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Abstract

In this paper, we study a three step iterative scheme to approximate fixed points
of Suzuki’s generalized non-expansive mappings. We establish some weak and
strong convergence results for such mappings in uniformly convex Banach spaces.
Further, we show numerically that iterative scheme (1.8) converges faster than
some other known iterations for Suzuki’s generalized non-expansive mappings. To
support our claim, we give an illustrative example and approximate fixed points
of such mappings using Matlab program. Our results are new and generalize
several relevant results in the literature.
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1. Introduction

Throughout this paper, we assume that N is the set of all positive integers.
We consider that C is nonempty subset of a Banach space X and F (T ), the set
of all fixed points of the mapping T on C. A mapping T : C → C is said to
be non-expansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. It is called quasi
non-expansive if F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and for all
p ∈ F (T ).
We know that F (T ) is nonempty when X is uniformly convex, C is bounded
closed convex subset of X and T is non-expansive mapping, (cf. [2]).
In 2008, Suzuki [18] introduced the concept of generalized non-expansive map-
pings which is also called condition (C) and defined as:
Let C be a nonempty subset of Banach space X. A mapping T : C → C is said
to satisfy condition (C) if,

1

2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C.

Suzuki obtained existence of fixed point and convergence theorems for such map-
pings. Suzuki also showed that the notion of mappings satisfying condition (C)
is weaker than non-expansiveness and stronger than quasi non-expansiveness.

The following example in support of above claim.
1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 May 2019                   doi:10.20944/preprints201905.0212.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Mathematics 2019, 7, 522; doi:10.3390/math7060522

https://doi.org/10.20944/preprints201905.0212.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math7060522


2

Example 1.1. [18] Define a self mapping T on [0, 3] by

T (x) =

{
0, if x 6= 3,
1, if x = 3.

Here T satisfies Suzuki’s condition (C), but T is not non-expansive.

On the other hand, Banach contraction principle states that fixed point of con-
traction mappings can be approximated by Picard iteration where the sequence
{xn} is generated from an arbitrary guess x1 ∈ C as follows:{

x = x1 ∈ C,
xn+1 = Txn, n ∈ N. (1.1)

Unlike contraction mappings, Picard iteration for non-expansive mappings need
not converge to a fixed point, even map has a fixed point.

Therefore, in 1953, Mann [3] introduced an iterative scheme, which has been
extensively used to approximate fixed points of non-expansive mappings. In this
iterative scheme the sequence {xn} is generated from an arbitrary guess x1 ∈ C,
in the following manner:{

x = x1 ∈ C,
xn+1 = (1− an)xn + anTxn, n ∈ N, (1.2)

where {an} is a sequence in (0, 1), satisfying appropriate conditions. It is also
known that Mann iteration fail to converge to fixed points of pseudo-contractive
mappings.

So in 1974, Ishikawa [4] introduced a two step Mann iterative scheme to approx-
imate fixed points of pseudo-contractive mappings, where the sequence {xn} is
defined by  x = x1 ∈ C,

xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTxn , n ∈ N,

(1.3)

where {an} and {bn} are sequences in (0, 1), satisfying appropriate conditions.
Rhoades [5] made an interesting remark on the rate of convergence of these it-
eration processes that: Mann iteration for decreasing functions converges faster
than Ishikawa iteration. For increasing functions Ishikawa iteration process is
better than Mann iteration process, also Mann iteration process appears to be
independent of the initial guess (see also [6]).

In 2000, Noor [7] introduced the following iterative scheme for general variational
inequalities, in this scheme {xn} is defined by

x = x1 ∈ C,
xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(1.4)
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where {an}, {bn} and {cn} are sequences in (0, 1), satisfying satisfactory condi-
tions. He also studied the convergence criteria of this scheme. After that, in 2007,
Agrawal et al. [8] introduced the following two step iterative scheme for nearly
asymptotically non-expansive mappings, in this scheme {xn} is defined as follows: x = x1 ∈ C,

xn+1 = (1− an)Txn + anTyn,
yn = (1− bn)xn + bnTxn, n ∈ N,

(1.5)

where {an} and {bn} are sequences in (0, 1), satisfying appropriate conditions.
They claimed that, this process converges at a rate same as Picard iteration and
faster than Mann iteration for contractions.

