

1 Article

2 **A strain of *Bacillus thuringiensis* containing a novel**
3 ***cry7Aa2* gene that is highly toxic to *Leptinotarsa***
4 ***decemlineata* (Say) (Coleoptera; Chrysomelidae)**5 Mikel Domínguez-Arrizabalaga ¹, Maite Villanueva ¹, Ana Beatriz Fernandez ¹,
6 and Primitivo Caballero ^{1,*}7 ¹ Institute for Multidisciplinary Research in Applied Biology-IMAB; Universidad Pública de Navarra;
8 Mutilva, Navarra, Spain; pcm92@unavarra.es9
10 * Correspondence: pcm92@unavarra.es

11

12 **Abstract:** The genome of the *Bacillus thuringiensis* BM311.1 strain was sequenced and assembled in
13 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative *cry* gene from this
14 strain was identified as a potential novel Cry protein of 1138 amino acid residues with a 98% identity
15 respect to Cry7Aa1 protein and a predicted molecular mass of 129.4 kDa. The primary structure of
16 this Cry7Aa2 protein, which revealed the presence of eight conserved blocks and the classical
17 structure of three domains, differed in 28 amino acid residues from that of Cry7Aa1. The *cry7Aa2*
18 gene was amplified by PCR and then expressed in the acrystalliferous strain BMB171. SDS-PAGE
19 analysis confirmed the predicted molecular mass for the Cry7Aa2 protein and revealed that, after
20 *in vitro* trypsin incubation, it was degraded to a toxin of 62 kDa. However, when treated with
21 digestive fluids from *Leptinotarsa decemlineata* larvae two proteinase-resistant fragments of 60 and
22 65 kDa were produced. Spore and crystal mixture produced by the wild-type BM311.1 strain against
23 *L. decemlineata* neonate larvae resulted in a LC₅₀ (18.8 µg/ml), which was statistically equal to the
24 estimated LC₅₀ (20.8 µg/ml) for the recombinant BMB17-Cry7Aa2 strain. In addition, when this
25 novel toxin was activated *in vitro* with commercial trypsin, the LC₅₀ value was reduced 4 times
26 approximately (LC₅₀ = 4.9 µg/ml). The advantages of Cry7Aa2 protoxin compared to Cry7Aa1
27 protoxin when used in the control of insect pests are discussed.

28

29 **Keywords:** *Bacillus thuringiensis*; *cry* gene; toxins; Coleoptera; *Leptinotarsa decemlineata*

30

31 **1. Introduction**32 *Bacillus thuringiensis* (Berliner, 1915) (Bt) is an ubiquitous spore-forming bacterium which has
33 been isolated from very diverse habitats including plant substrates, aquatic environments, animal
34 excrements, poultry farms, dust from storage and mills, dead and living insects among other sources
35 [1,2]. The entomopathogenic capacity of this organism lies in its ability to synthesize crystalline
36 protein inclusions that have insecticidal activity when ingested by a susceptible host [3]. The toxicity
37 spectrum of individual crystal proteins is usually limited to a number of species of the same order,
38 although *B. thuringiensis* as a species is toxic for an increasing number of insects belonging to different
39 orders (Lepidoptera, Diptera, Coleoptera, Hymenoptera, Orthoptera, Hemiptera, etc. as well as other
40 invertebrates such as nematodes and mites [4, 5]. Bt crystals are composed of Cry proteins, which are
41 characteristically present in all Bt strains and show specific insecticidal activity, and Cyt proteins with
42 cytolytic activity that are only found in the crystals of a small number of Bt strains. Cry proteins are
43 the most diverse and numerous group of insecticidal Bt proteins. The Cry proteins described to date

44 have been classified, according to the similarity of their respective amino acid sequences, into 78
45 families (from Cry1 to Cry78) and a larger number of subfamilies
46 http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/ that comprise more than 800 toxins. A
47 extensive number of these toxins have been described in recent years thanks to the availability of new
48 molecular tools as well as the growing interest in the discovery of Bt toxins, with novel insecticidal
49 characteristics [6].

50 The Cry proteins in the crystal are inactive protoxins, the toxicity of which depends on adequate
51 solubilization and subsequent proteolytic digestion, like it occurs in the midgut of a susceptible insect
52 [7,8]. The peptides that are resistant to proteolytic digestion are active toxins that bind to specific
53 receptors on the brush border membrane of the gut epithelium, generating pores that cause epithelial
54 cell lysis, paralysis of the digestive system and finally insect death [9].

55 Cry proteins with demonstrated activity against coleopterans either belong to one of the 13
56 single-acting toxin families described so far (Cry1, Cry3, Cry6, Cry7, Cry8, Cry9, Cry10, Cry18, Cry22,
57 Cry36, Cry43, Cry51, Cry55) or are part of the Cry23/Cry37 and Cry34/Cry35 binary protein families.
58 The first Bt strain with specific toxicity to coleopterans was isolated in 1983 from *Tenebrio molitor*
59 (Tenebrionidae) larvae [10]. The main component of the crystal of this strain and other related strains,
60 are proteins of the Cry3 (Cry3A, Cry3B, and Cry3C) family with activity against several economically-
61 important species, such as *Leptinotarsa decemlineata* (Say) (Coleoptera: Chrysomelidae) [11,12] and
62 *Diabrotica virgifera* (Coleoptera: Chrysomelidae) [12,13].

63 The Cry7 family, while being an alternative to Cry3 proteins against certain coleopteran species
64 of the genus *Cylas* [14], also represents a source of active toxins for other insect species from different
65 orders for which few or no Bt toxins have been reported to date eg. the locust *Locusta migratoria*
66 *manilensis* [15]. Cry7Aa1 was originally described by Lambert *et al* [16] as the first Cry7 protein with
67 silent activity towards *L. decemlineata* larvae. Currently, the Cry7 family comprises a total of 37 toxins,
68 which are grouped into several subfamilies (Cry7A-Cry7L), but insecticidal activity has only been
69 reported for a few of them. For example, Cry7Ab3 was reported to be active against the spotted potato
70 ladybeetle, *Henosepilachna vigintioctomaculata* (Coccinellidae) [17] whereas Cry7Aa1 showed high
71 insecticidal activity in larvae of *Cylas brunneus* and *C. puncticollis* (Brentidae). [14] This diversity of
72 species susceptible to Cry7 suggests that this family may represent an interesting source of toxins
73 with novel insecticidal properties.

