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Abstract  

Conservation of natural habitats in human-dominated landscapes is critical for halting 

biodiversity loss. Maintaining habitat quantity and connectivity requires landscape-level 

collective action, which results from environmental decisions made by individual land 

owners. We investigate how individual decision making in a rural collective translates into 

quantitative differences in landscape-level environmental outcomes. Behavioral science has 

become a critical domain of knowledge in conservation, but little attention has been paid to 

how multiple behavioral drivers determine the success of collective environmental action. We 

developed a social-ecological model for landscape-level conservation using a detailed data 

set of 600 land owners in New Zealand. With the model, we tested whether the effect of 

social influence networks on collective conservation action was altered by their interplay with 

land owners’ personal characteristics, connections to cross-scale actors and local 

environmental contexts. Interactions between multiple behavioral drivers determined the 

environmental outcomes of collective action in unexpected ways by modifying, muting or 

amplifying the effects of single drivers. Importantly, we detected a social-ecological 

mechanism for rapid change in the extent of protected habitats, which can explain highly 

successful or failed environmental outcomes of collective conservation. Further, when 

environmentally desirable and undesirable behaviors spread simultaneously through the 
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social network, homophily and network cohesion hinder desirable environmental outcomes. 

This effect can be modified by other drivers such as social responses to local environmental 

change. Thus, understanding how the antagonistic and synergistic effects of behavioral 

drivers can be best utilized in conservation will benefit biodiversity and ensure benefits that 

humans obtain from biodiversity. 

 

Key words: pro-environmental behavior, social-ecological systems, conservation, social 

networks, landscape structure 

  

Plain-language abstract:  

Biodiversity conservation efforts frequently depend on local land owners’ participation. 

However, critical knowledge gaps remain in understanding how individual behaviors 

collectively lead to desired environmental change. Using an empirically informed social-

ecological model for landscape-level conservation, we show that mechanisms emerging from 

the interplay of behavioral drivers can lead to accelerating environmental change and that 

effects of single drivers depend on the influences of other drivers. In the context of land 

owners who vary in their values and relationships, an interplay between behavioral drivers 

can explain unexpected outcomes of collective conservation, including failure to achieve 

environmental change. Hence, the benefits of behavioral insights for the success of 

conservation initiatives depend on better understanding of the ways in which behavioral 

drivers interact.   

 

Halting global biodiversity loss requires increases in protected areas and efficiency of 

conservation efforts (1). Protecting native or semi-natural habitat patches on agricultural land 

can sustain local biodiversity and provide habitat connectivity between existing protected 

areas (2, 3). Agricultural land covers circa 37 per cent of global terrestrial area, and 

humanity’s demand for food, biofuels and fibre is increasing, placing further strain on natural 

habitats (4–6). Land-use decisions made by individual land owners are thus pivotal in 

determining the extent of natural habitats and accompanying biodiversity that persist in 

agricultural land. However, conservation in agricultural landscapes, where the primary 

objective of individual decision making is often financial, has proven to be a social and 

ecological challenge (7, 8).  
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Conservation is most effective when individuals who have adopted pro-environmental 

behavior influence broader systems such as social networks and social norms (9–11). 

Therefore, understanding how the environmental behavior of individuals leads to a system-

wide change is crucial for achieving environmental change. A substantial body of literature 

has considered what motivates individuals to participate in voluntary conservation (12). 

However, much less is known about why formal or informal collective behavior emerging 

from individual behaviors in some cases succeeds, and in others fails, in effecting 

environmental change (10, 13).  

 

Here, we examine how mechanisms emerging from the interplay between multiple 

constraints and drivers of pro-environmental behavior influence collectively achieved 

environmental change. The spread of pro-environmental behavior is driven by factors such as 

social network structure (14) and personal characteristics (15). However, it is likely that 

multiple ecological and social behavioral drivers interact in complex ways to influence 

environmental outcomes (10, 16), and such interactions cannot be revealed by studies 

focusing on single drivers (11). To investigate the effects of multiple behavioral drivers, we 

ask how the effect of social-influence networks on conservation outcomes in agricultural 

landscapes is modified by cross-scale social influences, actor attributes and local 

environmental change. We relax the common assumption that influence and behaviors almost 

inevitably spread between connected individuals (e.g. 14, 17 and references within), and 

instead assume that: i) behavioral decisions are affected by multiple drivers, and ii) both 

environmentally desirable and undesirable behaviors1 can simultaneously spread through a 

social network (18, 19). Peer influence (i.e. social network connectivity) between land 

owners can generate desired or undesired environmental behavior and, consequently, patterns 

of social influence among land owners may determine landscape structure. The propensity of 

land owners to associate with and be influenced by other like-minded land owners (a process 

termed ‘homophily’ [20, 21]) can thus generate socially (but not necessarily spatially) 

aggregated behaviors. Conversely, social norms and behavior may be transmitted locally (“I 

see others do it, so it must be a good thing to do”) through changes in natural areas, for 

example among neighboring properties (22, 23). The local influence of social norms on 

behavior would, therefore, tend to generate spatially aggregated clusters of similar 

                                                 
1 We use the terms “desirable” and “undesirable” from a biodiversity-conservation perspective. Thus, 

“environmentally desirable behavior” refers to pro-environmental behavior such as conservation, and 

“environmentally undesirable” to lack thereof. 
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behavior(s). The spread of pro-environmental behavior is especially important in natural 

habitat conservation because biodiversity is strongly influenced by the composition, 

abundance and spatial configuration of habitats at the landscape level (hereafter, ‘landscape 

structure’) (24). 

 

While social structures profoundly impact collective environmental action (see discussion on 

drivers below), their effects on environmental change are rarely measured (13). We 

implement a social-ecological agent-based model (Figure 1) to explore how individual 

decision-making in a rural collective translates into differences in landscape-level native 

forest conservation. The model is based on survey data of 600 New Zealand land owners that 

included questions on land use practices, sources of environmental information and personal 

characteristics (for a summary of the survey methods and general results, see [25]). New 

Zealand provides an ideal context to explore the emergence of natural habitat conservation on 

agricultural land: agricultural land covers 42 per cent (in 2015) of the land area (4), and 

although protecting native habitat on agricultural land is voluntary in New Zealand, the 

agricultural sector is under societal pressure to improve its environmental performance while 

maintaining its position as New Zealand's largest sector of tradable goods (26).  