In 2014, Abbas and Nazir [1] introduced the following three step iterative scheme
for non-expansive mappings in uniformly convex Banach space. The sequence
{xn} starting at initial guess x1 ∈ C is defined as:

x = x1 ∈ C,
xn+1 = (1− an)Tyn + anTzn,
yn = (1− bn)Txn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(1.6)

where {an}, {bn} and {cn} are sequences in (0, 1). Authors showed that this
process converges faster than all of Picard, Mann and Agarwal et al. processes
for contractions, by giving a numerical example in support of their claim.

In 2014, Thakur et al. [9] introduced the following iterative scheme for non-
expansive mappings, in this scheme the sequence {xn} is defined as:

x = x1 ∈ C,
xn+1 = (1− an)Txn + anTyn,
yn = (1− bn)zn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(1.7)

where {an}, {bn} and {cn} are sequences in (0, 1). Authors claimed that this
process converges faster than all of Picard, Mann, Ishikawa, Noor, Agarwal et al.,
Abbas and Nazir iteration processes for contractions in the sense of Berinde [21].

Recently, Sahu et al. [10] and Thakur et al. [11] introduced the following same
iterative scheme for non-expansive mappings in uniformly convex Banach space:

x = x1 ∈ C,
xn+1 = (1− an)Tzn + anTyn,
yn = (1− bn)zn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(1.8)

where {an}, {bn} and {cn} are sequences in (0, 1). They claimed that this pro-
cess converges faster than all the known iteration processes for contractions in
the sense of Berinde [21] and they verified an example to support this claim.
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In 2011, Phuengrattana [15] proved convergence theorems for mappings satisfying
condition (C) using the Ishikawa iteration in uniformly convex Banach spaces.
Recently, fixed point theorems for Suzuki’s generalized non expansive mappings
and nonlinear mappings have been studied by a large number of researchers, e.g.
see [14, 16, 17, 20].

Motivated by the above, we prove some weak and strong convergence results
using iterative scheme (1.8) for Suzuki’s generalized non-expansive mappings in
uniformly convex Banach space. Our results generalize and extend the corre-
sponding results of Sahu et al. [10], Thakur et al. [11] and many others in the
literature.

2. Preliminaries

We now recall some definitions, propositions and lemmas to be use in the main
results.

Definition 2.1. Let C be a nonempty, closed and convex subset of a Banach
space X. A mapping T : C → X is called demiclosed with respect to y ∈ X, if
for each sequence {xn} in C and each x ∈ C, {xn} converges weakly at x and
{Txn} converges strongly at y imply that Tx = y.

Definition 2.2. A Banach space X is said to satisfy Opial’s property [12] if for
each weakly convergent sequence {xn} in X with weak limit x,

lim
n→∞

sup ‖xn − x‖ < lim
n→∞

sup ‖xn − y‖

holds, for all y ∈ X, with y 6= x.

Definition 2.3. Let C be a nonempty, closed and convex subset of a Banach
space X and let {xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim
n→∞

sup ‖xn − x‖.

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.
The asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.
It is well known that, A(C, {xn}) consists exactly one point, in the case when X
is uniformly convex Banach space.

Proposition 2.4. [18] Let C be a nonempty subset of a Banach space X and
T : C → C be a mapping.
(i) If T is non-expansive then T satisfies the condition (C).
(ii) If T satisfies condition (C) and has a fixed point, then T is quasi non-
expansive mapping.
(iii) If T satisfies condition (C), then

‖x− Ty‖ ≤ 3‖Tx− y‖+ ‖x− y‖, ∀ x, y ∈ C.
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Lemma 2.5. [18] Let T be a self mapping on a subset C of a Banach space X with
the Opial’s property. Assume that T satisfies condition (C). If {xn} converges
weakly to z and lim

n→∞
‖xn − Txn‖ = 0, then Tz = z. That is, I − T is demiclosed

at zero.

Lemma 2.6. [18] Let C be a weakly compact convex subset of a uniformly convex
Banach space X and T be a self mapping on C. Assume that T satisfies condition
(C), then T has a fixed point.