74 The objective of this study was to determine the content of insecticidal genes present in the wild-
75 type BM311.1 strain. The BM311.1 strain of Bt was isolated from an agricultural soil sample
76 originating from a field of the Spanish province of Navarra as part of a country-wide screening
77 program involving the isolation and characterization of Bt strains toxic to insects of agricultural
78 importance [2]. This strain was selected because it was found to be toxic to coleopterans and
79 contained at least one *cry7* gene in its genome (unpublished data). In the present study, the *cry7* gene
80 present in this strain was identified and cloned, and its contribution to the insecticidal potency of
81 BM311.1 was determined.

82 2. Materials and Methods

83 2.1. Bacterial strains, plasmids and insect culture conditions

84 The acrystalliferous Bt strain BMB171- was used as host strain for Bt protein expression [18]. For
85 the routine gene cloning *Escherichia coli* XL1 blue was used, which was transformed with a slightly
86 modified recombinant vector pSTAB [19] (pSTABr), engineered with the gene of interest. Both
87 BM311.1 and BMB171-Cry7Aa2 strains were grown in CCY culture medium [20] under constant
88 conditions of temperature (28 °C) and shaking (200 rpm). *E. coli* strains were cultured at 37°C with
89 shaking at 200 rpm in LB broth (1% tryptone, 0.5% yeast extract, and 1% NaCl, pH 7.0). When
90 required for selective growth, medium was supplemented with appropriated antibiotics at the
91 following concentrations: erythromycin (Em), 20 mg/l, ampicillin (Amp), 100 mg/l.

92 A laboratory colony of *L. decemlineata* was established from adults collected from organic potato
93 fields near Pamplona (Spain). This insect colony was maintained on potato plants in the insectary of
94 the Universidad Pública de Navarra under controlled conditions of temperature, humidity and

95 photoperiod (25±1 °C, 70±5% RH, and L16:D8 h) and was refreshed whenever it was possible to collect
96 adults from the field.

97

98 **2.2. Total DNA extraction and genomic sequencing**

99 Total genomic DNA (chromosomal+plasmid) was extracted following the protocol for DNA
100 isolation from Gram-positive bacteria supplied in the Wizard® Genomic DNA Purification Kit
101 (Promega, Madison, WI, USA) and DNA library was prepared from total DNA and subsequently
102 was sequenced by Illumina NextSeq500 Sequencer (Genomics Research Hub Laboratory, School of
103 Biosciences, Cardiff University, UK).

104 **2.3. Identification of potential insecticidal genes**

105 Genomic raw sequence data were processed and assembled using CLC Genomics Workbench
106 10.1.1. Reads were trimmed, filtered by low quality and reads shorter than 50 bp were removed.
107 Processed reads were *de novo* assembled using a stringent criterion of overlap of at least 95 bp of the
108 read and 95% identity and reads were then mapped back to the contigs for assembly correction. Genes
109 were predicted using GeneMark [21].

110 To assist the identification process of potential insecticidal toxin proteins, local BLASTP [22] was
111 deployed against a database built in our laboratory including the amino acid sequences of known Bt
112 toxins with insecticidal activity, available at
113 http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt [23,24], as well as other proteins of interest
114 such as the enhancins, metalloproteinases and mosquitocidal toxins available in GenBank.

115 The software PlasFlow was used for prediction of plasmid sequences from the assembled contigs
116 [25]. Alignments of crystal protein sequences were performed using MUSCLE v3.8.31 [26]. Prediction
117 of structural conserved domains was carried out using CD-search [27].

118 **2.4. Amplification and cloning of a cry7Aa2 gene**

119 A *cry7Aa2* gene was amplified by PCR from Bt genomic DNA using primers Fw-NcoI
120 (5'TCCCATGGGTAAATTAAATAATTAGGTGGATATGAAGATAGTAATAG3') and Rv-His-PstI
121 (5'TCCTGCAGTTAATGATGATGATGATGACATAGCTTCCATCAAAATAACTCTATA
122 C3') and Phusion High-fidelity DNA polymerase (NEB). A 6xHis tag was placed in the N-terminal
123 end of the gene. PCR products were purified by NucleoSpin® Gel and PCR Clean Up kit (Macherey-
124 Nagel Inc., Bethlehem, PA) and ligated into the pJET plasmid (CloneJET PCR Cloning Kit, Fermentas,
125 Canada). Ligation products were then electroporated into *E. coli* XL1 blue cells by using standard
126 protocols [28]. Colony-PCR was applied in order to check positive clones from which plasmid DNA
127 was purified, using the NucleoSpin® plasmid kit (Macherey-Nagel Inc., Bethlehem, PA), following
128 manufacturer's instructions. Subsequently, pJET plasmids were verified by sequencing (StabVida,
129 Caparica, Portugal) and digested with the appropriate combination of restriction enzymes to allow
130 cloning into the pSTABr vector. Fragments from *Nco*I and *Pst*I were purified from agarose gels and
131 ligated into de pre-digested pSTABr vector using the Rapid DNA ligation kit (Thermo Scientific) to
132 obtain the recombinant plasmid pSTABr-*cry7Aa2*. Ligation products were then electroporated into *E.*
133 *coli* XL1 blue cells by using standard protocols [28]. Positive clones were verified by colony-PCR and
134 plasmids were purified and verified by digestion. Once pSTABr-*cry7Aa2* was generated, it was
135 introduced into the acrystalliferous Bt strain BMB171.

