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A STUDY ON NOVEL EXTENSIONS FOR THE p-ADIC GAMMA
AND p-ADIC BETA FUNCTIONS

UGUR DURAN AND MEHMET ACIKGOZ

ABsTRACT. In this paper, we introduce the (p,q)-analogue of the p-adic factorial function. By utilizing
some properties of (p,g)-numbers, we obtain several new and interesting identities and formulas. We then
construct the p-adic (p, ¢)-gamma function by means of the mentioned factorial function. We investigate
several properties and relationships belonging to the foregoing gamma function, some of which are given for
the case p = 2. We also derive more representations of the p-adic (p, ¢)-gamma function in general case.
Moreover, we consider the p-adic (p, g)-Euler constant derived from the derivation of p-adic (p, ¢)-gamma
function at x = 1. Furthermore, we provide a limit representation of aforementioned Euler constant based on
(p, g)-numbers. Finally, we consider (p, ¢)-extension of the p-adic beta function via the p-adic (p, ¢)-gamma
function and we then investigate various formulas and identities.

1. INTRODUCTION

The p-adic numbers are a counterintuitive arithmetic system, which were firstly introduced by the Kummer
in 1850. Then, the German mathematician, Kurt Hensel (1861-1941) developed the p-adic numbers in a
paper concerned with the development of algebraic numbers in power series in circa 1897, ¢f. [25]. There
are numbers of all kinds such as natural, rational, real, complex, p-adic, quantum numbers. The p-adic
numbers are less well known than the others, however these numbers play a main role in number theory and
the related topics in mathematics. Whereas, mentioned p-adic numbers have penetrated some mathematical
areas, among algebraic number theory, algebraic geometry, algebraic topolgy and analysis, the foregoing
numbers are now well-established in mathematical field and are used also by physicists. In conjunction with
the introduction of these numbers, some mathematicians and physicists started to investigate new scientific
tools utilizing their useful and positive properties. Some effects of these new researches have emerged in
mathematics and physics such as p-adic analysis, string theory, p-adic quantum mechanics, quantum field
theory, representation theory, algebraic geometry, complex systems, dynamical systems, genetic codes and
so on (cf. [1-3,6-16,18-24, 25]). The one of the most important tool of these investigations is p-adic gamma
function which is firstly described by Yasou Morita in about 1975 (¢f. [18]). Intense research activities
in such an area as p-adic gamma function is principally motivated by their importance in p-adic analysis.
Therefore, in recent fourty years, p-adic gamma function and its generalizations have been investigated and
studied extensively by many mathematicians (¢f. [6,8-11,13-16, 18, 20, 21, 25]).

Here, we give some basic notations, definitions and properties belonging to the p-adic analysis which are
taken from the books: [13], [21] and [25].

Let p € {2,3,5,7,11,13,17,-- - } be a prime number. For any nonzero integer a, let ord,a be the highest
power of p that divides a, i.e., the greatest m such that ¢ = 0(modp™) where we used the notation
a = b(mod c¢) meant ¢ divides a — b.

Note that ord,0 = co. The following properties hold true for x = ab and y = §:

ord,r = ordya + ord,b and ord,y = ord,c — ord,d.

1991 Mathematics Subject Classification. Primary 05A10, 05A30; Secondary 11B65, 11580, 33B15.

Key words and phrases. p-adic numbers, p-adic factorial function, p-adic gamma function, p-adic beta function, p-adic Euler
constant, (p,g)-numbers.

Note: p and ¢ (or (p,q)) were used as parameters of (p,q)-calculus in [2,3,5,7,17,22-24], but in this paper we use the
notation (p, ¢) in order to avoid confusions with p-adic ¢g-gamma function.
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The p-adic absolute value (norm) of z is given by

—ordy,x
_f opTorde for x # 0,
Jl, = { 0 for z = 0. (1.1)

P
The p-adic norm provides the so called strong triangle inequality

|x + y|p é ma‘x{|x|p ’ |y‘p} ’

which is also known as non-Archimedean norm.

Now we provide some basic notations: N = {1,2,3,---} denotes the set of all natural numbers, Z =
{--+,,=1,0,1,--- } denotes the ring of all integers, Q = {% la,b € Z, b # O} denotes the field of all rational
numbers, C denotes the field of all complex numbers, Q, = {x =3 Lap":0=a; Sp-— 1} denotes the
field of all p-adic numbers, Z, = {m €Qp: |, = 1} denotes the ring of all p-adic integers and C,, denotes
the completion of the algebraic closure of Q,. Let No = NU {0}.

