key points coordinate extraction from a heat map.
2. Layouts generation and ranking.

The first step transforms key point maps into 2D coordinates of the key points centers.
The second step seeks for an optimal layout built on the points generated at the first step.
The layout score measures the level of layout matching with edges heat map.

4.1 Key points coordinate estimation

We use centroid method to estimate key points centers. The same method is used when es-
timating star projection center for the satellite attitude estimation [9]. If corners heat maps
estimation had a Gaussian distribution equal to their ground truth, then the maximum likeli-
hood method [9] would be more efficient. However, in our case output corner heat maps are
far from being Gaussian (e.g. key points in Fig. 1), so the centroid method is a better choice.

The centroid algorithm is to be applied for all layers 1....,8 of keyPointsHeatmap.
We ignore all heat map pixel having value lower than 2. SimpleBlobDetection func-
tion from cv2 package were applied for the initial heat map position estimation. The precise
coordinates were estimated by the power centroid equation:

X M @
YWy
Yij-wi
y=myt (5)
Yk Wij

where w;; - a corner heat map value of pixel i,j for a particular layer, Y = 3.0 is pow parameter.

If the distance between two points is less than mergeDistance, the points are to be
merged and the coordinate of the result point is an average of two initial points.

Coordinates of heat maps lying near an image boundary should be treated specially, as
one of their coordinates have to be equal zero to build a valid layout. At the same time, the
centroid algorithm as well as other algorithms returns non-zero coordinates. One or both
coordinates of a heat map are to be assigned to zero if the heat map is close enough to the
image boundary.

4.2 Layout ranking

Like most recent room layout estimation methods [5, 14, 15, 19] we use layout ranking in
post-processing. The layout ranking phase generates valid layouts which could be built on
the points, ranks them according to a score function, and selects the best layout. Fig. 3
illustrates 7 different layouts and their scores. A layout with the highest score (= 0.71) is an
optimal one.
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Layout score: 0.44 Layout score: 0.58 Layout score: 0.49 Layout score: 0.49 Layout score: 0.71 Layout score: 0.26

[ S )

Figure 3: Different layouts and their score.

Layout score: 0.32

Our approach differs significantly from the methods based on segmentation map [15, 19]
which use vanishing point model, step-wise optimization of the layout and mean of all pixel
coincided with a layout as a score function.

A mean function as a score has a drawback of a poor optimization for cluttered rooms
and rooms with nonstandard geometry that leads to inaccurate layout estimation.

An alternative to the mean value is a sum of all pixel coincided with a layout. The sum
score function tends to select the most complex layouts. On the contrary, the mean function
tends to select the most simple ones. To overcome the disadvantages of both score functions
we suggest a special score function with two adjustable parameters ¢y, c; € [0, 1].

The input for the layout ranking process is the extracted key points and edges heat map
generated by the neural network. Edges heat map has three layers e f, ew, ec (a heat map of
the floor, wall and ceiling edges respectively). Let us consider that ef;, ew;, ec; are the pixel
values of the corresponding edges heat map layers lying on the line between two points. We
use the following measure to estimate whether there is an edge between two points:

p =max(pf,pw, pc) (6)
Yef; Yiew; Yiec
pf= n}“ L oPW=TUTE PO= T (7

where nf, nw, nc are number of pixels lying on the line between two points for each layer.

Consider we have a layout consisting of m lines with a measure p;. The score s of the

layout is:

=2 ®
c; coefficient regulates preference of the complex or simple layout and ¢ regulates if smaller
or bigger layout is preferable.

A formal description of the optimal layout selection algorithm 1 is presented hereinafter.

Input:

points - 2D points from the 1st step of post-processing

edges - 3-layers heatmap tensor of edges 224%224
Output:

bestLayout = (bestLayout.points, bestLayout.roomType)

bestLayout.points - 2D points sorted in a specific order

bestLayout.roomType - layout type in [0,...,10]

Layout is a function which returns a corresponding room type for the set of points if it
is possible to build a valid prospective layout of the points and None otherwise. It consists
of numerous empirical rules determining whether the set of points corresponds to a certain
room type. Most of the rules are simple comparison operations <,> or scalar product. That
is why this approach is easier than vanishing points and lines estimation.

