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Abstract

Recent works in mechanical fatigue consider that a threshold of entropy ex-
ists, the fracture fatigue entropy. The determination of this quantity is usu-
ally done considering empirical models for the mechanical power estimation.
In this paper, we experimentally observe the existence of a threshold of en-
tropy and exergy in low cycle fatigue for a flat Al-2024 specimen avoiding the
use of a model, solely measuring the heat generated during a fatigue test. Re-
sults are then compared considering various hypotheses (1D heat dissipation
with convection and radiation considered as heat sources, and, heat trans-
fer from a fin with convection and radiation as boundary conditions) to an
empirical mechanical model known in the literature and deviations between
them are discussed.
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1. Introduction

Mechanical fatigue is a phenomenon of materials ageing. Knowing the
mechanical behaviour of materials under fatigue enables to estimate their
lifetime. Until now, several models have been proposed to estimate the fa-
tigue life of a material. First, models were based on deformation [1, 2] and
then models have been related to energy with the deformation work [3, 4, 5].
These models allow the estimation of the fatigue life empirically avoiding
the use of multiple specimen experimentations, however, the fatigue life pre-
dictions are sometimes inaccurate [6]. Another way has also been proposed
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where heat sources analysis is considered as a new component to deal with
fatigue features. It appears that heat dissipated in the material is mostly
constant during the fatigue lifetime and the dissipation level depends on
the loading amplitude [7]. Thus, the idea of an energetic threshold emerges
[8, 9, 10] but cannot be properly interpreted. Recently, new concepts have
emerged to study fatigue life such as fracture fatigue entropy [11, 12, 13]
which can be interpreted as the material degradation along fatigue cycles,
and exergy, where environment and quality of deformation are taken into
account [14]. The main purpose of this study is to determine the fatigue
lifetime, for low cycle fatigue, from the entropy threshold and to compare
this value with the one obtained using a well-known empirical mechanical
model.

2. Thermomechanical formulation and experimental setup

2.1. Thermodynamical framework
The two laws of thermodynamics are applied to a specimen submitted to

fatigue:

ρu̇ = −div Q̇+ σ : D ρṡ = −div

(
Q̇

T

)
+ π̇ (1)

The second law can be developed as:

ρṡ+
div Q̇

T
−

(
Q̇

T 2
· ∇T

)
= π̇ ≥ 0 (2)

Where π̇ is the specific entropy generated flow, produced by the irre-
versibility of the thermodynamical transformation. Replacing the first prin-
ciple in the second law, and using the Helmholtz free energy (ψ = u − Ts)
leads to:

−ρ
T

[(
ψ̇ + sṪ

)]
+
σ : D

T
−

(
Q̇

T 2
· ∇T

)
≥ 0 (3)

Free energy is considered as a function of multiple state variables (intro-
ducing Vk a set of internal variables related to phenomena at lower scales)
[15]:

ψ̇ =
dψ

dεe
· ε̇e +

dψ

dT
· Ṫ +

dψ

dVk︸︷︷︸
Ak

·V̇k (4)
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To simplify, the small deformation hypothesis can be used in low cycle
fatigue (D = ε̇e + ε̇p). It leads to the expression of the specific entropy
generated flow:

π̇ =
σ : ε̇p
T

+

(
−AkV̇k

T

)
+

(
− Q̇
T 2
· ∇T

)
≥ 0 (5)

Where:

•
[
σ : ε̇p
T

]
is the specific entropy flux generated by plastic deformation

•

[
−AkV̇k

T

]
is the specific entropy flux generated by unrecoverable elastic

deformation stored in the material

•

[
− Q̇
T 2
· ∇T

]
is the specific entropy flux generated by heat flux

The fracture fatigue entropy [16] or the maximum entropy generated by
irreversibility during fatigue is:

FFE =

∫ tf

0

π̇dt (6)

tf being the time to failure. In our case, we will concentrate on low cy-
cle fatigue for an Al-2024 specimen. For low hardenable specimen and for
high enough test speed, the second and the third terms in equation (5) are
generally neglected [15]:∣∣∣∣∣AkV̇kT

∣∣∣∣∣ <<
∣∣∣∣σ : ε̇p
T

∣∣∣∣
∣∣∣∣∣ Q̇T 2
· ∇T

∣∣∣∣∣ <<
∣∣∣∣σ : ε̇p
T

∣∣∣∣ (7)

The flux of entropy produced reduces in this case to:

π̇ =
σ : ε̇p
T
≥ 0 (8)
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2.2. Experimental procedure and hypotheses

Experimental tests are done on an Al-2024 specimen using an INSTRON
8501 device allowing repeated traction tests (R = 0) for different loading am-
plitudes comprised between 10.5 and 12 kN and with loading frequencies of 5
and 10 Hz. An infrared camera FLIR A325sc is used to measure surface tem-
perature (working wavelength 7.5-13 µm). The different configurations are
summarised in Table.1 and the material properties are presented in Table.2.