 

Our study includes the following four types (i – iv) of behavioral drivers. First, behavioral 

science suggests that each person has a set of personal characteristics and beliefs influencing 

his or her decisions about participation in environmental action (9), which are called (i) actor 

attributes when associated with social networks. Much empirical research has sought to 

identify the predictors of land owners’ adoption of conservation practices (15). A suite of 

universal predictors has not been identified; instead, they are likely to be context-dependent 

(15).  

 

Further, behavior, information and ideas spread through (ii) social networks as individuals’ 

opinions are weighted in relation to those of others per social influence network theory (27). 

Threshold models of collective action show that an individual's adoption of a behavior is 

influenced by the number of people already practicing that behavior and their susceptibility to 

influence (28). We include network link weights to capture the self-reported level of 

influence that social connectivity has on each land owner. However, influence-based 

contagion may actually be driven by homophily (similar people adopt the same kind of 

ideas), and, over time, actor attributes can become correlated with the structure of social 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2019                   doi:10.20944/preprints201905.0197.v1

https://doi.org/10.20944/preprints201905.0197.v1


5 

 

networks (29). The importance of the effect of homophily in collective action has been 

acknowledged, but its effect on collective behavior is not fully understood (21).  

 

The third behavioral driver we consider is (iii) cross-scale groups, i.e. social actors who do 

not directly modify the environment but who may influence other actors to do so, thereby 

indirectly affecting environmental outcomes (30). Communication between cross-scale actors 

and local land owners can shift perceptions of conservation and so enhance and coordinate 

local environmental action (31). Due to their ability to influence environmental chance, we 

include three cross-scale groups in the experiments and assume them to be pro-

environmental. We include two stakeholder groups and one indigenous group but discuss 

them as one driver.  

 

Finally, humans use the behavior of others to guide their own actions and are generally 

reluctant to deviate from social norms (32). Consequently, observable cues of widespread 

support for environmentally desirable action can change behaviors (11, 33). Since both 

macro-level environmental and social dynamics arise from micro-level social (or social-

ecological) interactions (34), local environmental change or reductions in collective 

behaviors can erode a social norm or affect opinions, ultimately leading to a cascading 

change in behavior (35, 36). To represent how environmental changes resulting from 

individual actions feed back to influence future environmental decisions, we include a fourth 

driver, (iv) ecological feedback. Drivers i-iii were derived from the survey results (see 

Materials and Methods) whereas driver iv was added after the survey was conducted, inspired 

by the suggestion that when behavior is easily observable, social norms could contribute to 

widespread change in behavior (37) (see also [38]).  

 

We parameterized the influence of these four types of drivers of environmental behavior on 

land owners’ conservation decisions. We then modeled the spread of environmental 

behaviors under different parameterizations and evaluated the consequences of land owners’ 

behavior on landscape structure. Four in silico experiments were conducted with either two 

(experiments H_SNA and R_SNA) or all behavioral drivers (experiments H_ALL, R_ALL) 

affecting land owner decision making (Table 1). The former two experiments include only 

actor attributes and social network influences as behavioral drivers, and represent a common 

approach to social network studies explaining environmental outcomes (e.g. 14, 34). The 

experiments were run with either a survey-based, homophilous network, or using a random 
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Erdős-Rényi network model (39), which serves as theoretical baseline model to the survey-

based networks.  

 

RESULTS  

 

The inclusion of all behavioral drivers in land owner decision making made the 

environmental outcomes of collective conservation highly unpredictable: a greater range of 

environmental outcomes emerged for variables measuring protected area extent and 

fragmentation in experiments with all drivers (H_ALL and R_ALL) than in those with only 

social networks and actor attributes (H_SNA and R_SNA) (evidenced by vertical spread in 

Figures 2a-c). Further, the homophilous social networks produces less desirable 

environmental outcomes (smaller and more fragmented conservation landscapes) than 

random social networks (Figures 2a-c). In addition, the distribution of the total duration of 

protection suggests that the random network model regularly produces landscape structure 

that remains longer under conservation than experiments with homophilous networks (Figure 

3, horizontal distribution). However, the constraining effect of homophily was modified when 

other behavioral drivers were included in experiments. The difference between collective 

action outcomes of homophily and random social networks is smaller when all driver types 

were included in experiments (Figures 2a-c, experiment-specific means).  

 

To investigate the mechanisms that underlie the differences in environmental outcomes, we 

calculated experiment-specific effect sizes (Pearson’s r) for behavioral drivers and 

environmental outcome variables (Figure 4). When all behavioral drivers were included in 

land owner decision making, ecological feedbacks were the strongest mechanism behind 

collectively achieved environmental change (we interpret effect sizes ≥ 0.5 or ≤ -0.5 as a 

strong association). In the R_ALL experiment, desirable environmental outcomes of 

collective action increased with the influence of ecological feedbacks and social networks 

(we interpret effect sizes ≥ 0.3 or ≤ -0.3 as a moderate association) in decision making. 

However, when a homophilous network was used, social network influence became muted, 

and any increase in desired environmental outcomes was driven by ecological feedback 

alone. This was largely because homophilous networks had a smaller range of network 

structures than random networks (presented below), and the small structural differences 

among homophilous networks were insufficient to have a notable impact on environmental 

outcomes. The desired environmental outcomes of collective action decreased as the 
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influence of cross-scale actors in land owner decision making increased (effect sizes ≤ - 0.3). 

Actor attributes did not influence environmental outcomes (below effect sizes > -0.3 and < 

0.3). However, actor attributes were included in the model both as a separate driver in 

decision making and through actor attribute-based similarity in the homophilous network 

construction. Hence, homophilous networks propagate the influence of actor attributes.  

 

Varying the relative influence of the social network and actor attributes, in the experiments 

where these were the only behavioral drivers (H_SNA and R_SNA), showed that the social 

network was more effective at generating desired environmental outcomes than were actor 

attributes when the network was random, but the reverse was true for homophilous networks 

(Figure 4). To describe the topology of the social network, we measured a number of network 

indices previously found to be influential in environmental action (Supplementary 

Information [SI] Table S3). Of the ten network indices we explored, five correlated with the 

environmental outcomes in R_SNA experiment, and the others not at all (Table 2). This lack 

of correlation in the homophilous networks was likely due to less variation in network indices 

for survey-based homophilous networks than for random networks (Table 3, SI Table S4). 