136 *Bacillus* electrocompetent cells were generated by modifying a previously described protocol
137 [29]. Briefly, bacteria were grown in 300 ml of BHI broth at 28°C under shaking conditions (200 rpm)
138 until the culture reached an OD₆₀₀ nm value of 0.4. Glycine was added to the culture at 2% and
139 bacterial cells were incubated for another hour, at 28°C, under shaking conditions (200 rpm). Bacterial
140 cells were then kept on ice for 5 minutes, centrifuged for 10 minutes (9000 rpm, 4°C) and the pellet
141 was washed three times with F buffer (272mM sucrose, 0.5mM MgCl₂, 0.5mM K₂HPO₄, 0.5mM
142 KH₂PO₄ pH 7.2). The bacterial cells pellet was resuspended into 600 µl of ice-cold F buffer. Aliquots
143 of 50 µl were stored at -80°C. Plasmids were transformed into *Bacillus* by electroporation, as described
144 previously [30]. Positive clones were selected by colony-PCR.

145 **2.5. Production of spores and crystals from wild and recombinant Bt strains.**

146 For both, the wild-type BM311.1 and the recombinant BMB171-Cry7Aa2, single colonies from
147 LB plates were inoculated in 500 ml of CCY sporulation medium [20] supplemented with
148 erythromycin for the recombinant strain and grown, at 28 °C, under shaking conditions (200 rpm).
149 Crystal formation was observed daily under an optical microscope at the magnification of x1000.
150 After two or three days, when about 95% of the cells had lysed, the mixture of spores and crystals
151 were collected by centrifugation at 9000 g, at 4 °C, for 10 min. After being washed with a saline
152 solution (1M NaCl, 10mM EDTA), the mixture was resuspended in 10mM KCl and kept at 4°C until
153 required. Protein quantification was performed by Bradford assay [31] using bovine serum albumin
154 (BSA) as standard.

155 2.6. Analysis of crystal proteins

156 The composition of the crystals produced by the wild (BM311.1) and recombinant (BMB171-
157 Cry7Aa2) strains were analyzed both in their natural form and once digested with midgut fluids from
158 *L. decemlineata* or commercial trypsin. A group of 10 larvae of *L. decemlineata* fifth instar larvae were
159 forced to vomit to extract intestinal secretions and the pH of collected fluids was measured by
160 MColorpHast™ (VWR International, LLC). Aliquots of 25 µl of spore-crystal suspension were mixed
161 with 5 µl of insect gut juice and incubated for 2 hours at 37°C and 200 rpm agitation. Another aliquot
162 was solubilized *in vitro* in an alkaline solution (50mM Na₂CO₃/10 mM DTT, pH 11.3) for 15min at
163 37°C and then digested with trypsin (Promega), using a 1/10 ratio (w/w) for 2 hours at 37°C. Samples
164 of spores and crystals, both in their natural state and those previously digested by digestive fluids or
165 trypsin, were mixed with 2x sample buffer (Bio-Rad), boiled at 100 °C for 5 min, and then subjected
166 to electrophoresis as previously described [32], using Criterion TGXTM 4-20% Precast Gel (BIO-RAD).
167 Gels were stained with Coomassie brilliant blue R-250 (Bio-Rad) and then distained in 30% ethanol
168 and 10% acetic acid.

169 2.7. *Leptinotarsa decemlineata* rearing and bioassays

170 The insecticidal activity of the spore and crystal mixtures of both Bt strains, BM311.1 and
171 BMB171-Cry7Aa2, as well as the BMB171-Cry7Aa2 crystal proteins previously solubilized and
172 trypsinized *in vitro*, were tested against *L. decemlineata*. The concentration-mortality responses were
173 subsequently determined using five different protein concentrations, ranging from 0.24 to 150
174 µg/ml, in order to estimate the 50% lethal concentration (LC₅₀). In all cases, small disks of potato
175 leaves were dipped in the spore/crystal mixture, allowed to air dry and individually placed in wells
176 of a tissue culture plate containing a layer of 1.5% (w/v) agar to prevent desiccation. Control leaf disks
177 were treated identically but were not inoculated with crystal proteins. A 6-12 h old larva of *L.*
178 *decemlineata* was placed in each well and incubated at 25±1 °C. Insect mortality was recorded 4 days
179 later. For each protein concentration and the control 24 larvae were treated and the complete bioassay
180 was performed on three occasions using different batches of insects from the colony. The results were
181 subjected to Probit analysis [33] using the POLO-PC program [34]

182 2.8. Nucleotide sequence accession number.

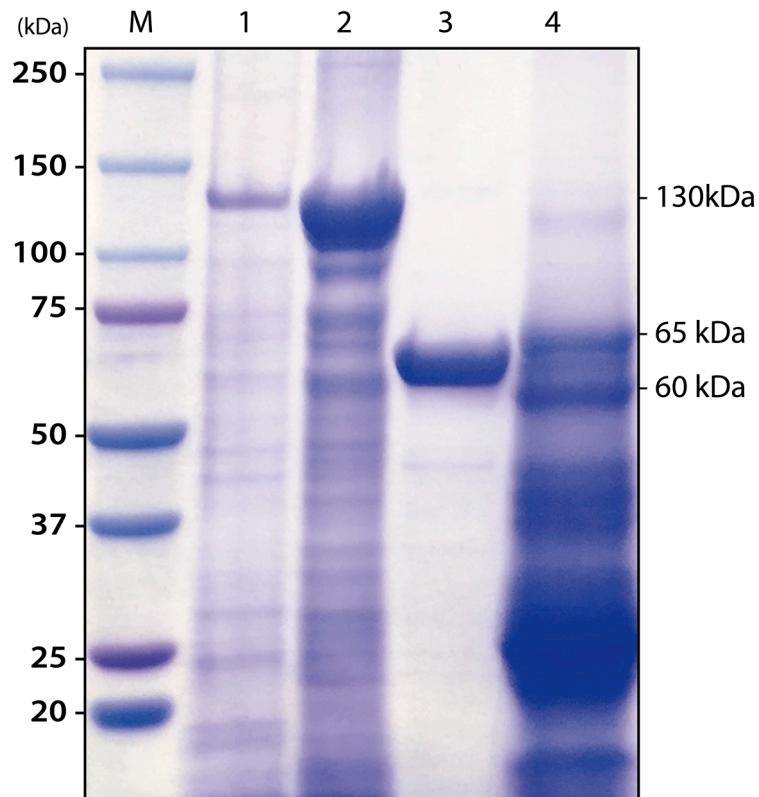
183 The nucleotide sequence data reported in this paper have been deposited in the GenBank
184 database under accession number SSWY00000000 for the BM311.1 genome and MK840959 for
185 *cry7Aa2* gene.