For more information about p-adic analysis, see, e.g., [1-3,6-16, 18-24, 25].

The notations p and ¢ can be variously considered as indeterminates, complex numbers p and ¢ € C with
0 < [g| < |p| = 1, or p-adic numbers p and g € C, with [p—1|, < pip%l and |g — 1], < p*ﬁ so that
p* = exp (zlog p) and ¢ = exp (zlogg) for |z|, = 1.

The classical gamma function is firstly introduced by Leonard Euler (1707-1783) as

I'(z)= /0 (=logt)* 'dt (z>0).

In 1964, the common form of the gamma function is given by Artin [4] with appropriate variable change:

T(x) = /000 t*te7tdt (x> 0).

The classical gamma function is closely related with the factorial function n! as I' (n + 1) = n! for n € N.
By inspiring the beautiful and interesting relation between gamma function and factorial function above,
the p-adic gamma function is also introduced by means of the p-adic factorial function (n!), as follows

Ly (@) = lim (~1)" (n), . (1.2)

where the factorial function (n!), in Q, is defined by

(), =[] 4 (1.3)
(pj,j<)":1
for + € Z,, where n approaches = through positive integers. For detailed statement of these issue, see
[9,10,13,18,21,25].
The g-extension of the p-adic gamma function is defined as follows (see [20])
T (0) = Jing (1" [T Gy where 1, = 7=F- (1.4)
ji<n
(p.d)=1
These functions have been studied and investigated by many mathematicians, see [8-11,13-15, 18, 20].
The (p, ¢)-numbers are defined by

pn _ qn
nj,  i=— 1.5
Mloa === (1.5)
which reduce to the g-numbers when p =1 as [n], , — [n],.

nfl[

It is clear that [n], = p n| which means that ¢g-numbers and (p, ¢)-numbers are different, that

a/p’
is, (p, ¢)-numbers can not be obtained just by substituting ¢ by ¢/p in the definition of g-numbers (see
[2,3,5,7,17,22-24] for details). But, when p = 1, ¢g-numbers becomes a special case of (p, ¢)-numbers as

shown above.
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In conjuction with the introduction of these (p, ¢)-numbers (see [5]), (p, g)-calculus has been investigated
and studied extensively by many mathematicians and also physicists since 1991. For example, Araci et al.
[2] introduced an analogue of Haar distribution based on (p, ¢)-numbers. By means of this distribution, they
derived (p, q)-analogue of Volkenborn integral (p-adic integral) and obtained some properties. Then, they
constructed (p, ¢)-Bernoulli polynomials arising from (p, ¢)-Volkenborn integral. Aral et al. [3] defined a
(p, q)-analogue of Gamma function and as an application, they proposed (p, q)-Szasz-Durrmeyer operators,
estimated moments and established some direct results. Chakrabarti et al. [5] investigated the necessary
elements of the (p, g)-calculus involving (p, ¢)-exponential, (p, ¢)-integration, and the (p, ¢)-differentiation.
Duran et al. [7] considered a generalization of the fermionic p-adic measure based on (p, ¢)-integers and
set the corresponding integral to this measure. They also defined Carlitz’s-type (p,¢)-Euler polynomials
and numbers in terms of this corresponding integral and acquired some of their identities and properties.
Milovanovic et al. [17] provide a novel extension of beta functions based on (p, ¢)-numbers and committed the
integral modification of the generalized Bernstein polynomials. Sadjang [22] introduced new generalizations
of the gamma and the beta functions and investigated their properties. Sadjang [23] investigated some
properties of the (p, ¢)-derivative and the (p, ¢)-integration and provided two appropriate polynomial bases
for the (p, ¢)-derivative, and then he obtained various properties of these bases. As an application, he gave
two (p, q¢)-Taylor formulas for polynomials. Furthermore, he gave the fundamental theorem of (p, ¢)-calculus
and proved the formula of (p, g)-integration by part. Sahai et al. [24] developed the connection between
(p, q)-analogue of special functions and representations of certain two parameter quantum algebras.

The paper is organized as follows. The first part is introduction which provides the required information,
notations, definitions and motivation. In the second part, we are interested in constructing the p-adic (p, q)-

gamma function F][Dp 4] () by means of p-adic (p, ¢)-factorial function (z!) I[f -a)

and relationships of the mentioned gamma function. In Part 3, the p-adic (p, q)-Euler constant is derived
from the derivation of p-adic (p,¢)-gamma function at 2z = 1 and limit representation of this constant are
shown. In the third part, we examine the results derived in this paper and give some further remarks of our
results. The last part provides the (p, ¢)-extension of the p-adic beta function via the p-adic (p, ¢)-gamma
function and includes multifarious formulas and identities.