More generally, the differences in environmental outcomes between homophilous and 

random network experiments demonstrate that homophily produces less desired 

environmental incomes by constraining patterns of influence. Survey-based homophilous 

networks are less compartmentalized than random networks (Table 2, compartmentalization, 

bridging actors) and have fewer unconnected land owners (i.e. isolates) than random 

networks, although the number of isolates is high in both (Figure 3, Table 2). Moreover, 

individual land owners in random networks have more influential links to other land owners 

(Table 2, average weighted indegree). Consequently, behavioral influences (both desirable 

and undesirable) can spread widely in homophilous networks, whereas in random networks 

the spread of influence typically remains within subgroups of land owners. The constraining 

effect of homophily was larger in experiments including only two drivers, in which the 

modifying influences of ecological feedbacks and cross-scale social groups were absent. 

 

None of the behavioral drivers correlated with the area of covenanted land in any of the 

experiments (Figure 4). Since covenanted land cannot legally be unprotected and returned to 

agricultural use, increase in covenanted areas in our model is mainly influenced by the extent 

of covenanted areas at the beginning of the model simulations (SI Figure S1).  
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Finally, comparing environmental outcomes between experiments including all behavioral 

drivers and experiments including only two behavioral drivers show that only H_ALL and 

R_ALL experiments produced extreme outcomes in collective conservation, illustrating 

success or failure in collective action. (Note, our model landscape consists only of areas 

available for conservation, so the percentages discussed in the study are not directly 

comparable to suggested critical thresholds in habitat declines that lead to abrupt biodiversity 

losses, e.g. [41]). For example, the H_ALL and R_ALL experiments produced landscapes in 

which over 70% of the available land was protected, as well as landscapes in which less than 

30% of the land available was protected, whereas the experiments with only social network 

and actor attribute influences did not produce any such landscapes (Figure 2a). Similarly, we 

detected greater variance in habitat fragmentation for H_ALL and R_ALL experiments in 

comparison to H_SNA and R_SNA experiments as well as higher fragmentation (Figures 

2b,c), on average. In the case of New Zealand rural land owners, traditional social network 

analysis approaches would not have been able to address this emergence of extreme 

outcomes.  

 

DISCUSSION 

 

Taken together, our results demonstrate that interactions between multiple behavioral drivers 

may determine the environmental outcomes of collective action, including the area and 

spatial patterning of natural habitat fragments. These interactions occurred in unexpected 

ways by modifying, muting or amplifying the effects of single drivers. The inclusion of all 

behavioral drivers in experiments increased the variety of environmental outcomes and led 

more often to extreme environmental outcomes than our more traditional social network 

experiment setting, which included only two behavioral drivers. Importantly, the known 

tendency for people to interact with and influence like-minded individuals (i.e. homophily) 

generates landscapes with less area and greater fragmentation of natural habitat than would 

be expected at random. Homophilous social-influence networks reinforce existing behaviors. 

They thereby produce less successful outcomes, including shorter residence times for 

protected areas, when both desirable and undesirable behaviors spread simultaneously among 

heterogeneous actors. Our results suggest that mechanisms emerging from the interplay 

between multiple behavioral drivers can explain why environmental outcomes of formal or 

informal collective action range from failure to success.  
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Extreme environmental outcomes (success or failure of collective conservation) emerged in 

experiments including all behavioral drivers largely due to a combination of two spread 

mechanisms, namely spatial diffusion (i.e. ecological feedback) and social connections. 

While ecological feedback produces spatial clusters of protected or unprotected areas in a 

landscape, behavior in social networks spreads via social connections, independent of land 

owners’ spatial locations. Behavioral change through social networks can therefore “jump” 

and produce protected areas in otherwise unprotected regions, or vice versa, which then 

becomes a seed for new ecological feedback-induced clusters (a process similar to long 

distance dispersal of ecological invasion). This mechanism resulted in a higher level of 

fragmentation and spatial habitat clustering (i.e. lower entropy) in experiments including all 

behavioral drivers, especially for homophilous networks, which connect more people. In the 

context of natural habitat conservation, this social-ecological mechanism generates 

accelerating gain or loss of natural habitats. In real world systems, inertia effects such as 

delays in creating or observing local environmental change may slow change. 

 

We found that homophily, a common characteristic of social networks (20), in combination 

with land owners’ self-reported connectivity, typically lowers the success of collective 

conservation. In our study, the typical cohesive structure of homophilous networks allows 

both undesirable or desirable behaviors to spread more widely than across the more 

compartmentalized and fragmented structure of random networks, producing ‘compromise’ 

environmental outcomes. Further, because more landowners were connected to at least one 

other in homophilous networks, this greater proportion had the potential to be influenced by 

the social network. Finally, similarity among land owners was calculated using actor 

attributes; land owners who have a high probability of protecting land due to their attributes 

connected to each other via homophily. In general, this result highlights the importance of 

considering the influence of actor diversity in collective action. In addition to its influence on 

the spread of collective action (as studied here), homophily can result in homogeneous ideas 

within a group, which can further impede the success of collecgtive action when complex 

problem solving is required (34).  

 

The interplay of behavioral drivers shows, however, that the constraining effect of homophily 

can be modified. Ecological feedbacks and cross-scale social connections influence land 

owners who lack network connections to other land owners or who are only connected to 

like-minded peers. Thus, these drivers can modify the self-reinforcing views that spread 
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through homophilous networks (41). Conversely, social network connectivity only influences 

land owners that are connected to others. Moreover, the initial extent of covenanted land 

influenced the final protected area extent since it cannot later be unprotected. Hence, 

communities that already included committed conservationists were, in our model, better 

positioned for successful environmental outcomes. A social network with stronger influence 

links and fewer isolates could, in another setting, outweigh the influence of the ecological 

feedback.  