186 3. Results

187 3.1. Draft genome sequence of the *Bacillus thuringiensis* BM311.1 strain

188 The reads obtained from the genomic DNA of the BM311.1 strain were assembled and produced
189 359 contigs containing a total of 6,390,221 bp, with a maximum scaffold size of 276,646 bp, a N50
190 length of 55,361 bp, and 33.6 % GC content. The genome of strain BM311.1 contains three *cry*-like
191 ORFs, two of them located in different chromosomal contigs while the third one was present on a
192 plasmid. The two chromosomal ORFs shared less than 30% identity between them and, for each of
193 them, the closest Cry protein, with less than 20% identity was the product of the *cry60Aa* gene,
194 previously described by Sun *et al.* [35] (Table 1). Neither of these two proteins could be classified in
195 any of the Cry families currently described in the *Bacillus thuringiensis* full toxin list [23]. The third
196 ORF identified shared 98% identity with the *cry7Aa1* gene [16]. Therefore, this new *cry* gene was

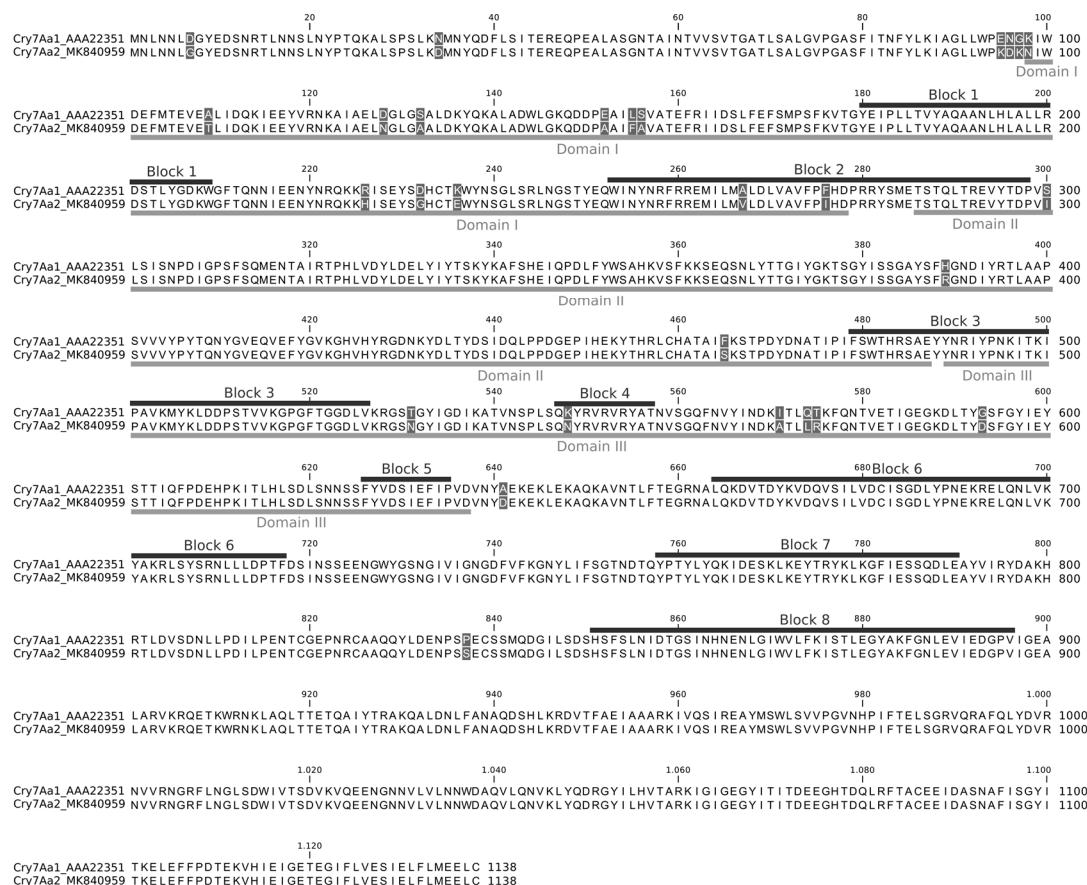
197 classified within the *cry7* family and, according to the current nomenclature, has been named as
 198 Cry7Aa2. In addition, other potential virulence factors: one mosquitocidal toxin like, two
 199 bacillolysins and four peptidase M4 genes were detected in the genome of BM311.1 (Table1).


Table 1. Insecticidal protein content of *Bacillus thuringiensis* BM311.1

Target database	Identity (%)	MW (kDa)	Length (Nº residues)	Predicted location
Cry7Aa1	98	129	1138	Plasmid
Cry60Aa1	18	35	322	Chromosome
Cry60Aa3	19	33	303	Chromosome
Mtx-like	94	57	515	Plasmid
Bacillolysin	99	61	556	Chromosome
Bacillolysin	96	98	893	Plasmid
Peptidase M4	99	65	583	Chromosome
Peptidase M4	99	62	567	Unclassified
Peptidase M4	99	62	552	Plasmid
Peptidase M4	99	61	566	Chromosome

200
 201
 202
 203
 204
 205
 206
 207
 208
 209

3.2. Characterization of Cry7Aa2.


The recombinant BMB171-Cry7Aa2 strain harboring *cry7Aa2* gene was able to form large inclusion bodies that could be observed under the optical microscope. The predicted molecular mass of the Cry7Aa2 protein was 129.4 kDa, which corresponds to the bands of approximately 130-kDa generated by SDS-PAGE for the spore/crystal proteins produced by both BM311.1 and BMB171-Cry7Aa2 (Figure 1). When the Cry7Aa2 crystal protoxin was solubilized and activated *in vitro* with commercial trypsin, a fragment of approximately 62 kDa was produced. However, when treated with acidic digestive fluids (pH 5-6) of *L. decemlineata* larvae, two main bands of approximately 60 and 65 kDa were detected.