Lemma 2.7. [19] Suppose X is uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n ≥ 1. Let {xn} and {yn} be two sequences in X such that
lim
n→∞

sup ‖xn‖ ≤ d, lim
n→∞

sup ‖yn‖ ≤ d and lim
n→∞

sup ‖tnxn + (1− tn)yn‖ = d holds,

for some d ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

3. Main Results

In this section, we prove some weak and strong convergence theorems using
iterative scheme (1.8) for Suzuki’s generalized non-expansive mappings in uni-
formly convex Banach spaces. First, we obtain following useful lemmas to be use
in our main results:

Lemma 3.1. Let C be a nonempty, closed and convex subset of a uniformly con-
vex Banach space X and let T : C → C be a Suzuki’s generalized non-expansive
mapping with F (T ) 6= ∅ and p ∈ F (T ). Let {xn} be a sequence defined by iterative
scheme (1.8), then lim

n→∞
‖xn − p‖ exists for all p ∈ F (T ).

Proof. Let p ∈ F (T ) and z ∈ C. Since T satisfies condition (C), therefore by
Proposition 2.4, T is quasi non-expansive mapping. That is,

‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and for all p ∈ F (T ).

Now from iterative scheme (1.8), we get

‖zn − p‖ = ‖(1− cn)xn + cnTxn − p‖
≤ (1− cn)‖xn − p‖+ cn‖Txn − p‖
≤ (1− cn)‖xn − p‖+ cn‖xn − p‖
= ‖xn − p‖. (3.1)

And

‖yn − p‖ = ‖(1− bn)zn + bnTzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖Tzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖zn − p‖
= ‖zn − p‖
≤ ‖xn − p‖. (3.2)
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Using (3.1) and (3.2), we have

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖
≤ (1− an)‖Tzn − p‖+ an‖Tyn − p‖
≤ (1− an)‖xn − p‖+ an‖xn − p‖
= ‖xn − p‖. (3.3)

=⇒ The sequence {‖xn − p‖} is non-increasing and bounded below for all
p ∈ F (T ). Hence, lim

n→∞
‖xn − p‖ exists. �

Lemma 3.2. Let C be a nonempty, closed and convex subset of a uniformly
convex Banach space X and let T : C → C be a Suzuki’s generalized non-
expansive mapping. Let {xn} be a sequence defined by iterative scheme (1.8).
Then F (T ) 6= ∅ if and only if {xn} is bounded and lim

n→∞
‖xn − Txn‖ = 0.

Proof. Suppose F (T ) 6= ∅ and let p ∈ F (T ). Then by Lemma 3.1, lim
n→∞

‖xn − p‖
exists and {xn} is bounded. Put

lim
n→∞

‖xn − p‖ = α. (3.4)

From (3.1), (3.2) and (3.4), we have

lim
n→∞

sup ‖zn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (3.5)

lim
n→∞

sup ‖yn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (3.6)

Since T satisfies condition (C), we have

‖Txn − p‖ = ‖Txn − Tp‖ ≤ ‖xn − p‖
=⇒ lim

n→∞
sup ‖Txn − p‖ ≤ lim

n→∞
sup ‖xn − p‖ ≤ α. (3.7)

Similarly,

lim
n→∞

sup ‖Tyn − p‖ ≤ lim
n→∞

sup ‖yn − p‖ ≤ α. (3.8)

lim
n→∞

sup ‖Tzn − p‖ ≤ lim
n→∞

sup ‖zn − p‖ ≤ α. (3.9)

Again,

α = lim
n→∞

‖xn+1 − p‖ = lim
n→∞

‖(1− an)Tzn + anTyn − p‖

= lim
n→∞

‖(1− an)(Tzn − p) + an(Tyn − p)‖. (3.10)

From (3.8), (3.9), (3.10) and using Lemma 2.7, we have

lim
n→∞

‖Tzn − Tyn‖ = 0. (3.11)

Now,

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖ ≤ ‖Tzn − p‖+ an‖Tyn − Tzn‖.
Taking the lim inf on both sides, we get

α = lim
n→∞

inf ‖xn+1 − p‖ ≤ lim
n→∞

inf ‖Tzn − p‖

=⇒ α ≤ lim
n→∞

inf ‖zn − p‖. (3.12)
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So that, (3.5) and (3.12) give,

lim
n→∞

‖zn − p‖ = α.