Frequency Test Number Load Emissivity Dimensions
[Hz] [−] [kN ] [−] [mm]

5
N◦1 10.5

0.95 57×12×2.5

N◦2 - N◦3 11
N◦4 - N◦5 11.5

N◦6 12

10

N◦7 10.5
N◦8 11
N◦9 11.5
N◦10 12

Table 1: Different configurations of tests performed on Al-2024 specimens

Density Thermal Conductivity Heat capacity UTS Young Modulus
[kg/m3] [W/m.K] [J/kg.K] [MPa] [GPa]

2780 121 875 399 73.1

Table 2: Properties of the Al-2024

The main hypotheses used in this study are:

• An unidirectional diffusion of heat, flowing only in the specimen length
direction since jaws of the fatigue machine act as temperature sinks.
We can verify this assumption experimentally, or using the Biot number
(Bi∼ 10−5 << 1).

• The plastic deformation work is completely converted into heat

• The plastic deformation work is assumed homogeneous implying the
source term in the heat equation to be space independent.
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3. FFE calculation

As shown in section 2, the calculation of the FFE requires the measure-
ment of temperature and plastic deformation work. In the literature, the
work of plastic deformation is estimated by empirical models such as the
Morrow equation or the Park and Nelson model [17, 18]. In this work, an
estimate of this entropy is obtained by only using experimental results from
the temperature measurements. In subsection 3.1, the Park and Nelson em-
pirical model found in the literature is introduced, then, in subsection 3.2,
FFE is estimated from infrared thermography.

3.1. FFE calculation with an empirical mechanical model

The empirical model used to estimate the entropy generated during fa-
tigue is the Park and Nelson model [5] which relates the cyclic deformation
work to the number of cycles endured by the material:

WT = Wp +We = ANα
f +BNβ

f (9)

A = 22+b+cσ′fε
′
f

(
c− b
c+ b

)
α = b+c B =

22b+1 (1 + ν)σ′f
2

3Ey
β = 2b

(10)
Since the elastic part of deformation does not appear in the entropy gen-

eration, we only keep the plastic deformation rate which is estimated by:

σ : ε̇p = ANα
f · f (11)

The fatigue parameters (σ′f , ε
′
f , b, c) are estimated using two common laws

from literature, the Uniform Material Law (UML) from [19] and the Median
Method (MM) from [20]. For Aluminium, the parameters are given by:

σ′f = 1.67UTS ε′f = 0.35 b = −0.095 c = −0.69 UML (12)

σ′f = 1.9UTS ε′f = 0.28 b = −0.11 c = −0.66 MM (13)

To take into account the mean stress (since R = 0), we can use the
Dowling formulation [21, 22], leading to the prefactor:

m =

(
1−R

2

)c/2b
(14)

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2019                   doi:10.20944/preprints201905.0250.v1

https://doi.org/10.20944/preprints201905.0250.v1


With R, the loading ratio. The mean prefactor is obtained for the two fatigue
parameters laws giving m ≈ 0.1.

The entropy generated is finally:

FFEPN =

∫ tf

0

m · ANα
f · f

T
dt (15)

where FFEPN refers to the estimation using Park and Nelson’s model. The
final value of the FFE presented in the next sections comes from the mean of
the values estimated using the Median Method (MM) and using the Uniform
Material Law (UML).

3.2. FFE calculation using thermography

3.2.1. Estimation without convection and radiative parts

Using energy conservation leads directly to the estimation of the fracture
fatigue entropy by heat dissipation (HD):

FFEHD =

∫ tf

0

(
ρCṪ + divQ̇

T

)
dt (16)

Note that thermoelastic and thermoplastic couplings are not taken into
account, indeed, thermoelasticity vanishes on one cycle and thermoplastic
coupling is negligible when the mechanical behaviour varies little with tem-
perature.