. We investigate some properties

2. THE p-ADIC (p,q)-GAMMA FUNCTION

This section provides a new definition of p-adic (p, ¢)-gamma function and gives some properties, identities
and relations for the mentioned gamma function.

We firstly introduce (p, q)-extension of the p-adic factorial function as follows.
Definition 1. Let p and q € C, with [p—1|, <1 and |¢— 1|, <1, p# 1 and ¢ # 1. We introduce the
p-adic (p, q)-factorial function (a:!)g”ql in Q, as

, . P-q¢ .
@ =lim [ Z—-=lm [ 0, (2.1
ji<n j<n
(p.g)=1 (p.d)=1

for x € Z,, where n approaches x through positive integers.

Note that for n € N, the p-adic (p, ¢)-factorial function can be written as

o0y = I Ul (2:2)

(p,J)=1

Proposition 1. For n € N, we have

(e = 1, @2)lrd = 1 and ’(n!)Lp’Q]’p _ 1.
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Example 1. We provide some examples of the foregoing function:

(3!)[M] -1 (3!)gp,<ﬂ _ [2]p,q 3!)[597(1] _ [2]p,q
Oy =13], .5, | 607 =[2],,[4],,05,,] "=, 08,,014,.,
(YT =13],, 5, | YT =12, 14,,0,, | (MPT=12,,03],,04,,[6,.,
By (1.5), we note that

[n + m]p7q = pn [m]pg + qm [n]p7q = pm [n}p,q + q'ﬂ [m]p7q N (23)
Using the addition property (2.3) of the (p, ¢)-integers, we give the following theorem.

Theorem 1. For n,m € N, we have

o _ (e (o7 (2 + ], a2V 2H 52D =0
(( + ))p ( )P {pn H [j]p,q_‘_[n]p’q 1—[

. , (2.4)
q7 ifde A

j<m j<m

(p,d+j)=1 (p,d+j)=1

where n =pk +d and A ={1,2,.

,p— 1} and |-| is the greatest integer function.
Proof. In view of (2.7) and (2.3), we get

((n+m)nd I .= II U,, II [+,
j<n+m j<n j<m
(p,j)=1 (p,j)=1 (pyn+j)=1

II 0. II (o0, +d,,)

j<n

< j<m
(p,3)=1 (p,n+j)=1

= @ I U+, T ¢

(=1 .-
m-1) m=1 .
(nl)[p,q]{ <pn (m!)z[ap’q] + [n]p,q q( 2 )= (proer |25 Jp)) ifd=0
T I gt I @ itde A’
(p )=t (5t

where n = pk+d and A= {1,2,...,p — 1}. Thus, we attain the asserted result (2.4).

O
We give the following interesting result.
Theorem 2. For m € Ny, we have
ol AT :
(¢, (m)!)pp = (ao!)Lp q] IT I [ees +3] (2.5)
t=1 j<aypt

(p,J)=1

where ¢, (m) =ag+a1p+ ap® + - + app™ with ag,ai,...an, € {1,2,...,p—1}.
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Proof. Indeed,
(ep ), = (2o m=1)),"" TT [ep(m-1)+4],,
j(;?ﬁiT
= ((epm=20" I lom-2+4,, TI lepm-1+il,,
j<am,_1pm—1 j<amp™
(p.J)=1 (p.7)=1
m
= @) ] II len t=1+4],,
t=1 j<a;pt
(pod) =1
which completes the proof of this theorem. O

The following definition is new and plays an important role in deriving the main results of this paper.
Now we are ready to state the following Definition 2.

Definition 2. Let p and q € C, with |p — 1|p <1 and|q— 1|p <1, p#1 and q # 1. We define the p-adic
(p, q)-gamma function as follows

Tl () = tim (~1)" ] ”] —2 i -1y T 0, (2:6)

n—x q n—x

ji<n 7<n
(p,g)=1 (p,g)=1

or x € Z,, where n approaches x through positive integers.
P

Note that for n € N, the p-adic (p, ¢)-gamma function can be written as

L) = (=1" [ [,

(p{;)n:l
Example 2. We give some examples of the aforementioned function:
ry7 () = -1 ry () = -2, Iy (s) = -2,
ry 7 (6) = 3], Y (6) = [21,, 4, Y (6) = (2,0 8], (4],
TP () = — Bl 9y | 07 (1) = = Bl 1. g | T (1) = — B, B . 0],
Remark 1. Upon setting p = 1 in Def. 2, p—adzc (p, )—gamma function reduces to the p-adic q-gamma

function in (1.4).