 

The influence of social network structures on environmental outcomes has rarely been 

quantified. That network structure indices correlate with environmental outcomes only when 

some of the drivers were excluded and that they do so more in random networks than in 

survey-based homophily networks is challenged by a large body of literature on the 

significance of social network structures. The outcome we describe results from homophily 

and context-specific (i.e. survey data) degree distributions, which limit the variability of 

homophilous network structures that can emerge, despite taking a random sample of land 

owners at the beginning of each simulation. The effects of social network structures are 

commonly found to be context-dependent and to interact with other network structures (34). 

Nevertheless, the differences in environmental outcomes between the homophilous and 

random models show that network structure strongly influences the outcomes in this study.  

 

Our results have profound implications for understanding the complex milieu of social and 

ecological processes in which the conservation of natural habitats occurs, especially in 

human-dominated production landscapes. While drivers of long-term conservation success 

are social (1, 10, 11, 42, 43), dynamic feedbacks between social and ecological outcomes are 

rarely considered in conservation science (44) and few studies (e.g. 14) have measured the 

effect of micro-level social interactions on environmental outcomes. In particular, the two 

key variables in fragmented landscapes, habitat amount and patterning, can both be 

determined by the interplay of local environmental feedbacks and social influence. Our 

approach included a large, detailed dataset, dynamic social-ecological modelling and key 

drivers for pro-environmental behavior. Hence, we can disentangle a number of potential 

leverage points for increasing natural or semi-natural habitats on agricultural land. The strong 

influence of ecological feedbacks suggests that visible sustainable behavior (22) could 

change the behavior of people who lack social connections (or whose social connections may 

not promote pro-environmental behavior) and can produce spatial clusters of conservation 
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activity, which would benefit biodiversity. Establishing such “seeds” of conservation could 

trigger willingness to adopt pro-environmental behavior(s), especially if “seed” land owners 

commit to long-term conservation via mechanisms such as covenants. A process of land 

owners encouraging neighbors to undertake private land conservation integrates both 

ecological feedbacks and social network influence, and this intervention has recently been 

tested with successful outcomes for landscape-level conservation (38).  

 

Importantly, conservation initiatives based on social network intervention must account for 

context-dependent network structure and the simultaneous spread of desired and undesired 

behaviors. Barnes et al. (14), for instance, showed that homophily in a fishery network 

correlated with unsustainable environmental behavior by limiting the spread of sustainable 

behavior. Likewise, in our study, homophily in networks resulted in less successful 

environmental outcomes than random networks. Our results suggest, however, that enhancing 

communication between homophilous groups to foster the spread of sustainable behavior (14) 

needs careful consideration as it may also facilitate the spread of unsustainable behavior 

through the network. Finally, it is crucial to acknowledge that the complex dynamics 

produced by social-ecological feedbacks may accelerate change: a social-ecological feedback 

loop including environmental change, emergence of clustered protected areas or strong 

influence links between spatially decoupled land owners could potentially provide early 

warning signs for accelerating landscape-level change.  

 

Our model necessarily presents a simplified representation of decision making in social-

ecological systems. We assumed that all land owners are able to allocate a fraction of their 

land to conservation, and we do not consider changes in social or economic conditions or 

habitat quality. The representation of an ecological feedback is based on the idea that social 

norms and/or demonstration of conservation action generate a reinforcing feedback. 

However, a balancing feedback could also result from a decrease in protected areas triggering 

pro-environmental behavior as land owners observe an increased need for conservation (36, 

45). Moreover, the behavioral changes that occur within our model can make the network less 

homophilous with respect to conservation behavior. Therefore, studies that allow the social 

network structure to adapt to changing values of landowners during the simulation are 

needed. Finally, by scaling the total influence of the behavioral drivers to always sum to one 

we assumed that individual decision making can only be influenced to a certain extent. 

Hence, an increase in the value of one driver results in a commensurate decrease for the other 
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drivers, which may explain the negative correlation between some drivers and environmental 

outcomes in the presence of strong drivers. That the weighting of stronger drivers (e.g. 

ecological feedback) may decrease as the influence of cross-scale groups (which each had 

their own weighting) increases may explain the negative effect of these cross-scale groups. 

However, it is more likely that the weak influence was due to the low number of land owners 

connected to cross-scale actors: in our sample of 600 land owners, only 1.8% of land owners 

reported influential environmental conversations with indigenous groups, 28.3% with local 

councils and 3.0% with central government representatives. In that case, conservation 

initiatives using cross-scale groups as influencers would not have produced desired 

environmental outcomes in our study context.  

 

In conclusion, our work emphasizes that an interplay between behavioral drivers can produce 

unexpected environmental outcomes in collective conservation action. Long-term protection 

of natural and semi-natural habitats in human-dominated landscapes necessitates 

understanding that the drivers influencing environmental behavior are not necessarily 

additive but may include antagonistic and synergistic effects. Understanding how these 

effects can be best used in conservation design will benefit biodiversity and ensure the 

benefits that humans obtain from biodiversity.  
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We developed an agent-based model for evaluating the environmental outcomes of collective 

conservation action on agricultural land (Figure 1). A detailed Overview, Design concepts 

and Details (ODD) protocol of the model is available in the SI. Data for the study were 

collected in the 2015 Survey of Rural Decision Makers (46), which is a large, internet-based 

survey covering 3300+ farmers in all primary industries and all regions of New Zealand. Due 

to question randomisation and the survey branching, the usable data set for this survey 

included 600 commercial land owners.  

 

Model simulations begin with 200 land owners, randomly selected for each simulation from 

the 600 land owners with complete survey data. At the start of each simulation, protected 

natural habitat is present only on the farms of the land owners who reported having native 

forest or covenanted land. At each time step, land owners decide whether to protect natural 

habitat on their land, and if they decide to protect the land, they also decide whether to 

covenant2 it. In the model, self-reported barriers such as fear of losing rights to own land 

prevented land owners from committing land to covenants. Land owners can decide to not 

protect land only if the habitat is not covenanted. During the following time step, decisions 

take place in an updated social-ecological context. We simulated a period of 150 time steps, 

which represents approximately 15 years. The model was run for 50 time steps burn-in before 

analysis.   

 

The landscape component of the model is represented on a toroidally wrapped grid (lattice). 