The thermal evolution of the material in the present case exhibits two
distinct phases. At the beginning of the fatigue test (non stationary phase),
plastic deformation is predominant implying a rapid increase in temperature
(see figure 1). Then, the work hardening of the material can accommo-
date the deformation and the temperature is observed to decrease until the
second phase. This latter (steady state) shows a stabilisation in the ther-
mal behaviour of the material ; the macroscopic mechanical behaviour has
turned elastic nevertheless plasticity remains, as shown in figure 1 by the
positive temperature difference with the outside. During this phase, there
is an equilibrium between heat production by plastic strain mechanisms and
heat losses with exterior.

(a) Heat accumulation estimation:
Heat accumulation (ρCṪ ) is evaluated by the use of a spatial mean
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temperature solely dependent on time (considering a homogeneous me-
chanical deformation). A piece-wise linear spatial mean temperature
evolution (Tm) is used to characterise the energy accumulation:

Tm(t) = ait+ bi

(
dTm
dt

)
i

= ai t ∈ [ti, ti+1] ⊂ [0, tf ] (17)

ai : represents the temperature variation in time obtained by linear fit
in the temporal range [ti, ti+1], this range being included in the entire
temporal range [0, tf ], bi a parameter obtained by fit for continuity, and
with tf being the time of duration of the test.

Figure 1: Temperature evolution for the Test N◦3 where two different thermal regimes
can be observed

The power and entropy accumulated in the sample are calculated using:

Pac = ρCṪ ≈ ρCṪm (18)

FFEac =

∫ tf

0

ρCṪ

T
dt ≈

∫ tf

0

Pac
Tm(t)

dt = ρC
∑
i

ln

(
aiti+1 + bi
aiti + bi

)
(19)

For the sake of brevity, the integral form of the different FFE expres-
sions will be kept in the following equations.

(b) Heat conduction estimation:
For the heat conduction estimation, considering that heat sources com-
ing from the mechanical deformation are spatially uniform allows the
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use of a parabolic fit for the temperature profile along the specimen
(see figure 2). The estimation of the three fit parameters enables the
calculation of the thermal conduction power through the material (1D
hypothesis), where the spatial temperature profile is fitted at different
times to deal with time effects:

T (y) = ayy
2 + byy + cy Pco(t) = divQ̇(t) = −kd

2T

dy2
(t) = −2kay(t)

(20)

FFEco =

∫ tf

0

divQ̇(t)

T
dt ≈

∫ tf

0

Pco(t)

Tm(t)
dt =

∫ tf

0

−2kay(t)

Tm(t)
dt (21)

Figure 2: Parabolic fit and measured temperature along the length (centerline) of the
specimen at t ≈ 322s (Test N◦3)

The overall generated entropy is then estimated as:

FFEHD = FFEco + FFEac ≈
∫ tf

0

−2kay(t)

Tm(t)
dt+

∫ tf

0

ρC

(
Ṫm(t)

Tm(t)

)
dt

(22)
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3.2.2. Estimation including convection and radiation

(a) Considering convection and radiation as heat sources
One can improve the former estimation taking into account the con-
vective and radiative parts [10, 23]. The estimation of fatigue fracture
entropy is possible considering these two parts as source terms in the
equation (16). Thereby the total entropy generated during the fatigue
tests can be obtained from Thermal Balance:

FFETB =

∫ tf

0

(
ρCṪ + divQ̇+ Pconv + Prad

T

)
dt (23)

The specific convecto-radiative power dissipated is estimated by:

(Pconv + Prad) = hG
Sconv
Vspe

(Tm(t)− T0) hG = hconv + hrad (24)

With:

Sconv = 2× L× l + 2× l × ep is the exchange surface

Vspe = l × L× ep is the specimen volume

L,l,ep are the length, width and thickness respectively

The global heat transfer coefficient hG is the sum of a convective part
hconv and a radiative part hrad. The heat convection coefficient is es-
timated using several correlations from the literature (see Appendix A
for more details). For the radiation, a Taylor expansion is used near
the environment temperature T0 (linearization of the Stefan-Boltzmann
law), which is near 288.15K:

T 4
m(t) = T 4

0 + 4T 3
0 (Tm(t)− T0) hrad = 4εςT 3

0 ≈ 5.3Wm−2K−1

(25)
With ε the emissivity (taken as 0.95) and ς = 5.67 10−8Wm−2K−4, the
Stefan-Boltzmann constant. More details on emissivity uncertainties
are discussed in Appendix B. The generated entropy from convection
and radiation is then estimated by:

FFEconv + FFErad ≈
∫ tf

0

[
hG
Sconv
Vspe

(Tm(t)− T0)
]

Tm(t)
dt (26)
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Finally including all the contributions leads to:

FFETB = FFEHD + FFEconv + FFErad (27)

FFETB ≈
∫ tf

0

−2kay(t)

Tm(t)
dt+

∫ tf

0

ρC

(
Ṫm(t)

Tm(t)

)
dt+

∫ tf

0

[
hG
Sconv
Vspe

(Tm(t)− T0)
]

Tm(t)
dt

(28)

(b) Considering convection and radiation as boundary conditions
Another model from the literature permits the estimation of intrinsic
dissipation d1 in the material [24, 25, 26, 27, 28]. Based on the heat
conduction and assuming an uniform temperature across the thickness
and the width, plus, using Neumann boundary conditions leads to a
thermal fin like equation (1D hypothesis):

ρCθ̇T + ρC
θT
τ
− k∂

2θT
∂y2

= d1 θT = (Tm − T0) (29)

τ =
ρCepl

2hG(ep + l)
hG = hconv + hrad (30)

The entropy is thus directly estimated through:

FFEd1 =

∫ tf

0

d1
T
dt (31)

The same procedure as previously is used to evaluate heat accumula-
tion. The estimation of d1, also assumed uniform along the specimen,
can be obtained by fitting the temperature profile along the specimen
length (see figure 3):

θT = P1 exp
y

√√√√ρC
kτ +P2 exp

−y

√√√√ρC
kτ +

τd1
ρC

(32)

To take into account time evolution, we can consider a constant d1 on
the temporal range [ti, ti+1], the dissipated power is evaluated as (for
Thermal Fin):

PTF = d1 =

(
1

tf

)∫ tf

0

d1(t)dt ≈
(

1

tf

)∑
n

d1(tn)(tn+1 − tn) (33)
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Figure 3: Exponential fit and measured temperature along the length (centerline) of the
specimen at t ≈ 322s (Test N◦3)

And the generated entropy is given by:

FFETF ≈
∫ tf

0

ρC

(
Ṫm(t)

Tm(t)

)
dt+

∫ tf

0

d1(t)

Tm(t)
dt (34)

3.2.3. FFE evolution in time

The temporal evolution of the fracture fatigue entropy can be analysed
using an interval time-based integration. The mean time derivative of the
fracture fatigue entropy ˙FFEj on each interval [tj, tj+1] is given by:

˙FFEj ≈
(

1

tj+1 − tj

)∫ tj+1

tj

P (t)

Tm(t)
dt (35)

P being the power corresponding to the quantity under study (Pac,Pco,Pconv,Prad
or Pd1).

Another quantity to study temporal evolution, is the cumulative entropy
generation in the temporal range [0, tj] with tj ≤ tf which can be calculated
using:

FFEc ≈
∫ tj

0

P (t)

Tm(t)
dt (36)

This quantity is very important since it permits to verify if the second prin-
ciple is fulfilled which requires FFETB ≥ 0 and FFETF ≥ 0.
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Besides entropy, another thermodynamical quantity called exergy can be
used to complete the mechanical analysis.

4. Exergy calculation

The thermodynamical study so far is based on the two classical principles.
Thus, a new thermodynamical quantity is necessary if we want to extend the
thermodynamical study of fatigue.

The notion of quality is important in the field of thermodynamics, indeed,
from the point of view of the first principle, an energetical hierarchy does not
exist. However, the second principle allows to distinguish the different ener-
gies in particular the non equivalence heat-work. To do so, it is possible to
create a thermodynamical potential taking into account the environmental
effects and allowing the traduction of any energy into an equivalent quantity,
a mechanical equivalent potential called exergy (see [29, 30, 31] for details
on the history of this quantity), defined as the maximum useful work recov-
erable from a system in contact with the environment or as a distance from
equilibrium.