The proposed algorithm uses the combinatorical search, yet it is not critical since the
number of points do not exceed 12 and therefore the number of combinations in the worst
case is less than 4000.
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Algorithm 1 Optimal layout algorithm

bestLayout = None
maxScore =0
for kin [2,4,6,7,8] do
for combination in combinations(points, k) do
layout = Layout(combination)
if layout.roomtype is not None then
s = score(layout.points, layout.roomType, edges)
if s > maxScore then
maxScore = s
bestLayout = layout
end if
end if
end for
end for

Edge semantic post-processing algorithm [19] requires to analyze more than 4000 lay-
outs (ray sampling + predefined pool) and estimates a score for all of them, whereas our
algorithm estimates a score only for a small fraction of valid points combinations. Further-
more, edge semantic has a fine optimization step for the best 4 layouts, while our algorithm
do not require any additional optimization.

S Results
Method Year LSUN ' LSUN .Hedau
corner error | pixel error | pixel error

Mallya 2015 — 16.71% 12.83%
DeLay 2016 | 8.20% 10.63% 9.73%
CFILE 2016 | 7.95% 9.31% 8.67%
LayoutNet 2018 | 7.63% 11.96% 9.68%
RoomNet 2017 | 6.30% 9.86% 8.36%
Edge semantic | 2019 | 5.16% 6.94% 7.36%

DR (ours) 2019 | 5.11% 6.72% 7.85%

Table 2: Room layout estimation algorithm benchmarks.
Lower is better. For LSUN - numbers in italic are for the benchmarks on the test data set,
normal font is for the benchmarks on the validation data set.

The standard metrics for the room layout estimation are pixel and corner errors. Corner error
is an average Euclidean distance between ground truth and predicted key points divided by
the image diagonal. Pixel error is a pixel-wise error between the predicted surface labels and
ground truth labels, i.e. the percentage of pixels that are labeled different from the ground
truth. LSUN room layout toolkit provided by the authors of the LSUN layout competition
addresses the labeling ambiguity problem by treating it as a bipartite matching problem
solved using the Hungarian algorithm that maximizes the consistency of the estimated labels
with the ground truth.

Table 2 compares efficiency of the recent (since 2015) room layout estimation algorithms
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Figure 4 An example of room layouts estlmated by our algorlthm for the LSUN dataset.
Green lines are for the ground truth layout, red lines are for the estimated layout.
on the standard benchmarks. The benchmarks for the earlier algorithms may be found e.g.
in [19]. We tested our results on LSUN and Hedau datasets. We used 394 validation images
on LSUN dataset and 105 test images on Hedau dataset. The pixel error for the whole
Hedau dataset (train+val+test=304 images) is 8.22%. Table 2 demonstrates that our layout
estimation method achieved state-of-the-art results.

Fig. 4 shows an example of room layouts reconstructed by our method. The last image
in the second column is one of the most difficult cases in validation subset of LSUN dataset.
Interestingly our approach and edge semantic method provide similar results (fig. 1lc in
[19]), though we use different network architectures and our output maps also differ.

6 Conclusions

We developed an efficient room layout estimation method based on a neural network with
ResNet50 backbone and layout ranking post-processing. The outputs of the network are key
points and edges heat maps. Our method is the second using this combination of outputs and
the first using edges for the layout ranking in conjunction with key points.

Our method is also the first embedded ResNet50 backbone instead of VGG16 which
is the common backbone in the encoder-decoder structure implemented in the other room
layout estimation methods. ResNet50 is four times faster than VGG16 and has significantly
less (25 million vs 138 million) parameters.

Our method outperforms state-of-the-art methods on both pixel and corner errors when
tested on the LSUN dataset.
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We also introduced a flexible score function for a layout ranking procedure allowing to
choose what kind of layout is preferable.
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