Each cell in the landscape can occupy one of three states: protected, unprotected, or 

covenanted. For habitat connectivity variables, connected protected cells are assumed to 

create a non-fragmented habitat area; any non-protected cells between protected patches 

indicates the presence of habitat edges. The landscape consists only of land available for 

conservation (i.e. no other land use), and is subdivided into farms owned by the 200 land 

owners represented in the simulation. We allowed 10% of each farmer’s land to be available 

for protection and assumed that the farm would remain financially viable. This simplification 

avoided the possibility of unlikely outcomes such as land owners protecting 100% of their 

land while allowing us to avoid further complicating the model by including financial 

parameters. We assumed that the extent to which individuals prioritise profit over 

                                                 
2  Covenanting land is a practice increasingly adopted by land owners in New Zealand. It is an agreement 

between a private land owner and the QE II National Trust to protect land, even if the property is sold to a new 

owner (54). 
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conservation are captured by the actor attributes, which were measured in the survey. This 

percentage was arbitrary but was held constant across experimental treatments. The size of 

each farm is based on survey data. 

 

To determine a set of actor attributes that influence native forest protection, we performed 

logistic regression analyses on variables covering land owners’ views and values for 

conservation and covenants, their farming industry, land use and whether they live on the 

farm (SI Tables 5a-d, a detailed examination of the diversity of survey land owners can be 

found in [26]). The entire set of 28 variables (SI Table S7) included in the regression was 

used to calculate pairwise Gower’s dissimilarity (47) for the 600 land owners. The probability 

of each pair of land owners (with indegree > 0) to be connected was inversely proportional to 

their dissimilarity in their attributes, thereby generating homophilous connectivity.  

 

In social networks, nodes represent land owners and directed links represent influential 

environmental conversations between peers. Each land-user’s indegree and link weight were 

reported in the survey respectively as the number of other land owners which whom they had 

environmental conversations and a categorical evaluation (four categories) of the influence of 

these conversations (SI: Network Questions). We removed links in which the level of 

influence was reported as “not influential”. Because the survey captured the number and level 

of influence but not the identity of influence partners, connectivity between individuals was 

assigned either at random or homophilously at the start of each simulation. Random networks 

follow the Erdős–Rényi models (39); we used the mean link density of  > 6500 model-

generated homophily networks (0.0035) as the probability of assigning a link between any 

two land owners. Three categorical link weights representing slight/moderate/high influence 

were assigned at random. These random network models are a null against which to compare 

the influence of homophily. We included a set of cross-scale groups, specifically central 

government representatives, local council representatives and an indigenous group (New 

Zealand Māori iwi). Links to cross-scale groups and their influence were reported similarly 

by land owners. In both network structures, the number of nodes (land owners to create links 

between) was fixed at 200.   

 

Simulations 

The influence of each behavioral driver on decision making was scaled to sum to one (Table 

1). We varied the percentage of land owners who make a decision during each time step (30, 
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70 or 100%) as well as the minimum time interval between land use changes (0, 2 or 6) for 

each parameter combination. One simulation was run for each parameter value combination 

for the experiments, including all behavioral drivers, resulting in 6561 simulations per 

experiment. H_SNA and R_SNA experiments (with fewer unique combinations due to fewer 

drivers) were run with repeated simulations (n = 75) to total to 6561 to have a consistent 

number of simulations for each experiment.  

 

Land user decision making  

Decision making was calculated as the weighted sum of the behavioral drivers. Each 

behavioral driver had a value between 0 and 1, with higher values indicating a higher 

likelihood of protecting land. Network influence indicates the number and influence (weight) 

of links that a land owner has to other land owners that are protecting land across all the 

actor’s weighted links. It is based on weighted indegree centrality and was calculated for 

actor i as: 

 

𝐶𝑑(𝑖) =
∑ 𝑥𝑖𝑗𝑤𝑖𝑗

𝑛𝑐
𝑗=1

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 𝑤𝑖𝑗

 

 

where n is the number of nodes in the network, nc is number of nodes currently conserving 

habitat on their land, x is the value of the link (1 if the nodes are connected) and w is the link 

weight. 

 

The network influence for each cross-scale actor group was calculated in relation to the 

maximum cross-scale influence (Cmax) in the network: 

 

𝐶𝑐𝑠(𝑖) =
𝑘𝑤𝑐

𝐶𝑚𝑎𝑥
 

 

where k is the land-user’s degree to that cross-scale group and wc is the influence of those 

links (both derived from survey data). The ecological feedback for actor i was calculated as: 

 

𝐸(𝑖) =
𝑁𝑐

𝑁
 

 

(1) 

(2) 

(3) 
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where Nc is the count of adjacent farms with native forest and N is the total number of 

adjacent farms.  

 

Actor attribute influence was calculated from a logistic regression with the protection 

probability of native forest (outcome variable) and survey responses as predictors (X), 

calculated as: 

 

𝑃(𝑌) =
1

1 + 𝑒(𝑏0+𝑏1𝑖𝑋1𝑖+𝑏2𝑋2𝑖+…𝑏𝑛𝑋𝑛) 
 

      

where  bn is the regression coefficient for variable Xn. 

 

The probability of land being covenanted was calculated similarly, but with the exception that 

if the actor had reported (in their survey responses) reasons for not covenanting land (e.g., no 

suitable land available on farm or concerns over covenant regulations or losing the right to 

change covenanted land), they would always decide against it.  

 

Finally, in our representation of decision making, the influence of each driver is weighted by 

his or her individual parameter values. The probability of an actor protecting land is the 

weighted sum of n behavioral drivers:   

 

𝑃(𝑝𝑟𝑜𝑡𝑒𝑐𝑡) = ∑ 𝑦𝑗𝑓𝑖𝑗

𝑛

𝑗=1

 

 

where yj denotes the weight (parameter value in our model) of importance of each behavioral 

driver in decision-making, and fj is the value of the behavioral driver. 