Exergy in fatigue can be expressed as a linear combination of the first
and second principle (considering negligible the work exerted by the room
pressure on the material) :

ρẋ = ρ (u̇− T0ṡ) (37)

Developing each terms leads to [14]:

ρẋ = −div Q̇
(

1− T0
T

)
︸ ︷︷ ︸

ẋq

+σ : ε̇p

(
1− T0

T

)
︸ ︷︷ ︸

ẋp

+σ : ε̇e︸ ︷︷ ︸
ẋe

−
(
−T0
T
AkV̇k

)
︸ ︷︷ ︸

ȧnk

(38)

ẋe: Specific exergy flow associated to elastic deformation

ẋq: Specific exergy flow associated to heat transfer

ẋp: Specific exergy flow associated to plastic deformation

ȧnk: Specific anergy flow associated to internal variables

Ca =

(
1− T0

T

)
: Carnot Factor

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2019                   doi:10.20944/preprints201905.0250.v1

https://doi.org/10.20944/preprints201905.0250.v1


This equation highlights that the energy of plastic deformation has a lower
quality than pure mechanical work (the Carnot Factor acts as the quality
factor) making the deformation as a particular mechanical phenomenon. In
other terms, if a machine could receive energy accumulated during a mate-
rial’s fatigue, it would get more energy (exergy) from a material’s fatigue at
higher temperature than a material’s fatigue at lower temperature. We will
thus concentrate on the exergy of plastic deformation. The plastic exergy
generated can be expressed as a function of the FFE:

xp =

∫ tf

0

ẋpdt ≈
∫ tf

0

P (t)

Tm(t)
(Tm(t)− T0) dt (39)

The advantage of this quantity is to take into account the effect of the en-
vironment temperature on the fatigue irreversibility. Furthermore, for time
studies, this quantity can also be treated as the FFE according to eq.35 and
eq.36 to get the mean time derivative and the cumulative exergy.

5. Results and discussion

Two approaches have been compared to estimate the fracture fatigue en-
tropy of a material. The first approach uses a classical empirical mechanical
model (Park and Nelson) and fatigue parameters from literature (Uniform
Material Law and Median Method) with a particular prefactor taking into
account the mean stress (R = 0). The second one is based on the experi-
mental determination of temperature by thermography to estimate the heat
flowing in the material. The first estimation (parabolic fit) of the FFE can
be refined taking into account convective and radiative parts as source terms.
The second estimation (exponential fit) takes convective and radiative parts
as boundary conditions. Finally, the exergy of plastic deformation which
traduces the thermodynamic quality of the mechanical deformation has also
been investigated.

5.1. Fracture fatigue entropy

The existence of a threshold, i.e. a constant value of the fracture fa-
tigue entropy for the Al-2024 is here observed experimentally and appears
to be an intrinsic parameter of the material (independent of the load and
frequency), supporting the work of [16, 17] on the fracture fatigue entropy.
In addition, the Park and Nelson empirical model (corrected with the mean
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Figure 4: FFE comparison between experimental methods (TB and TF) and empirical

model (PN) - Loads : ♦ : 10.5 kN - © : 11 kN - 9 : 11.5 kN - � : 12 kN ; Frequencies -

9 : 5 Hz - F : 10 Hz

stress prefactor) is found to be in accordance with the experimental results,
where a constant value of the FFE emerges from the various tests, close to
the experimental one (see figure 4).

From these tests, it can be seen that the components of convection and
radiation are negligible compared to pure conduction (the ratio of FFEconv+
FFErad to FFETB is on average equal to 3.13%, see figure 5). The low
contribution of the convection and radiation on the FFE calculation is also
confirmed by the very close estimations using parabolic fitting (FFETB) and
exponential fitting (FFETF ) (see figure 6).

The time study presented in fig.7 shows an important part of the FFE cre-
ated during the first phase (non stationary phase) of the fatigue test i.e. cre-
ated by the first work hardening (FFEac,j +FFEco,j or FFEac,j +FFEd1,j).
After this phase, strain is converted into heat almost steadily (FFEco,j or
FFEd1,j). The convection and radiation parts appear marginal during the
fatigue test. In terms of FFEc, this quantity shows two tendencies, entropy
accumulates very quickly (fast burst) in the unsteady phase and tends to
stabilise (seems to be linear) in the stationary phase. Moreover, the results
show positive FFETB,c and positive FFETF,c respecting the second law of
thermodynamics.
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Figure 5: FFE comparison between heat dissipation (HD) and convective (conv) and

radiative (rad) parts - Loads : ♦ : 10.5 kN - © : 11 kN - 9 : 11.5 kN - � : 12 kN ;