Remark 2. When g — p =1 in Def. 2, Eq. (2.6) yields to the p-adic gamma function in (1.2).
We now investigate some properties and relations of the aforementioned function.

Lemma 1. For n € N, we have

rlpdl (0) = 1, Tl (1) = =1, Tl (2) = 1 and [Tl (n)] =1,

p

Proof. The proof of this lemma just follows from the Definition 2. So we omit the proof. O
Taking into account Theorem 1, we obtain the following relation.
Corollary 1. For n,m € N, we have
<pnFLP7Q] (m) + [n]p’q q(m;l)fp(1+2+LmTilJ)> ifd=0
pm I g+l I1 @ ifde A’
(p7éj_;.n):1 (;D,C;'T';'n):1
where n =pk+d and A ={1,2,...,p— 1} and |-] is the greatest integer function.

, — n+m plp,
I‘;LP g (n+m) = (—1) F][)P q (n) - {
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Considering that Theorem 2, we have the following identity.
Corollary 2. For m € Ny, we have

rird (g, (m) = (07 (@) [T TT [en =1 +]

t=1 j<agpt
(p,j)=1

pa’

where <pp(m)=a0+a1p+a2p2+---—|—ampm with ag,a1,...am € {1,2,...,p—1}.

Here is a recurrence relation for Fz[gp 4] (n) by the following theorem.

Theorem 3. The following recurrence formula holds true for all x € Zy:

F[pp,q] (z+1) = Gl[f’q] (2) F}[jp,q] (z), (2.7)

where ) 1
bl (z) = {_ g i Tl =1, (2.8)

-1 if |zl, <1.

Proof. Using Definition 2 and Eq. (1.1), we easily get

N I T LT et
Loz +1) = 7113%6( 1) H Ul,q = 7113(:1”( 1) H [5q { B 1pq . |x|p )

j<n+1 j<n p

(p.j)=1 (p,g)=1
which gives the desired result (2.7). g

The result obtained in the Theorem 3 seems to be p-adic (p, g)-analogue of the well known result for

classical gamma function I' (z 4+ 1) = 2T (z) for > 0.
We now give an explicit formula for T¥*% (n) as follows.

Theorem 4. The following recurrence formula holds true for all n € N:

n (],

rled (n41) = (1) ] o . (2.9)
w5 {31]

Ppﬂp.

where |-| is the greatest integer function.

Proof. From Definition 2, we observe that
X _ n+1 .
anp q] (n+ 1) - (_1) H [J]p,q

i<n
(p,j)=1

[1]941 [2]941 o [n]p,q

[p]p,q [213],,7(1 o H%J p] p,q.

Using the product rule [kp]p’q = [k;]pp’qp [p]p’q for (p, ¢)-numbers, we acquire

_ (_1)n+1

e = 0 T [;]M! 5],
pa” pp,gr [9lpp qp Pl o g
which yields to the asserted result (2.9). O
Particularly, we derive the following result.
Corollary 3. We have
" — Hp,q!

Lyd (") = (-1 — =y

P et 1, (210)
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Here are two relations for FL” -l (z) and the latter provides a representation of (p, q)-factorial function
associated with p-adic (p, ¢)-gamma function.

Theorem 5. Forn € N, let m,, be the sum of digits of n = Z;-":O a;jp’ (am #0) in base p. We then derive

[ == T T (3] ) e

and

= 0" (< B,,) 2] !ﬁufﬁqw HFMQ | +1). e

p
psq

Proof. By Eq. (2.9), we have

n],. ! = (=1 p] 2] HZH,JP,(JP!FW (n+1).

Then if we put L%J where j lies in {0,1,--- ,m} instead of n, respectively, we observe that
p

5], = ol | 5] e ([35]+1)
[5]] = coblmad 5] (5] )

|2]] - ot wﬂ_}wl e (| 2] )

Multiplying the both sides above, one can acquire with ease that

]+ = ottt

n Hp%ﬂppqu -
=], I MHF[ (15

n—my — n+l—m n—my)(p— n
_ (_1)( )/ (p—1) (1) +1 [p];’q )(p—1) Hpm+1H !
pp qp

e e (510),

(=" (<],

B B Gl

So, we get the asserted result (2.11):

1],

(n—muy,)(p—1)
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Also, from the applications above,