Thus,

α = lim
n→∞

‖zn − p‖ = lim
n→∞

‖(1− cn)xn + cnTxn − p‖

= lim
n→∞

‖(1− cn)(xn − p) + cn(Txn − p)‖. (3.13)

From (3.4), (3.7), (3.13) and using Lemma 2.7, we have

lim
n→∞

‖xn − Txn‖ = 0.

Conversely, assume that {xn} is bounded and lim
n→∞

‖xn − Txn‖ = 0. Let p ∈
A(C, {xn}), by Proposition 2.4, we have

r(Tp, {xn}) = lim
n→∞

sup ‖xn − Tp‖

≤ lim
n→∞

sup(3‖Txn − xn)‖+ ‖xn − p‖)

= lim
n→∞

sup ‖xn − p‖

= r(p, {xn}) = r(C, {xn}).
=⇒ Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is singleton,

hence we have Tp = p. This completes the proof. �

Theorem 3.3. Let C be a nonempty, closed and convex subset of a uniformly con-
vex Banach space X and let T : C → C be a Suzuki’s generalized non-expansive
mapping with F (T ) 6= ∅ and p ∈ F (T ). Let {xn} be a sequence defined by itera-
tive scheme (1.8). Assume that X satisfies Opial’s condition, then {xn} converges
weakly to a point of F (T ).

Proof. Let p ∈ F (T ), then lim
n→∞

‖xn − p‖ exists by Lemma 3.1. Now we prove

that {xn} has unique weak sub-sequential limit in F (T ). Let x and y be weak
limits of the subsequences {xnj

} and {xnk
} of {xn} respectively. From Lemma

3.2, lim
n→∞

‖xn − Txn‖ = 0 and I − T is demiclosed at zero by Lemma 2.5. This

implies that (I − T )x = 0 =⇒ x = Tx, similarly Ty = y.
Next we show that uniqueness. If x 6= y, then by using Opial’s condition,

lim
n→∞

‖xn − x‖ = lim
nj→∞

‖xnj
− x‖

< lim
nj→∞

‖xnj
− y‖

= lim
n→∞

‖xn − y‖

= lim
nk→∞

‖xnk
− y‖

< lim
nk→∞

‖xnk
− x‖

= lim
n→∞

‖xn − x‖.

This is a contradiction, so x = y. Consequently, {xn} converges weakly to a point
of F (T ). This completes the proof. �
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Theorem 3.4. Let C be a nonempty, closed and convex subset of a uniformly con-
vex Banach space X and let T : C → C be a Suzuki’s generalized non-expansive
mapping. Let {xn} be a sequence defined by iterative scheme (1.8). Suppose
F (T ) 6= ∅ and p ∈ F (T ). Then {xn} converges to a point of F (T ) if and only
if lim

n→∞
inf d(xn, F (T )) = 0 or lim

n→∞
sup d(xn, F (T )) = 0, where d(xn, F (T )) =

inf{‖xn − p‖ : p ∈ F (T )}.

Proof. Necessity is obvious.
Conversely, assume that lim

n→∞
inf d(xn, F (T )) = 0 and p ∈ F (T ). From Lemma

3.1, lim
n→∞

‖xn − p‖ exists, for all p ∈ F (T ) therefore lim
n→∞

d(xn, F (T )) = 0 by as-

sumption. We show that {xn} is a Cauchy sequence in C. As lim
n→∞

d(xn, F (T )) =

0, for given ε > 0, there exists m0 ∈ N such that for all n ≥ m0,

d(xn, F (T )) <
ε

2

=⇒ inf{‖xn − p‖ : p ∈ F (T )} <
ε

2
.

In particular, inf{‖xm0 − p‖ : p ∈ F (T )} < ε
2
. Therefore there exists p ∈ F (T )

such that
‖xm0 − p‖ <

ε

2
.