Frequencies - 9 : 5 Hz - F : 10 Hz

Figure 6: FFE comparison between thermal balance (TB) and thermal fin (TF) including

all contributions - Loads : ♦ : 10.5 kN -© : 11 kN -9 : 11.5 kN - � : 12 kN ; Frequencies
- 9 : 5 Hz - F : 10 Hz

5.2. Exergy of plastic deformation

The results of the exergy of plastic deformation are plotted in figure 8.
These results consolidate the FFE results where a threshold of exergy of
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Figure 7: Time interval ˙FFEj components and FFEc calculated for the test N◦3 as a
function of the number of cycles to failure

plastic deformation seems to exist. The advantage of the exergy of plastic
deformation is that it takes into account the influence of the environment
on the irreversibility of the thermodynamical system and compares different
tests under various environmental conditions. Even if, there is no significant
difference between the evolution of the FFE and xp, it can be seen that
taking into account the environment temperature acts as a normalisation.

Like the FFEj, estimating a xp
j between [tj, tj+1] shows that the mate-

rial is highly affected at the beginning of the lifetime of the material. Using
the exergy of plastic deformation enables to highlight the thermodynamical
degradation of the material. Here, it highlights that the major thermodynam-
ical degradation is caused by the work hardening during the non stationnary
phase (see figure 9 versus figure 7). Another interesting feature is that a
quick estimate of xp is obtainable using only the non stationary phase (figure
9).

6. Conclusion and perspectives

In this paper, we have studied low cycle fatigue in a classical thermo-
dynamics framework. From the thermomechanical formulation, one can
estimate the fracture fatigue entropy based on temperature measurements
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Figure 8: Exergy of plastic deformation dissipated during fatigue for each test, obtained
by two experimental methods (TB and TF) and the empirical model (PN)

(where emissivity uncertainty is shown to have a small influence on the FFE
estimation). Estimation of this quantity based on a mechanical empirical
model is also possible. The various estimations seem to converge towards
the fact that a constant fracture fatigue entropy exists, where the Park and
Nelson empirical model (corrected with the prefactor for mean stress) pro-
duces a value in accordance with the experimental determination procedure.
In this study, the influence of environment through convective and radiative
parts are negligible, and in terms of exergy of plastic deformation, the results
confirm the existence of a threshold, and that thermodynamical degradation
is mainly due to the work hardening in the non stationnary phase.

Further tests are suitable to verify the independence of the testing param-
eter in a broader range of loadings and frequencies. Finally, new tests will be
conducted in specific environments where temperature, pressure or chemical
potential can vary, in which the use of the exergy of plastic deformation may
become the quantity to be studied replacing the fracture fatigue entropy.

Appendix A. Heat transfer coefficient estimation

Appendix A.1. Dimensionless numbers

The specimen is considered as a vertical plate being submitted to natural
convection of air. To estimate heat transfered by convection, we need to
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Figure 9: Time interval ẋj
p components and xp

c for the test N◦3 as a function of the
number of cycles to failure

estimate the convective heat transfer coefficient. This coefficient is related
to the Nusselt number expressed as:

Nu =
hconvLc
λF

(A.1)

In natural convection the dimensionless numbers of interest are the Prandtl
number and the Grashof number (their product being the Rayleigh number)
expressed as:

Ra = Gr · Pr =
gβc (Tm − T0)L3

νFTνFh
(A.2)

Thermophysical properties of air are evaluated at the film temperature,
i.e. using a mean temperature taken between the vertical surface tempera-
ture of the specimen and the air temperature calculated from the empirical
formulas in [32]. The estimation of the Nusselt number (and thus hconv) is
possible using the natural convection correlations on the Rayleigh number
from the literature.

Appendix A.2. Correlations

Several correlations (equations (A.3),(A.4),(A.5) from [23] and equation
(A.6) from [33]) exist for vertical plates submitted to natural convection
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leading to very close results for the convective heat transfer coefficient. The
mean estimation (using an average on all the correlations) obtained for the
convective heat transfer coefficient for each tests is plotted in figure A.10.