I R e i A e

)

[0, S e (2] -

Pq

_ (_1)(71,—7an)(1)—1) (_1)n+1—7n [p]E)nq—nLn)(p—l) H\nJ] |
’ Pl]lpe gr

B 6l

Thus we obtain the Eq. (2.12):

it = 0 (o) ]

I e (2]

O
We give the following theorem.
Theorem 6. The following relation holds true for any prime p and n € N:
®"-1)/(p—-1) __ el
[—mg=<4v@m@ o [t =1, ! (2.13)
n—2 n
Pp;qp [p.q] j
H p]+171] Hqu (p])
7=0 P4 §=0
Proof. In view of Eq. (2.10), we have
k , k i1 k-1
P —=1], = DPTed (o) Bl -1,
If we put 0,1,2,...,n instead of k, respectively, we then get
0 , 0
P’ -1, = 1==0)rpd ),
1 , 1 S B . |
pro1] ) = (T ) T ],
n _ p s n p" =1 n—1
P =1, = et en b, Pt -1,
If we multiply to the both sides above, we attain
3 n—2 [p] _ 1]
n Ogpl feegp™ L [
p" —1],,!=(-1) p+1 [p]z;p +tp [t — upy}q ! H ﬁ HI‘[P#Z] ),
j=0 P4 j=0

which gives to the asserted result (2.13). O
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Theorem 7. Forn € N, let p be a prime number and m,, be the sum of digits of n = ij:o a;p’ (apm, # 0)
in base p. The following identity holds true for j =0,1,...m:

2], B e

= _— 0<k<m) (2.14)
Lj - pkp _ qkp
i (),
Proof. For 0 < 7 < m, we get
) mam (3],
o (2], e e [[2],
apeg ol ]
_ =4 _p—q p—q
(pp_qp) LpLJJ pP—qP p2P—q2p . p{ﬁJp_q{ﬁJp
p—q pP—qP pP—qP pP—qP
(0—q) (0> —¢?) - (IOLDJJ — qUJJ)
- (P — qP) (%P — g2p) - -- (p[:ij - qU}Jp> ’
which completes the proof of this theorem. |

The following result can be easily derived from Theorem 5 and Theorem 7.

Corollary 4. Forn € N, let p be a prime number and m,, be the sum of digits of n = E;H:O a;p’ (ay, #0)
in base p. We then get

¥

n—my —1)4+n+1—m
[n]pq! _ (_1)( )/ (p—1)+n+

k=1

o
et
= [E—

We here provide a representation for ]."Z[,p 4] (—n) via the following theorem.

Theorem 8. The following relation holds true for any prime p and for any n € N:

n y _1

FLp,q] (—n) = (=1)"T'" 13 H (pq)’ (I‘Z[Dp’q] (n+ 1)) .
j<n41
(p.g)=1

Proof. In view of Lemma 1 and Theorem 3, we can write

1 = Fl[)p,q] (0) = FLp,q] (1+(-1) = GLM] (-1) FI{,’)’Q] (—1)
- 6Z[fuq] (—1) 61[7;),(1} (-2) pl[)pyq] (-2)=---= H 61[7”"’] (—4) F}[jp,q] (=n),
j=1

therefore, we get
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By utilizing the definitons of (p, ¢)-numbers and eLp ’q], we have
(tha=m) = ol T o7 0,
j<n+1
(p.g)=1
= BT o7 G0t I ),
j<n+l j<n+1
(p.)=1 (p.g)=1
= BT IT e T ).
j<n+1
(pg)=1
Thereby, the proof of this theorem is completed. O
Corollary 5. Substituting n — 1 by n in Theorem 8, one can readily write that
n—| 2=t ]
e Tl (1= m) = ()" LT T (o) (2.15)
(pJ,j<)n=1
Now, we introduce ! : Z, — {1,2,---,p} by assigning to =z € Z, its residue modulo pZ,. Let n =
ag + a1p + azp® + --- be a positive in base p. If ay # 0, then VTTIJ = a1 + asp + ---. So we obtain

n—pt”leJ =ap=1(n). ffag=0,then n—1=p—1+byp+bop?+---. Thus [%J =0b;+byp+---. So
wegetn—p{"leJ =14+(p-1)=p=I(n).
Hence, we give the following theorem.