 

Data and software availability 

We used NetLogo 6.0.3. (48) for model programming and simulations, including the R 

extension (49), and R Studio version 1.1.463 coding environment for supporting coding and 

analysis (50). Pseudocode for the model and needed data input files for the model are 

available in SI. Sample data for actor attributes is available in 

https://www.dropbox.com/s/l99ockib7c3rvvo/Yletyinen_sample_data_LU1_2019.xlsx?dl=0 

(a temporary link for the journal review, to be replaced with data repository link) and the full 

(4) 

(5) 
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data-set can be requested from the authors with consideration to survey respondents’ 

anonymity. Simulated, simplified landscapes and subsamples of land owners make the survey 

respondents unidentifiable in the model.  
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FIGURE AND TABLE CAPTIONS 

 

Figure 1. General model concept. The model consists of A) three cross-scale actor groups 

and their influence links to land users; B) 200 heterogeneous land owners, each with his or 

her personal attributes, and influence links between land owners; C) a simulated agricultural 

landscape with areas available for conservation on each farm, upon which the land owner 

makes conservation decisions (dashed line); D) a binary ecological landscape emerging from 

conservation action and consisting of either protected or unprotected land, coloured here 

accordingly; E) ecological feedback to each land owner from his or her neighbouring farms 

(here illustrated with one arrow only). A-B link weights represent the level of influence that 

land users have self-reported their connections to have. 

Figure 2. The main environmental outcomes. Comparison for experiment-specific 

outcomes are shown as bean plots (horizontal black lines represent averages for experiment-

specific distribution and dashed lines represent overall averages). The length of the bean per 
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point found is 0.1. The high ends of the beans are cut to a maximum value of 0.2 for visibility 

of the distribution. The variability of outcomes across simulations was also greater when all 

behavioral drivers were included, and the mean level of environmental outcomes was lower 

with a homophilous network. The models are abbreviated as H_ALL: homophilous network 

model influenced by all drivers (actor attributes, social network, ecological feedback and 

cross-scale actors); R_ALL: random network model influenced by all four factors; H_SNA: 

homophilous network model influenced by social networks and landowner attributes only; 

and R_SNA: random network model influenced by social networks and actor attributes only. 

The figure was produced using the beanplot R package (50, 51) 

 

Figure 3. The average temporal variation in the size of protected area during model 

simulation. The distribution of residence time (the total duration of land as protected) for the 

homophily model with all behavioral drivers shows the shortest average duration for 

protected areas and no extreme outcomes. The random model excluding external variables 

produces the most long-term protected areas. The number of isolates plays a role as the 

fraction of the rural collective that cannot be reached through social networks and was found 

to be higher in random networks than in survey-based homophilous networks. The figure was 

produced using the ggpubr R package (50, 52). 

 

Figure 4. Scenario- and model-specific effect sizes. Behavioral drivers included in decision 

making by land owners are marked with a black rectangle, and the remaining variables on the 

y-axis are social network indices. The figure was produced using the gplots R package (50, 

53). 

 

Table 1. Model experiments. In each experiment, the effect of behavioral drivers was tested 

by systematically changing their influence in decision making. Cross-scale groups include 

indigenous group (New Zealand Māori iwi), local council representatives and central 

government representatives. ‘Change-makers’ is the percentage of land owners making a 

decision during each time step, and ‘time steps’ is the minimum time interval between land 

use changes. Neither of these is a behavioral driver. 

Table 2. Social network indices. Calculated from networks for both two-factor and four-

factor experiments, a total 13 122 simulations (6561 each). Density was used in network 
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randomization in R_SNA and R_ALL experiments. The full table and descriptions for each 

social network analysis index can be found in SI tables S3 and S4.  

 

FIGURES 

 

 

Figure 1. 
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Figures 2a-d. 
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Figure 3.  
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Figure 4. 

 

TABLES 

 

Table 1. 

EXPERIMENT AND 

BEHAVIORAL 

FACTOR TYPES  

NETWORK 

MODEL  

PARAMETER VALUES 

H_ALL 

i) Actor attributes 

ii) Social network 

iii) Cross-scale groups 

iv) Ecological feedback 

Homophily Actor attributes:                 0.1, 0.5, 1 

Social network:                     0, 0.5, 1 

Cross-scale groups               

- Indigenous:               0, 0.5, 1  

- Council:                    0, 0.5, 1 

- Central gov.:             0, 0.5, 1 

Ecological feedback:            0, 0.5, 1 

Change-makers:                0.3, 0.7, 1 

Time steps:                              0, 2, 6 

R_ALL 

i) Actor attributes 

ii) Social network 

iii) Cross-scale groups 

iv) Ecological feedback 

Random Actor attributes:                 0.1, 0.5, 1 

Social network:                     0, 0.5, 1 

Cross-scale groups               

- Indigenous:               0, 0.5, 1  

- Council:                    0, 0.5, 1 

- Central gov.:             0, 0.5, 1 

Ecological feedback:            0, 0.5, 1 

Change-makers:                0.3, 0.7, 1 
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Time steps:                              0, 2, 6 

H_SNA 

i) Actor attributes 

ii) Social network 

Homophily Actor attributes:                 0.1, 0.5, 1 

Social network:                     0, 0.5, 1 

Change-makers:                0.3, 0.7., 1 

Time steps:                              0, 2, 6 

R_SNA 

i) Actor attributes 

ii) Social network 

Random Actor attributes:                 0.1, 0.5, 1 

Social network:                     0, 0.5, 1 

Change-makers:                 0.3, 0.7, 1 

Time steps:                               0, 2, 6  

 

Table 2. 

SOCIAL NETWORK 

INDEX 

HOMOPHILY 

 NETWORK  

RANDOM  

NETWORK 

Network size 91.000 

142.726 

217.000 

74.000 

139.117 

212.000 

Bridging actors 26 

46.272 

70.000 

8.000 

30.565 

60.000 

Isolates 37.000 

69.262 

101.000 

61.000 

99.657 

136.000 

Compartmentalization 0.210 

0.677 

0.911 

0.791 

0.934 

0.974 

Average weighted 

indegree  

without isolates 

0.523 

0.723 

0.979 

0.642 

0.918 

1.225 

Density 0.002 

0.004 

0.005 

0.002 

0.003 

0.005 

Density without 

isolates 

0.006 

0.008 

0.012 

0.010 

0.014 

0.021 
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Supplementary Information Text: 

Network questions in the Rural Decision-Makers 2015 Survey 

 

This section describes how the Rural Decision-Makers 2015 survey data (1) were converted 

to a social network structure. In the social network including only land owners, each node is 

an individual land owner, and each link represents influence mediated by conversations about 

environmental issues. First, land owners were asked "Did you regularly meet with individual 

people from the following groups to discuss environmental performance of your farm 

business over the past 12 months?" If a land owner chose "Farmers in your industry" or 

"Farmers in different industries", they received two additional questions on the number and 

influence of connections they have to other land owners. The in-degree (number of incoming 

links) is based on the land owners reply to the question: "With approximately how many 

individuals from each of the following groups did the trust board regularly meet to discuss 

environmental performance of the farm business during the past 12 months?". Then, the land 

owners evaluated the influence ("How influential is advice about environmental performance 

from these individuals?") on four-categorical scale: not at all influential, slightly influential, 

moderately influential, extremely influential. The answers were quantified and standardized 

to numeric link weights (0, 0.33, 0.66, 1). If a land owner replied "Not at all influential", the 

link weight becomes zero and the land owner’s in-links to other land owners are removed 

from the network.  