Nu =

0.825 +
0.387 Ra1/6[

1 +

(
0.492

Pr

)9/16
]8/27


2

(A.3)

Nu = A (Gr · Pr)1/4 A4 =
Pr

2.43478 + 4.884 Pr1/2 + 4.95283Pr
(A.4)

Nu = 0.667

(
Pr

0.952 + Pr

)1/4

Ra1/4 (A.5)

Nu = 0.59Ra1/4 104 < Ra < 109 Nu = 0.13Ra1/3 109 < Ra < 1013

(A.6)

Figure A.10: Mean convective coefficient obtained from the calculation of the different
Nusselt numbers given in equations (A.3) to (A.6) - Loads : ♦ : 10.5 kN - © : 11 kN - 9

: 11.5 kN - � : 12 kN ; Frequencies - 9 : 5 Hz - F : 10 Hz

We have here considered that our specimen was smooth, in the case of a
rough surface, other correlations have to be used [34]. In addition, the former
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correlations are valid for specimens which are not moving. In our case, the
loading implies a slight displacement which has to be studied.

Appendix A.3. Correlations validity

Since the fluid (air) is viscous its velocity is imposed by the specimen (no
slip condition). To see if the velocity is imposed by the specimen cycling
or through a density gradient (temperature gradient of the fluid), the two
components can be compared using the Richardson number (ratio of Grashoff
number to the squared Reynolds number) :

Ri =
Gr

Re2
=
gβc (Tp − T0)L

v2
(A.7)

An order of magnitude of the velocity imposed by the specimen can be ob-
tained considering that the velocity is near the velocity of the specimen in
the elastic loading regime. Using table.1 and table.2, and the fact that the
loading varies from 0 to maximal amplitude during the time (1/2f) where f
is the loading frequency, the worst case scenario (12 kN - 10 Hz) gives the
mean velocity as :

v =
∆l

∆t
≈
(

∆σ

Ey

)
L

∆t
= 6.2 · 10−3m/s (A.8)

The Richardson number is then approximately (taking Tm − T0=1K):

Ri =
9.81 · (1/293.15) · 1 · 5.7 · 10−2

(6.2 · 10−3)2
≈ 50 (A.9)

We see here that the fluid flow is driven by the natural convection, and the
velocity being small, the correlations for vertical planes are sufficient.

Appendix B. Emissivity error influence

When studying a particular range of wavelength [λ1, λ2], one can perform
the irradiance integration considering fractions of emitted power [35]:∫ λ2

λ1

Lλdλ = [f(λ2T )− f(λ1T )] ςT 4 (B.1)
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With :

f(λT ) =
15

π4

∞∑
m=1

emξ

m4

(
6 + 6(mξ) + 3(mξ)2 + (mξ)3

)
ξ =

hpcl
kbλT

(B.2)

The comparison between black body and real body radiation is defined
by the emission factor (ε) through a ratio between the black body irradiance
and the real body irradiance (in the same conditions):

ελ(λ, T, θ) =
Lλ(λ, T, θ)

L0
λ(λ, T )

(B.3)

This factor is comprised between 0 and 1, and depends on the wavelength,
temperature, emission angle, the material under study, its surface condition
and optical parameters. From this factor, one can evaluate the irradiance
temperature Tλ which is the temperature of a body if it was a black body.
In the case of a range of wavelength, we have:∫

λ

Lλ(T ) =

∫
λ

ελL
0
λ(T ) =

∫
λ

L0
λ(Tλ) (B.4)

In our case, we have hypothesized the value of the emissivity of our
painted specimen beeing equal to 0.95. Recalling that the wavelength range
is λ ∈ [7.5− 13]µm, we can analyse the error committed on the temperature
measurement if the emissivity was 0.9 or 0.85 (experiments reveal that 0.9 for
Al-2024 emissivity is more admissible [36]). Numerical calculation permits
to estimate that for ε = 0.9 and ε = 0.85, the temperature has to be incre-
mented by 3K and 6K respectively. This shift in the measured temperature
does not imply many changes, indeed, the first method requiring a parabolic
fit does not need the intercept. In the convection part and in the estimation
based on the exponential fit, environment temperature and material tem-
perature are shifted thus temperature difference does not change. Finally,
the only part changing is the radiative part, where the radiative equivalent
transfer coefficient becomes (using Pascal’s triangle):

h′rad = 4(ε− c1)σ(T0 + c2)
3 (B.5)

h′rad = 4εσT 3
0︸ ︷︷ ︸

hrad

+
[
(3 ∗ T 2

0 ∗ c2) + (3 ∗ T0 ∗ c22) + c32
]
− 4c1σ(T0 + c2)

3 (B.6)