Now for m,n ≥ m0,

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖
≤ ‖xm0 − p‖+ ‖xm0 − p‖
= 2‖xm0 − p‖ < ε.

=⇒ {xn} is a Cauchy sequence in C. As C is closed subset of a Banach space X,
so that there exists a point q ∈ C such that lim

n→∞
xn = q. Now lim

n→∞
d(xn, F (T )) =

0 gives that d(q, F (T )) = 0 =⇒ q ∈ F (T ). �

Theorem 3.5. Let C be a nonempty, compact and convex subset of a uniformly
convex Banach space X, and let T and {xn} be as in Lemma 3.2, then the sequence
{xn} converges strongly to a fixed point of T .

Proof. By Lemma 2.6, F (T ) 6= ∅, so by Lemma 3.2, we have lim
n→∞

‖Txn−xn‖ = 0.

Since C is compact, there exists a subsequence {xnj
} of {xn} such that xnj

→ p
strongly for some p ∈ C. By Proposition 2.4, we have

‖xnj
− Tp‖ ≤ 3‖Txnj

− xnj
‖+ ‖xnj

− p‖, ∀ n ≥ 1.

Letting j → ∞, we get that xnj
→ Tp. This implies that Tp = p i.e. p ∈ F (T ).

Also, lim
n→∞

‖xn−p‖ exists by Lemma 3.1. Thus p is the strong limit of the sequence

{xn} itself. �

Senter and Dotson [13] introduced the notion of mapping satisfying condition (I).
A mapping T : C → C is said to satisfy condition (I), if there exists a nondecreas-
ing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0, for all r > 0 such
that d(x, Tx) ≥ f(d(x, F (T ))), for all x ∈ C, where d(x, F (T )) = inf{d(x, p) :
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p ∈ F (T )}.
Now we also prove a strong convergence result using condition (I).

Theorem 3.6. Let C be a nonempty, closed and convex subset of a uniformly con-
vex Banach space X and let T : C → C be a Suzuki’s generalized non-expansive
mapping satisfying condition (I). Let {xn} be a sequence defined by iterative
scheme (1.8), where {an}, {bn} and {cn} are real sequences in [ε, 1− ε], for ε ≤ 1

2
and for all n ≥ 1. Suppose F (T ) 6= ∅, then {xn} converges strongly to a fixed
point of T .

Proof. We proved in Lemma 3.2 that

lim
n→∞

‖xn − Txn‖ = 0. (3.14)

From condition (I) and (3.14), we get

0 ≤ lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

‖xn − Txn‖ = 0

=⇒ lim
n→∞

f(d(xn, F (T ))) = 0.

Since f : [0,∞)→ [0,∞) is a nondecreasing function satisfying f(0) = 0, f(r) >
0, ∀ r > 0, hence we have

lim
n→∞

(d(xn, F (T ))) = 0.

Now all the conditions of Theorem 3.4 are satisfied, therefore by its conclusion
{xn} converges strongly to a fixed point of T . �

Remark 3.7. All the results in this paper generalize the corresponding results of
Sahu et al. [10], Thakur et al. [11] and many others due to following reason:
(1) Mappings are generalized non-expansive.

Now we give the following example for comparison of above iteration process with
proposed algorithm for Suzuki’s generalized non-expansive mapping.

Example 3.8. Define a self mapping T on [1, 2] by

T (x) =

{
3− x, if x ∈ [1, 10

9
),

x+16
9
, if x ∈ [10

9
, 2].

Here T is Suzuki’s generalized non-expansive mapping, but T is not non-expansive.

Verification. Take x = 111
100

and y = 10
9

, then

‖x− y‖ = ‖111

100
− 10

9
‖ =

1

900
.

And.

‖Tx− Ty‖ = ‖3− 111

100
− 154

81
‖

=
91

8100
>

1

900
= ‖x− y‖.

Hence T is not non-expansive mapping.
Now we verify that T is Suzuki’s generalized non-expansive mapping.
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Here following cases arise:
Case I. If either x, y ∈ [1, 10

9
) or x, y ∈ [10

9
, 2]. Then in both the cases T is non-

expansive mapping and hence T is Suzuki’s generalized non-expansive mapping.