Theorem 9. Forp # 2 and all © € Z,,, we have
U(x) q: j
Iy @) rpd (1-2) = (=)' lim [T (pq)’. (2.16)
(p],j<)n:1

Letting z = 1 in Theorem 9 yields to the following result

1 2 1) .
<FL”"” <2>> = (*1)“2)7}131% H (pg)’
()=

—limn_);H jen (pg)! if p=1(mod4),
= { 2T (pag)=1

lim,, 1 H jen (pg)) if p=3(mod4),
2 pa)=1

where we used the equality [ (%) =1 (pTH) = % by definition.
Corollary 6. We have for p =2 in Theorem 8,
n j n+l—|2 n—|% 2A
o e (o) = (" ED T oo = (oL g (07 12D (217)
j<n+1
(2,9)=1
We give an identity for special case p = 2.
Theorem 10. For all x € Zs, we obtain
4 @) T (1 —2) = ()" lim T (pa)’, (2.18)
(2l7)=1

where 1, (Z;io aj2j) =a.
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Proof. For n € N, by Eq. (2.15), we have

oy ey (1 —m) = (0" U T (o)
(@2l5)=1
Let n = ag 4+ a12 + a22%2 + --- in base 2. If ag # 0, thereby ap = 1 in base 2 and L"TAJ = a1 (mod 2).
Hence, we obtain (—1)”7“771J = (- = (-t = (_1)1+n1(n)- If ag = 0, then we see| 251 | =

{—1+a12;a222+...J _ {1+(a1—1)3+a222+...J — a1—1(mod?2). Therefore, we get (_Un—L”T*lJ _ (_1)2—(111—1) _

(—)tre = (—1)1+"1(n). Consequently, we derive the following identity

eyt Tt = n) = () T (e
j<n
(2,)=1
which provides the claimed result (2.18). O
3. THE p-ADIC (p,q)-EULER CONSTANT

The p-adic Euler constant v, € Q,, is firstly given by Diamond [6] in 1977 as follows:

- =T, (1) '
P
In this section, we explore the (p, ¢)-analogue of the p-adic Euler constant. We can readily consider that

T2 is locally analytic function thanks to Lemma 1.

Then, we derive the following theorem.

Theorem 11. For n € N, we have

(.al)’ (p.a])’
(i) ) _ (i) (1)+ 1 "z_:lpjlogp—qjlogq (3.1)
T4 (n) NN SO V) Rt (7.4 ' '
Proof. From Theorem 3, we know that
log (I‘L’”q] (n)) = log (Fz[,“q] (n— 1)) + log (e][f’ql (n— 1)) .
Then,
!/ !/ /
(reYy ) (TE) (-1 N () 1)
F}[)pyq] (n) F}[jp,q] (n—1) 6z[)p,q] (n—1)
!/ !/
(rk ) (1) RS () ()
ryt =S &)
which implies the desired result (3.1). O
Remark 3. The formula (3.1) can be called (p, q)-generalization of the known formula for p-adic gamma
function
I (n IV (1 1
p( ) — p( ) + Z =,
Lp(n)  Tp(1)  J
(p,j)=1

or (p, q)-generalization of p-adic analogue of the formula for classical gamma function

M) T 1
o) T T2
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Thereby, we are ready to define (p, ¢)-analogue of the p-adic Euler constant 'y£,p 4 as follows
I
[o.a] ._ (FLML W - (r[p,ql)' (1) = — (r[pm)' (0) (3.2)
Tpo F:Lp,fﬂ (1) p p ’ ’

The p-adic (p, g)-Euler constant has a limit representation by the following theorem.

Theorem 12. We have

1
,YZ[DPJI] — n]jﬁnéopfn 1-— (_1)1) pn—1-1 n :
el 1z]],

Proof. In conjunction with the Eq. (2.10), we have

F[ 4] ") = (—1 p
) =
Pq D pp,qp'
Then, we investigate
o1 | 1— F[P,Q] n
lim p—n 1— (_1)17 [? ]P7q = lim pi(p)
n—oo [p]p"’ -1 I:\‘QJ} ! n—oo pn
psq Pl o g

- _ (anq])/ (0) = WL”"’].