210
 211

212 **Figure 1.** SDS-PAGE analysis of spore and crystal proteins from Bt strains. (M) molecular weight marker
 213 in kDa; (1) Bt strain BM311.1; (2) recombinant Bt strain BMB171-Cry7Aa2; (3); BMB171-Cry7Aa2 crystal
 214 protein solubilized and digested with trypsin; (4) BMB171-Cry7Aa2 crystal protein digested with digestive
 215 fluids from *L. decemlineata*.
 216

217 The alignment of the deduced amino acid sequence of Cry7Aa2 with the known Cry7Aa1 protein
 218 revealed that the new protein had 28 different amino acids, which appear randomly distributed
 219 throughout the amino acid sequence of the protoxin (Figure 2). The analysis of the primary structure
 220 of Cry7Aa2 revealed the presence of eight conserved blocks and the classical structure of three
 221 domains (Figure 2). Two of eleven changes within domain I were located in the second block of
 222 conserved amino acids and three changes were located in non-conserved blocks within domain II.
 223 From six changes detected within domain III, one of them was located in the fourth conserved block.
 224 Finally, only two different residues were located in C-terminal amino acid sequence, out of the three
 225 domains of the Cry7Aa2 protein.

226 **Figure 2.** Alignment of the deduced amino acid sequence of Cry7Aa1 and Cry7Aa2. Non-conserved amino
 227 acid residues are shaded. In dark and light gray horizontal bars are shown conserved blocks and structural
 228 domains, respectively.
 229

231 3.3. Insecticidal activity of Cry7Aa2 for *L. decemlineata*.

232 To determine the insecticidal activity of Cry7Aa2, mixtures of spores/crystals from the wild type
 233 and recombinant strains, and solubilized and trypsinized proteins from the trypsin activated (TA)
 234 strain were used. The protein concentrations produced by all the strains were normalized and an
 235 equal amount of each of them was used to run toxicity tests on newly hatched *L. decemlineata* larvae.
 236 A recombinant acrystalliferous strain carrying an “empty” plasmid and hence, unable to produce
 237 crystal, was introduced as a negative control. Following ingestions of crystal and spore mixtures from
 238 both the wild-type BM311.1 and the recombinant BMB171-Cry7Aa2 strains, *L. decemlineata* larvae
 239 showed high levels of mortality, whereas none of the control insects died. The estimated LC₅₀ values

240 for BM311.1 and BMB171-Cry7Aa2 strains were 18.8 and 20.8 $\mu\text{g}/\text{ml}$, respectively (Table 2). However,
 241 the LC₅₀ value for Cry7Aa2 protoxins activated with commercial trypsin was approximately 4-fold
 242 lower than when ingested as a component of the crystal produced by the recombinant BMB171-
 243 Cry7Aa2 (Table 2).

244 **Table 2.** Insecticidal activity of Bt strains. LC₅₀ values and relative potency of Cry7Aa2 protoxin when ingested,
 245 by newly hatched larva of *L. decemlineata*, as a component of crystals produced by BM311.1 or BMB171-Cry7Aa2
 246 or after toxin activation with trypsin.

247

Bt strains / protein	Regression lines		LC ₅₀ ($\mu\text{g}/\text{ml}$)	Goodness of fit		Relative potency ^(a)	Fiducial Limits (95%)	
	Slope \pm SE	Intercept \pm SE		χ^2	df		Lower	Upper
BM311.1	0.63 \pm 0.10	4.19 \pm 0.13	18.89	0.99	3	1		
BMB171-Cry7Aa2	1.16 \pm 0.19	3.46 \pm 0.29	20.80	1.18	3	0.91	0.39	2.13
BMB171-Cry7Aa2-TA ^b	1.99 \pm 0.54	3.61 \pm 0.53	4.93	1.02	2	3.83	1.57	9.33

248 ^(a) The relative potency was expressed as the ratio of the LC₅₀ value for each treatment and the LC₅₀ value of wild-
 249 type BM311.1.

250 ^(b) TA: Trypsin Activated

251

252

253

254

255 4. Discussion

256 The complete genome of *B. thuringiensis* wild strain BM311.1 was sequenced and annotated. This
 257 Bt strain contains three putative insecticidal Cry proteins. One of them showed a 98% amino acid
 258 identity with the Cry7Aa1 [16] and was classified accordingly (<http://www.btnomenclature.info>) as
 259 Cry7Aa2 [23]. This new gene was cloned and sequenced and the natural protoxin for which its codes
 260 was found to have insecticidal properties against larvae of *L. decemlineata*. The other two ORFs shared
 261 less than 30% identity and less than 20% identity with Cry60Aa, the protein with which they showed
 262 the highest identity. These genes need to be cloned and the corresponding proteins characterized in
 263 detail to determine their insecticidal potential.