Case II. Let x ∈ [1, 10
9

). Then 1
2
‖x−Tx‖ = 1

2
‖x− (3−x)‖ = 1

2
‖2x−3‖ ∈ ( 7

18
, 1
2
].

For 1
2
‖x − Tx‖ ≤ 1

2
‖x − y‖, we must have 2x−3

2
≤ x − y =⇒ y ≥ 3

2
and hence

y ∈ [3
2
, 2]. We have,

‖Tx− Ty‖ = ‖y + 16

9
− 3 + x‖ = ‖y + 9x− 11

9
‖ < 1

9
.

And.

‖x− y‖ = |x− y| > |10

9
− 3

2
| = |20− 27

18
| = 7

18
>

1

9
.

Hence 1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case III. Let x ∈ [10
9
, 2]. Then 1

2
‖x−Tx‖ = 1

2
‖x+16

9
−x‖ = ‖16−8x

18
‖ ∈ [0, 64

162
]. For

1
2
‖x−Tx‖ ≤ 1

2
‖x−y‖, we must have 16−8x

18
≤ |x−y|, which gives two possibilities:

(a) Let x < y, then 16−8x
18
≤ y − x, i.e. 10x+16

18
≤ y =⇒ y ∈ [244

162
, 2] ⊂ [10

9
, 2]. So

‖Tx− Ty‖ = ‖x+ 16

9
− y + 16

9
‖ =

1

9
‖x− y‖ ≤ ‖x− y‖.

Hence 1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

(b) Let x > y, then 16−8x
18
≤ x− y, i.e. y ≤ 26x−16

18
=⇒ y ≤ 116

162
and y ≤ 2

=⇒ y ∈ [1, 2]. Since y ∈ [1, 2] and y ≤ 26x−16
18

=⇒ 18y+16
26
≤ x =⇒ x ∈ [34

26
, 2].

Since x ∈ [34
26
, 2] and y ∈ [10

9
, 2] is already included in Case I. Therefore consider,

x ∈ [34
26
, 2] and y ∈ [1, 10

9
). Then

‖Tx− Ty‖ = ‖x+ 16

9
− 3 + y‖ = ‖x+ 9y − 11

9
‖ < 1

9
.

And.

‖x− y‖ = |x− y| > |34

6
− 10

9
| = |306− 260

234
| = 46

234
>

1

9
.

Hence 1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Thus T is Suzuki’s generalized non-expansive mapping.

Now for this Example, we construct the following comparison table and graph
for various iterations with control sequences an = 0.85, bn = 0.65, cn = 0.45 and
initial guess x1 = 1.2 with the help of Matlab program 2015a.

Remark 3.9. The iterative scheme (1.8) converges faster than the Picard, Mann,
Ishikawa, Noor, Agarwal, Abbas and Thakur iterative schemes for Suzuki’s gener-
alized non-expansive mappings as shown in the following table and figure, which is
wider class of the non-expansive mappings as shown in above numerical example.
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Item Picard Mann Ishikawa Noor Agarwal Abbas Thakur Sahu, Thakur
1 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000
2 1.911111 1.804444 1.848099 1.850281 1.954765 1.953570 1.967526 1.972859
3 1.990123 1.952198 1.971158 1.971980 1.997442 1.997305 1.998682 1.999079
4 1.998903 1.988315 1.994523 1.994756 1.999855 1.999844 1.999946 1.999969
5 1.999878 1.997144 1.998960 1.999019 1.999992 1.999991 1.999998 1.999999
6 1.999986 1.999302 1.999803 1.999816 2.000000 1.999999 2.000000 2.000000
7 1.999998 1.999829 1.999963 1.999966 2.000000 2.000000 2.000000 2.000000
8 2.000000 1.999958 1.999993 1.999994 2.000000 2.000000 2.000000 2.000000
9 2.000000 1.999990 1.999999 1.999999 2.000000 2.000000 2.000000 2.000000
10 2.000000 1.999998 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
11 2.000000 1.999999 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
12 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000

Table 1. A comparison table of iterative schemes.

Figure 1. Convergence behavior of Sahu iterative scheme with
other iterative schemes.
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