With: T0 ≈ 18.7◦C, h0 ≈ 5.36Wm−2K−1 and c1 = {0.05; 0.1} and c2 =
{3; 6}. The calculation of the corrected radiative equivalent transfer coeffi-
cient implies h′rad = {5.23; 5.10}Wm−2K−1 (less than 5% difference).
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Nomenclature

Symbols

A,B Park & Nelson coefficients Pa

ai, bi Parameters from the linear fit of the spatial mean temperature
in time Ks−1 −K

Ak Thermodynamical force associated to internal variables J m−3

˙ank Specific anergy flow associated to internal variables W m−3

ay, by, cy Parameters from the parabolic fit of the temperature in the spec-
imen length Km−2 −Km−1 −K

b Fatigue strength exponent −

C Specific heat J kg−1 K−1

c Fatigue ductility exponent −

Ca Carnot factor −

cl Light velocity ms−1

D Rate of deformation tensor (strain tensor per unit time) s−1

d1 Spatial mean of intrinsic dissipation Wm−3

ep Specimen thickness m

Ey Young modulus Pa

f Frequency Hz

˙FFEj Mean time derivative of the Fracture Fatigue Entropy W m−3 K−1

FFE Fracture Fatigue Entropy J m−3 K−1

FFEc Cumulated Fracture Fatigue Entropy J m−3 K−1
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g Gravitational acceleration ms−2

Gr Grashof number −

hconv Convection heat transfer coefficient Wm−2K−1

hG Convecto-radiative heat transfer coefficient Wm−2K−1

hp Planck constant Js

hrad, h
′
rad Radiation heat transfer coefficient Wm−2K−1

k Material conductivity Wm−1K−1

K ′ Cyclic strength coefficient Pa

kb Boltzmann constant JK−1

L Specimen length m

l Specimen width m

Lc Characteristic length m

Lλ(L
0
λ) Spectral irradiance (black body) Wm−2K−1

m Dowling prefactor for mean stress −

n′ Cyclic strength exponent −

Nf Number of cycles to failure −

Nu Nusselt number −

P Dissipated power W

Pr Prandtl number −

Q̇ Surface heat flux W m−2

Ra Rayleigh number −

Re Reynolds number −

Ri Richardson number −
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S Surface convected and radiated m2

s Specific entropy J kg−1 K−1

ṡ Specific entropy flux W kg−1 K−1

t Time s

T Absolute temperature K

Ṫ Absolute temperature variation Ks−1

T0 Absolute environment temperature K

tf Time to failure s

tI Time to the beginning of the steady state s

Tm Spatial mean temperature K

Ṫm Spatial mean temperature variation Ks−1

u Specific internal energy J kg−1

u̇ Specific internal power W kg−1

UTS Ultimate tensile strength Pa

V Volume m3

v Velocity ms−1

V̇k Rate of variation of internal variables J m−3

Vspe Volume of the specimen m3

Ẇ Work of deformation per unit time W m−3

Ẇe Work of elastic deformation J m−3

Ẇp Work of plastic deformation J m−3

ẆT Work of total deformation J m−3

ẋ Specific exergy flux W kg−1
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ẋe Specific exergy flow associated to elastic deformation W m−3

xp Specific exergy associated to plastic deformation J m−3

ẋp Specific exergy flow associated to plastic deformation W m−3

ẋq Specific exergy flow associated to heat transfer W m−3

y Spatial variable m

Greek Symbols

α, β Park & Nelson exponents −

βc Thermal expansion coefficient K−1

ε Emissivity −

ε Total strain −

ε′f Fatigue ductility coefficient −

ε̇ Total strain rate s−1

εe Elastic strain −

ε̇e Elastic strain rate s−1

εp Plastic strain −

ε̇p Plastic strain rate s−1

λ Wavelength m

ν Poisson’s ratio −

νFh Air cinematic viscosity m2 s−1

νFT Air thermal diffusivity m2 s−1

Ω Volume variable m3

π̇ Entropy generation flow W m−3 K−1
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ψ Helmholtz specific free energy J kg−1

ψ̇ Helmholtz specific free energy flux W kg−1

ρ Material density kg m−3

σ Stress tensor J m−3

ς Stefan Boltzmann constant Wm−2K−4

σ′f Fatigue strength coefficient Pa

τ Time constant s

θT Mean temperature difference between specimen and environment
K

θ̇T Mean temperature difference variation Ks−1
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