264 The SDS-PAGE analysis showed that the main crystal composition was represented by a
 265 predominant protein band of a molecular mass of approximately 130 kDa. According to the *cry* gene
 266 content of BM311.1 this band could only correspond to the expression of the *cry7Aa2* gene with a
 267 predicted molecular mass of 130 kDa. However, this analysis did not detect the putative proteins
 268 encoded (predicted molecular weight of 33–35 kDa; Table 1) by the other two ORFs. Often the proteins
 269 encoded by certain *cry* genes are not part of the proteins that make up the crystal of a given Bt strain.
 270 This may be because these genes are not expressed, or the level of expression is below the detection
 271 capacity of the SDS-PAGE technique. Another possible explanation is that the proteins are expressed

272 and secreted into the medium in which the bacteria grows, as is the case with Cry1I proteins [36]. It
273 should be noted that SDS-PAGE shows a slightly smaller band in size for the Cry7Aa2 recombinant
274 protein when compared to its wild type counterpart (Figure 1, Line 3). Although the only difference
275 between them is the presence of a His tag (6xHis) at the C-Terminal of the former, this could be
276 enough to alter its ability to bind SDS and, hence, affect its migration on the gel.

277 The complete ORF of the new *cry7Aa2* gene was cloned and expressed in the acrystalliferous
278 strain BMB171. SDS-PAGE analysis of the spore/crystal mixture of this recombinant strain generated
279 a predominant 130 kDa protein band similar to that generated by other proteins of the Cry7 family
280 [16,17]. When *cry7Aa2* was expressed in BMB171, the resulting protein formed a parasporal crystal of
281 a larger size than the one produced by the wild-type BM311.1 strain. This result suggests that BMB171
282 strain may contain chaperones that improve the expression of the Cry7Aa2 protein, as has already
283 been reported for other Cry proteins [37,38]. It could also be attributed to the presence of
284 transcriptional or posttranscriptional regulation in the wild type BM311.1 strain [39]. Despite the
285 differences in the crystal size, the natural Cry7Aa2 and recombinant Cry7Aa2 showed comparable
286 toxicity levels towards *L. decemlineata* larvae in addition to a similar proteolytic processing with the
287 insect's digestive fluids or commercial trypsin (data not shown).

288 Amino acid sequence analysis of Cry7Aa2 showed similar characteristics to those of other
289 proteins in the Cry7 family and differed in only 28 amino acid residues from its reference protein,
290 Cry7Aa1 [16]. The difference in a few amino acids can produce very important changes in the
291 insecticidal properties of Cry toxins. For example, a single amino acid variation between the Cry1Ia1
292 and Cry1Ia2 toxins has been associated with the different host spectra of these two proteins [40].

293 The bioassays revealed that the Cry7Aa2 protoxin was active against newly hatched larvae of *L.*
294 *decemlineata* when inoculated as a crystal component produced by both the wild-type BM311.1 and
295 the recombinant BMB171-Cry7Aa2. In contrast, Lambert *et al.* [16] reported that the Cry7Aa1 protein
296 showed silent activity towards larvae of *L. decemlineata*, i.e., the natural Cry7Aa1 protein was not toxic
297 when ingested as part of the crystal, but was toxic once solubilized and activated *in vitro*. These results
298 suggest that the lack of toxicity can be likely attributed to the lack of solubilization in the acidic
299 digestive fluids of the coleopteran gut. In contrast, others have reported toxicity of Cry7Aa1 protoxin
300 [14] and Cry7Ab3 protoxin [41] in other species of Coleoptera that also had acidic digestive fluids, it
301 seems reasonable to believe that the solubilization of Cry7 proteins must have involved factors other
302 than pH. Although the solubilization of Cry proteins and their subsequent proteolytic digestion are
303 determinants of toxicity, the interaction between the toxin and the appropriate midgut receptors is
304 also necessary for the formation of the lytic pore [42]. Following incubation with insect digestive
305 juices the Cry7Aa2 protoxin produced two fragments of approximately 60 and 65 kDa. In contrast,
306 when this protoxin was digested with trypsin it produced a single toxic fragment of approximately
307 62 kDa. Interestingly, such fragment showed a toxicity 4-fold greater than when the toxin was
308 activated in the midgut of *L. decemlineata* larvae. This indicated that the fragment was derived from
309 Cry7Aa2 and that the different activation method may be the reason behind the augmented potency.

310 The fact that the natural protein Cry7Aa2 was toxic when it is part of the crystal of the BM311.1
311 strain represents a clear advantage over the Cry7Aa1 protoxin for its use in bioinsecticide
312 applications. However, both the Cry7Aa1 and Cry7Aa2 proteins can be efficiently exploited in the
313 construction of transgenic plants since this technology allows the peptide fragment encoding the
314 toxin to be expressed directly instead of using the sequence coding for the protoxin. The Cry3 family
315 or proteins have been frequently used as the active ingredient of a bioinsecticides as well as for the
316 construction of transgenic plants for the control of coleopteran pests [12,43,44]. Although resistance
317 to Bt has not yet reached the prevalence reported in insects exposed to chemical pesticides, there is
318 evidence that the extended use of Bt toxins may accelerate the appearance of insect resistance [45,46],
319 so that the characterization of novel Bt toxins is an issue that will likely continue to attract the
320 attention of insect pathologists and pest control researchers for the foreseeable future.

321 **5. Conclusions**

322 A new *cry7Aa2* gene that codes for a highly toxic protein for larvae of *L. decemlineata* has been
323 identified. The most important finding is that Cry7Aa2, in addition to expanding the range of Bt
324 toxins available for the control of coleopterous pests, can be used directly in its crystallized form
325 while Cry7Aa1 needs to be previously solubilized *in vitro*. Future works from our group will focus
326 on determining the host spectrum of Cry7Aa2 and Cry7Aa1 and elucidating the molecular basis that
327 explains the different solubilization of these proteins.

328 **Author Contributions:** For research articles with several authors, a short paragraph specifying their individual
329 contributions must be provided. The following statements should be used "conceptualization, P.C. and M.V.;
330 methodology, M.D.-A. and A.B.F.; software, A.B.F.; formal analysis, M.D.-A. and M.V.; writing—original draft
331 preparation, M.D.-A., M.V., A.B.F. and P.C.; writing—review and editing, M.D.-A., M.V., A.B.F. and P.C.; funding
332 acquisition, P.C.