Corollary 7. By means of the Lemma 1, we deduce that ‘VLp’q]

A
—_

= (k) )

p p

4. THE p-ADIC (p,q)-BETA FUNCTION

In this part, we define (p, ¢)-extension p-adic beta function by means of the p-adic (p, ¢)-gamma function
discussed in the second section. Then, we present several properties, identities and relations for the mentioned

beta function.
The classical beta function B (z,y) is defined by means of the classical gamma functions as follows:

I'(z)T (y)
I'(x+y)’
which also have the following subsequent properties (c¢f. [16]):
B(z,y) = B(y,z)
B(z,y)=B(z,y+1)+ Bz +1y)

B(z,y) = (z,y €N)

X
B(rx+1,y) = B(z,
( Y) ( y)x+y
B(x,y+1)= Bz,
(z,y+1) ( y)x+y

B(:r+1,y)=§B<w7y+1)-

The p-adic beta function is defined by means of the p-adic gamma functions as follows:

Ty (@) Ty (v)

E e AR

) (‘Tay € Z;D)
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which also have the following subsequent properties (¢f. [10] and [16]):

By (z,y) = By (y,z)

W(Bp(aj,y+l)+3p(x+1’y))

T+y
Y

B, (z,y+1) :Bp(a:,y)m

- Bp(xay+1)'

Definition 3. Let p and q € C, with |p — 1|p <1 and|q— 1|p <1, p#1 and q # 1. We define the p-adic

(p, q)-beta function via the p-adic (p,q)-gamma functions as follows:

- (@) 17 ()
" (@ +y)

B (z,y) = ; (4.1)

forz,y € Z,.

Remark 4. In the case p =1, the p-adic (p, q)-beta function reduces to the the p-adic g-beta function, cf.
[10].

Remark 5. When ¢ — p =1, the p-adic (p,q)-beta function reduces to the usual p-adic beta function, cf.
[16].

We now ready to investigate the properties of the p-adic (p, ¢)-beta function.
Theorem 13. For x,y € Zj, the p-adic (p, q)-beta function is symmetric about x and y:
BZ[,”"I] (z,y) = B}[)m] (y, ). (4.2)
Proof. By (4.1), we readily get

0y @) 0 @) 1 () T (@)
e @ +y) Yy + )
which is the asserted result (4.2). ]

Bi[)p,q} (z,y) = _ Bg[)/%q] (z,7),

Theorem 14. For x,y € Zy, the p-adic (p, q)-beta function has the following formula:

[p,d] — el[jpm (z) [p,a]
Bp (:IZ + ]-, y) - [p q] Bp (.’E, y) . (43)
e (z+y)

Proof. In view of (2.7) and (4.1), we readily get

0y (@ + D) TP ()

Iy (@ +y+1)
& () T (@) 1 ()
& (@ +y) TP (@ +y)

" @) P @I o (@)
@@ty TPary) @ty
which is the desired result (4.3). O

B (a+1y) =

B][)PaQ] (1‘7 y) ’
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Theorem 15. For x,y € Z,, the p-adic (p, q)-beta function satisfies the following identity:

[p»q]
B (z,y+1) = #B}f’q] (z,y). (4.4)
& (z+y)

Proof. By (4.1), we readily get
7 (@) P (y 4 1)
Iy (@ +y+1)
" (@) e (y) T (y)
& (@ +y) TP (@ +y)

Bl (a,y+1) =

_ &) W@ SN0 g,
GV @ty) @ty @@ty
which is the claimed result (4.4). O
By Theorems 14 and 15, we see that
[p,d] [p.d] 1[’p7q] (z) [p.4] EL/W] (¥) [p,4]
Bt (x+1,y)+BS" (z,y+1) = WB A (, y)JrWB Az, y)
T+y e P (r+y
[p,al] [p.al
_ €p [( ])—‘,—e ( )Bz[)p,q] (w,y)
e (x4 y)
and
[P,Q] (z)
Bpflw+ly) = B @)
[p,q] [p,q]
_ ($) (y) B[p,q]
o [p ql [ q] (@ y)
) e (z+y)
[p ql
= [ ] (z) B A (zy4+1),
Epp “ (y)

which implies the following results.

Corollary 8. For x,y € Zy, the following formulas are valid:

[p al
_l’_
B (@,y) = ot - [pgﬁ (B @+ 1,9) + BP9 2,y +1))
e (2)+ep ™ ()
and ]
p.q
Bl (z 4 1,y) = 76’[; - (@) B (z,y 4 1)
& (Y)
We give the following theorem.
Theorem 16. Let x,y € Z,,. For p =2, we get
( 1)1+771(
BI[)p’q] (z,9) B{[}P#ﬂ (z+y,1—y)= [p 7 711132 H (pq)’ (4.5)
(v.5)=1
and for p # 2, we have
(71)1(9) i
B! (x,y) B! (¢ +y,1—y) = o lim [T (pa)’. (4.6)
et () Y

(p,J)=1
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Proof. From Definition 3, we easily compute that

PQ] ( PQ] (y) [ 4] (.’E + y) F;[gp’Q] (1 _ y)

)Tp

F[PaQ] (z + y) F[p’q] (33 + 1)
)T
[

Bl[j”"ﬂ (z,v) BI[{J"J] (z4+y,1—vy)

pq]( pq}() [pq](l y)

q] (z )F[P 4] (z)
Iy @)y (1 —y)
ez[)p,q] (

T

x)
It just remains to use the formulas (2.16) and (2.18) in order to obtain desired result (4.5) and (4.6). O
We provide the following theorem.