 

The second level of the network, i.e., land owners’ links to stakeholders, include survey-

based data on the indegree (i.e. connectivity between a land owner and representatives of 

New Zealand Māori iwi). The land owners were also able to select stakeholder groups in the 

question "Did you regularly meet with individual people from the following groups to discuss 

environmental performance of your farm business over the past 12 months?") and influence 

("How influential is advice about environmental performance from these individuals?"). We 

did not include stakeholders as nodes in the model networks since it would have required 

inventing the total number of cross-scale actors available (the model does not represent any 

specific area) and we do not know whether the land owners have talked to the same or 

different individuals in stakeholder groups. Thus, we avoided making assumptions about the 

topology of intermediate social network linking the land owner and stakeholder levels. 

Instead, cross-scale actor data is stored as land owner variables.  
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Fig.S1a-d. Relationship between baseline habitat and environmental outcomes. Due to 

diffusion processes (ecological feedback, social network influence), the extent of protected 

area in the beginning of model simulation affects the extent of protected area and covenanted 

area in the end of model simulation. (a) shows the relationship between the extent of 

protected area in the beginning (baseline) and at the end of model simulations, for the 

experiment including a homophilous network and all four behavioural factors. The x- and y-

axis units represent number of protected grid cells on the landscape model (total 841 cells). 

(b) shows the same relationship for covenants, suggesting that the relationship is more linear 

because covenanted land cannot be unprotected. Note that in figure a, the most successful 

protection cases occur with circa 250 – 350 baseline habitat area, not the highest. Figures c 

and d shows the same trends as regression lines to illustrate experiment-specific differences, 

with confidence interval 0.95. The blue and gray lines represent homophily (H_ALL) and 

random (R_ALL) network experiments with all four factors included, respectively. Yellow 

and red lines represent homophily (H_SNA) and random (H_SNA) network experiments, 

respectively, including only social network influence and actor attributes. Contrary to 

protected area, experiment-specific differences in the resulting extent of protected area were 

not detected for the increase in covenanted areas.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2019                   doi:10.20944/preprints201905.0197.v1

https://doi.org/10.20944/preprints201905.0197.v1


30 

 

 
 

Fig. S2. A homophilous network of land owners, as captured from one of the homophily 

scenario one simulations. Blue nodes represent land owners who have protected natural 

habitat on their land, red nodes are land owners without protected land. Note the mix of blue 

and red land owners on structures where network influence alone would have produced only 

unicolor nodes; for instance, see area marked with a black box. The isolates (unconnected 

nodes) represent land owners who reported they either did not frequently talk to other land 

owners about environment, or that such discussions were not influential to them. Isolates may 

emerge in survey data collection (e.g., 2) and are included in the network as they may play an 

important role in environmental or resource collectives. The network was visualized using the 

Fruchterman-Reingold layout (3, 4).  
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Table S1. Survey-based actor attributes and additional landscape variables included in 

the model. Prefix 's' in front of the ID number indicates Rural Decision-Makers survey-based 

variables, whereas variables calculated in the model can be found in Table S2 (prefix 'm'). In 

the Variable column, a letter indicates the reply options for each survey question: (B) binary 

(yes/no) reply, (C) categorical reply, (N) a value reported by the land owner. We assume any 

additional variables to be constant across the land owners throughout the modelled time 

period. These variables may include economic (e.g., market forces), political (e.g., policies 

that increase the productivity of the land and make setting aside land for conservation a 

greater loss) and institutional factors (e.g., attitudes on the public having right to recreational 

natural spaces).  

 
ID VARIABLE DESCRIPTION  

Land use and natural environment on the farm  

s1 Land use (C) 

 

Land use on the farm. Selecting multiple options was allowed in the 

survey; in the model, each land use is a variable of its own. Land use 

options: 

- grazing livestock 

- operating a dairy platform 

- operating a dairy run off 

- farming sheep and or beef 

- raising and/or finishing prime cattle, including bull beef 

- raising deer 

- raising pigs 

- raising poultry birds 

- raising other farmer livestock 

- growing grain and seed crops 

- growing crops for hay, silage or balage 

- growing vegetables and/or cooking herbs indoors 

- growing vegetables and/or cooking herbs outdoors 

- growing flowers, bulbs, nursery crops, or hops 

- growing kiwifruit 

- growing wine grapes 

- growing other fruits, nuts, or edible tree crops 

- plantations of exotic trees inteded for harvest 

- harvested exotic forest area awaiting restocking 

- farm-based tourism 

- wetlands 

- native forest and shrubs and/or tussock grasslands: farm land 

contains native forest and shrubs and/or ungrazed tussock 

grassland. This variable was used as an indicator of protected land 

on a farm, and as an outcome variable in regression analyses.   

s2 Covenant (B) 

 

All or part of the land is covenanted, i.e., permanently protected.  