333 **Funding:** This research was funded by the Programa Nacional de España (No. AGL2015-70584-C2-2-R) and the
334 Gobierno de Navarra (No. IIQ14065:RI1).

335 **Acknowledgments:** We thanks Noelia Gorria, Itxaso Ibañez and Amaya Redin for technical assistance and for
336 insect rearing. We also thank Trevor Williams and Colin Berry for their valuable scientific suggestions and the
337 grammatical improvement of the text.

338 **Conflicts of Interest:** The authors declare no conflict of interest

339

340 **References**

1. Martin, P.A.W.; Travers, R.S. Worldwide abundance and distribution of *Bacillus thuringiensis* isolates. *Appl. Environ. Microbiol.* **1989**, *55*, 2437–2442.
2. Iriarte, J.; Bel, Y.; Ferrandis, M.D.; Andrew, R.; Murillo, J.; Ferré, J.; Caballero, P. Environmental distribution and diversity of *Bacillus thuringiensis* in Spain. *Syst. Appl. Microbiol.* **1998**, *21*, 97–106.
3. Höfte, H.; Whiteley, H.R. Insecticidal crystal proteins of *Bacillus thuringiensis*. *Microbiol. Rev.* **1989**, *53*, 242–255.
4. Wei, J.-Z.; Hale, K.; Carta, L.; Platzer, E.; Wong, C.; Fang, S.-C.; Aroian, R. V. *Bacillus thuringiensis* crystal proteins that target nematodes. *PNAS* **2003**, *100*, 2760–2765.
5. van Frankenhuyzen, K. Insecticidal activity of *Bacillus thuringiensis* crystal proteins. *J. Invertebr. Pathol.* **2009**, *101*, 1–16.
6. Dong, Z.; Li, J.; Zheng, J.; Geng, C.; Peng, D.; Sun, M. Complete genome sequence of *Bacillus thuringiensis* CTC—A typical strain with high production of S-layer proteins. *J. Biotechnol.* **2016**, *220*, 100–101.
7. Hofmann, C.; Lüthy, P. Binding and activity of *Bacillus thuringiensis* delta-endotoxin to invertebrate cells. *Arch. Microbiol.* **1986**, *146*, 7–11.
8. Thomas, W.E.; Ellar, D.J. Mechanism of action of *Bacillus thuringiensis* var *israelensis* insecticidal δ-endotoxin. *FEBS Lett.* **1983**, *154*, 362–368.
9. Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. *Bacillus thuringiensis* and its pesticidal crystal proteins. *Microbiol. Mol. Biol. Rev.* **1998**, *62*, 775–806.
10. Krieg, V.A.; Huger, A.M.; Langenbruch, G.A.; Schnetter, W. *Bacillus thuringiensis* var. *tenebrionis*: ein neuer, gegenüber Larven von Coleopteren wirksamer Pathotyp. *Z. ang. Ent.* **1983**, *96*, 500–508.
11. Haffani, Y.Z.; Cloutier, C.; Belzile, F.J. *Bacillus thuringiensis* Cry3Ca1 protein is toxic to the Colorado Potato Beetle, *Leptinotarsa decemlineata* (Say). *Biotechnol. Prog.* **2001**, *17*, 211–216.
12. Park, Y.; Abdullah, M.A.F.; Taylor, M.D.; Rahman, K.; Adang, M.J. Enhancement of *Bacillus thuringiensis* Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. *Appl. Environ. Microbiol.* **2009**, *75*, 3086–3092.
13. Adang, M.J.; Abdullah, M.A.F. Enhancement of *Bacillus thuringiensis* cry protein toxicities to coleopterans, and novel insect cadherin fragments.pdf. *United States Patent*. 2013.
14. Ekobu, M.; Solera, M.; Kyamanywa, S.; Ghislain, M.; Odongo, B.; Mwanga, R.O.M.; Moar, W.J. Toxicity of seven *Bacillus thuringiensis* Cry proteins against *Cylas puncticollis* and *Cylas brunneus* (Coleoptera: Brentidae) using a novel artificial diet. *J. Econ. Entomol.* **2010**, *103*, 1493–1502.

372 15. Wu, Y.; Lei, C.F.; Yi, D.; Liu, P.M.; Gao, M.Y. Novel *Bacillus thuringiensis* δ-endotoxin active against *Locusta*
373 *migratoria manilensis*. *Appl. Environ. Microbiol.* **2011**, *77*, 3227–3233.

374 16. Lambert, B.; Höfte, H.; Annys, K.; Jansens, S.; Soetaert, P.; Peferoen, M. Novel *Bacillus thuringiensis*
375 insecticidal crystal protein with a silent activity against coleopteran larvae. *Appl. Environ. Microbiol.* **1992**, *58*,
376 2536–42.

377 17. Song, L.; Gao, M.; Dai, S.; Wu, Y.; Yi, D.; Li, R. Specific activity of a *Bacillus thuringiensis* strain against
378 *Locusta migratoria manilensis*. *J. Invertebr. Pathol.* **2008**, *98*, 169–176.

379 18. Li, L.; Yang, C.; Liu, Z.; Li, F.; Yu, Z. Screening of acrystalliferous mutants from *Bacillus thuringiensis* and
380 their transformation properties. *Wei Sheng Wu Xue Bao* **2000**, *40*, 85–90.

381 19. Park, H.W.; Bideshi, D.K.; Johnson, J.J.; Federici, B. a. Differential enhancement of Cry2A versus Cry11A
382 yields in *Bacillus thuringiensis* by use of the Cry3A STAB mRNA sequence. *FEMS Microbiol. Lett.* **1999**, *181*, 319–
383 327.

384 20. Stewart, G.S.A.B.; Johnstone, K.; Hagelberg, E.; Ellar, D.J. Commitment of bacterial spores. *Biochem. J.* **1981**,
385 101–106.

386 21. Borodovsky, M.; McIninch, J. GENMARK: Parallel gene recognition for both DNA strands. *Comput. Chem.*
387 **1993**, *17*, 123–133.