Theorem 17. Let x,y € Z,. We then obtain

ELP#J] (z) 61[)p7<ﬂ (

y) Bl (z,y). (4.7)

B (z 41,y 4+1) =
’ ! @ty + 1) e (@ +y)

Proof. In view of the Definition 3 and using (2.7), we readily see that

Iy @+ DI (y + 1)
Y (@ +1+y+1)
0y @+ 1) e (y) D (v)
& @ty + VTP @ +y+1)
[0,q]
- %B[P’q] (z+1,7),
& @+y+1)

which implies the asserted formula (4.7) thanks to (4.3). O

Bl[)p"ﬂ (x+1,y+1)

For z,y,&,v € Z,, we note that

Iy @) T () T ™ O T (7).

B (a,9) B9 (w +5,6) B9 (w+y+£,7) =
: Y (@ +y+6+7)

We give the following theorem.

Theorem 18. Let x € Z,. For p =2, we obtain

2 T) 1. j
Bz[)p’q] (.’IJ, 1— Q?) _ (_1) +n4 ( )}Lllg H <pq)J (48)
j<n
(p,g)=1
and for p # 2, we attain
l . j
Bz[)p7q] (z,1—12) = (—1) (y)+1 711112/ H (P(])J ) (4.9)
(p],j<)n=1

Proof. From Definition 3, we easily compute that

Iy @) O (1 —2)
Iy (1)

which implies the claimed result (4.8) and (4.9) in conjunction with (2.16) and (2.18). O

Bl (2,1 —2) =

_ng,q] () ng,q] 1—2z),
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By the motivation for usual binomial coefficient, for n, k € N with n > k, we consider the p-adic (p, q)-

[p,a]

binomial coefficients (}) by means of the p-adic (p, q)-factorial (2.1) as follows:

P
[p,4] n [p,q] n— k) [p,q]
(1) - o
&/ (kD
Thus, we give the following theorem.
Theorem 19. Let n,k € N with n > k. We have
[pq]
1
(”) B (n—k+ 1k +1) = ———————.
k/y ep (n+1)
Proof. The proof just follows from (4.1) and (4.10) with the formula (2.7). O

We provide the following theorem.

Theorem 20. Let n,k € N. We have
II J<k+1 (PQ)j

[p,q]
Blpl (—n, k) = (-l e AL oo
& (n) e (k) B (n, k) T s<nn (pa)’
(p,d)=1
Proof. The proof of this theorem just follows from (4.1), (2.7) and Theorem 8 with some basic computations.
(|
Finally, we present the following theorem.
Theorem 21. Let x € Z,. For p =2, we obtain
2 ) 1. j
Bl (2,1 — z) = (—1)"™( )%1&; IT ¢ (4.11)
i<n
(p,g)=1
and for p # 2, we attain
(p,d] - 1+ . j
Blrd (2,1 —z) = (-1) Jim II ¢ (4.12)
j<n
(p.g)=1
Proof. From Definition 3, we easily compute that
F[p,q] F[p,q] 1_
Bl (2,1 — z) = -2 (@)™ (A—=) _ —rleal ()Tl (1 — ),
F[Pv‘l] (1) P P
P

which implies the claimed result (4.8) and (4.9) in conjunction with (2.16) and (2.18). O

Remark 6. The results derived in this part are generalizations of the results obtained in [10] and [16]

5. CONCLUSION

In this paper, we have firstly generalized p-adic factorial function and p-adic gamma fuction based on (p, q)-
numbers. Utilizing this generalizations, we have constructed some recurrence relations and identities. By
using some properties of (p, ¢)-numbers, we have derived several new and interesting identities and formulas
for (n!)][op 4 and I‘Z[)p -4l (z). As an application, we have derived the p-adic (p, ¢)-Euler constant by means of
the p-adic (p, ¢)-gamma function and have given a limit representation for the foregoing constant. Moreover,
we have considered (p, ¢)-extension of the p-adic beta function via the p-adic (p, ¢)-gamma function and then
we have acquired several formulas and identities.
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