388 22. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *J. Mol. Biol.*
389 **1990**, *215*, 403–410.

390 23. Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H.
391 Revision of the nomenclature for the *Bacillus thuringiensis* pesticidal crystal proteins. *Microbiol. Mol. Biol. Rev.*
392 **1998**, *62*, 807–13.

393 24. Crickmore, N.; Baum, J.A.; Bravo, A.; Lereclus, D.; Narva, K.E.; Sampson, K.; Schnepf, H.E.; Sun, M.;
394 Zeigler, D.R. *Bacillus thuringiensis* toxin nomenclature. Available online: <http://www.btnomenclature.info/>.

395 25. Krawczyk, P.S.; Lipinski, L.; Dziembowski, A. PlasFlow: predicting plasmid sequences in metagenomic
396 data using genome signatures. *Nucleic Acids Res.* **2017**, *46*, e35–e35.

397 26. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids*
398 *Res.* **2004**, *32*, 1792–7.

399 27. Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.;
400 Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures.
401 *Nucleic Acids Res.* **2017**, *45*, D200–D203.

402 28. Sambrook, J.; Russell, D. *Molecular Cloning: A Laboratory Manual*; Cold Sprin.; NY, USA, 2001;

403 29. Peng, D.; Luo, Y.; Guo, S.; Zeng, H.; Ju, S.; Yu, Z.; Sun, M. Elaboration of an electroporation protocol for
404 large plasmids and wild-type strains of *Bacillus thuringiensis*. *J. Appl. Microbiol.* **2009**, *106*, 1849–1858.

405 30. Lee, J.C. Electroporation of *Staphylococci*. In *Methods in Molecular Biology*; 1995; Vol. 47, pp. 209–216.

406 31. Bradford, M.M. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing
407 the principle of protein-dye binding. *Anal. Biochem.* **1976**, *72*, 248–254.

408 32. Laemmli, U. Most commonly used discontinuous buffer system for SDS electrophoresis. *Nature* **1970**, *227*,
409 680–686.

410 33. Finney, D.J. Probit analysis. *Cambridge Univ. Press. Cambridge, United Kingdom* **1971**.

411 34. LeOra Software. POLO-PC: a user's guide to probit or logit analysis. **1987**.

412 35. Sun, Y.; Zhao, Q.; Xia, L.; Ding, X.; Hu, Q.; Federici, B.A.; Park, H.-W. Identification and characterization
413 of three previously undescribed crystal proteins from *Bacillus thuringiensis* subsp. *jegathesan*. *Appl. Environ.*
414 *Microbiol.* **2013**, *79*, 3364–3370.

415 36. Tailor, R.; Ely, S.; Pells, S.; Gibb, G.; Tippett, J.; Jordan, L. Identification and characterization of a novel
416 *Bacillus thuringiensis* d-endotoxin entomocidal to coleopteran and lepidopteran larvae. *Mol. Microbiol.* **1992**, *6*,
417 1211–1217.

418 37. Shao, Z.; Liu, Z.; Yu, Z. Effects of the 20-Kilodalton helper protein on Cry1Ac production and spore
419 formation in *Bacillus thuringiensis*. *Appl. Environ. Microbiol.* **2001**, *67*, 5362–5369.

420 38. Tang, M.J.; Zeng, S.L.; Chen, J.W.; Shi, Y.X.; Xu, W.; Yuan, M.J.; Pang, Y. Effects of helper proteins encoded
421 by p19 and orf1-orf2 genes on Cyt1aa protein expression in acrystalliferous strain of *Bacillus thuringiensis*. *Insect*
422 *Sci.* **2003**, *10*, 221–229.

423 39. Jurat-Fuentes, J.L.; Jackson, T.A. *Bacterial Entomopathogens*; 2012; ISBN 9780123849847.

424 40. Gleave, A.P.; Williams, R.; Hedges, R.J. Screening by Polymerase Chain Reaction of *Bacillus thuringiensis*
425 serotypes for the presence of *cryV*-Like insecticidal protein genes and characterization of a *cryV* gene cloned from
426 *B. thuringiensis* subsp. *kurstaki*. *Appl. Environ. Microbiol.* **1993**, *59*, 1683–1687.

427 41. Song, P.; Wang, Q.; Nangong, Z.; Su, J.; Ge, D. Identification of *Henosepilachna vigintioctomaculata*
428 (Coleoptera: Coccinellidae) midgut putative receptor for *Bacillus thuringiensis* insecticidal Cry7Ab3 toxin. *J.*
429 *Invertebr. Pathol.* **2012**, *109*, 318–22.

430 42. Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of *Bacillus thuringiensis* Cry and Cyt toxins and their
431 potential for insect control. *Toxicon* **2007**, *49*, 423–435.

432 43. Perlak, F.; Stone, T.; Muskopf, Y.; Petersen, L.; Parker, G.; McPherson, S.; Wyman, J.; Love, S.; Reed, G.;
433 Biever, D. Genetically improved potatoes: protection from damage by Colorado Potato Beetles. *Plant Mol Biol.*
434 **1993**, *22*, 313–321.

435 44. Nowatzki, T.M.; Zhou, X.; Meinke, L.J.; Vaughn, T.; Siegfried, B.D. Effect of *Bacillus thuringiensis* Cry3Bb1
436 protein on the feeding behavior and longevity of adult Western Corn Rootworms (Coleoptera: Chrysomelidae).
437 *J. Econ. Entomol.* **2009**, *99*, 927–930.

438 45. Whalon, M.E.; Miller, I.D.L.; Hollingworth, I.R.M.; Milleri, J.R. Selection of a Colorado Potato Beetle
439 (Coleoptera: Chrysomelidae) Strain Resistant to *Bacillus thuringiensis*. *Entomol. Soc. Am.* **1993**, *86*, 226–233.

440 46. Bauer, L.S. Resistance: a threat to the insecticidal crystal proteins of *Bacillus thuringiensis*. *Florida Entomol.*
441 **1995**, *78*, 414–443.