Farming characteristics   

s3 Primary industry (C) 

 

Land owner's primary activity, i.e., how the land owner primarily 

identifies him/herself as a farmer. Selecting multiple options was 

allowed in the survey. Primary activity options: 

- farming sheep 

- farming beef 

- farming sheep and beef 

- dairying 

- deer farming 

- grazing livestock not owned by the farming business 

- pig farming 

- poultry farming 

- other farmed livestock 

- arable farming 
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- vegetable production 

- growing flowers, bulbs, nursery crops, or hops 

- kiwifruit production 

- wine grape production  

- growing fruits, nuts, or edible tree crops 

- exotic forestry 

- farm-based tourism 

- native forest and shrubs and/or tussock grassland 

- other 

s4 Ownership (C) 

 

Ownership of the land: myself (land owner) / another individual / 

family partnership / family trust / family company / Māori trust or inc. / 

corporate owned / equity partnership / family company 

s5 Live on farm (C) 

 

The land owner lives on the farm: year-round / part of the year / not at 

all.  

s6 Area (N) 

 

The total area of the farm in hectares. This variable addresses the largest 

land parcel of the farm, even if the farm includes additional blocks.  

Personal values 

s7 Private conservation (C) 

 

Private land owners should protect habitat for native plants and animals 

on private land: strongly disagree / middle / strongly agree.  

s8 Public conservation (C) 

 

The New Zealand Department of Conservation should protect habitat 

for native plants and animals on public land: strongly disagree / middle / 

strongly agree.  

s9 Covenant barriers (C) 

 

The reasons why land owner has not joined a covenant: don't have 

suitable land / fear of losing property rights / too much regulations. In 

the model, each reason is a variable of its own.  

Social networks  

s10 Indegree (C, N) 

 

The number of connections a land owner has to other land owners and 

to each cross-scale actor group. This variable consists of two parts: i) 

whether the land owner has regularly met to discuss environmental 

performance of the farm with representatives from the following actor 

groups (C); and ii) with approximately how many representatives of 

each group they have met regularly (N). Indegree for any of the 

stakeholder subgroups can be zero if a land owner has no connections to 

that group. The model includes following network actors:  

- regional councils, district councils 

- central government  

- iwi, i.e. largest social units of māori in New Zealand, often translated 

to “tribe” in English. In this study, we call iwi “indigenous groups”.  

- farmers in the same industry as land owner 

- farmers in different industries than land owner 

s11 Social influence (C) 

 

Land owner's estimation of how much influence his/her social 

connections (see list on the stakeholder subgroups in variable s10) have 

on him/her: not at all influential / slightly influential / moderately 

influential / extremely influential. If the connection is "not at all 

influential", land owner's degree to that actor group becomes zero in the 

model.  
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Table S2. State variables included in the study.  

 
Variable Description  

Baseline protected area The extent (number of patches) of protected area in the beginning of simulation 
Baseline covenant The extent (number of patches) of covenanted area in the beginning of 

simulation 

Protected area 

 

The extent (number of patches) of the total protected area in the landscape, 

measured at the end of simulation 
Covenant area 

 

The extent (number of patches) of the total covenanted area in the landscape, 

measured in end of simulation 
Fragment count  The number of natural habitats fragments (a fragment is defined as a protected 

area surrounded by land in other use) at the end of simulation 
Entropy A measure (Shannon entropy, (5)) of spatial randomness / arrangement of the 

natural habitat fragments in landscape, measured at the end of simulation  
Residence time  The total length of time (number of time steps) that land was protected, even if 

discontinuous. The average protection time was calculated from a list of 

protection times for each patch, and it excludes 50 first steps for model 

initiation.  
Conservationists  The number of land owners who have protected native forest, calculated in the 

end of simulation 

See Supplementary Materials Tables S3 and S4 for social network analysis indices. 
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Table S3. Structural social network indices. The indicators included in the  

study were chosen based on influence on collective action or environmental management 

described in previous studies. Due to the high number of isolates in our networks, some 

indices were calculated with and without isolates. 

 

 

 

  

SOCIAL NETWORK INDICES 

INDEX RELEVANCE 

Mean path length: the average of 

shortest paths between all actor 

(node) pairs (6) 

A short mean path indicates that everyone in a network is fairly 

'close' to each other, and actors can thus reach each other through a 

small number of intermediate actors (cohesive network) (6).  

Density: the ratio between the actual 

number of links in a network and the 

number of possible links (6) 

Density affects collective action as increased possibilities for 

communication (influence), exposure to new ideas and knowledge  

(7). However, very high density may hinder efficiency of collective 

action, or lead to homogenization (7). In influence network, short 

mean path and density would thus lead to quick spread of attitudes, 

knowledge and behaviour.  
Centrality: how central the network's 

most central actor is in relation to 

how central all the other actors are 

(8) 

While density and mean path describe the overall cohesion of a 

network, centralization describes the extent to which this cohesion 

is organized around particular actor(s) (7). High degree of 

centralization may have a positive effect on collective action as a 

central actor can prioritize certain action, and even coordinate the 

action, but it also indicates asymmetric influence relations (7). 

Hence, a highly centralized network would indicate a presence of 

central actors who are in key position to influence a large 

proportion of the land owner collective.  
Compartmentalization: a presence 

of subgroups in which actors are 

joined together in tightly connected 

groups, between which there are 

fewer connections (9) 

The low density of links between compartments may have negative 

effects on the collective action (see Density), and may lead to "them 

and us" attitudes, but high density inside compartments may lead to 

developing specialized knowledge (7). In the case of homophilic 

influence network, compartmentalization indicates subgroups of 

like-minded people with fewer connections (that would allow 

spread of attitudes and behaviour) to people less similar to them.  
Bridging links: links connecting 

different actor subgroups. Here, we 

measure bridging links as number of 

cut points (articulation points): actors 

whose removal increases the number 

of connected components in a 

network by forming two or more 

separate subgroups between which 

there are no connections (6).  

By connecting network subgroups (potentially compartments), 

bridging links provide actors in subgroups access to external 

knowledge and resources. Thus, high number of bridges enable or 

support collective action among different groups of actors. In this 

study, we calculated number of cut-points (i.e. actors who connect 

subgroups/network components. Removal of cut-point actors leads 

to a network subgroup breaking into two with no communication in 

between) to indicate number of bridgers.  

 

Isolates: non-connected actors Actors who do not participate in local network because they do not 

have links to other actors (based on the network boundary setting). 

In our study, actors who had not had frequent, influential discussion 

about environmental performance of the farm. Our ‘Isolates’ 

network index shows number of isolates.  

Average weighted degree: the 

average number of connections that 

actors in a network have, including 

the link weights.  

Actor’s network degree is the number of immediate contacts that an 

actor has in a network, enabling access to knowledge, new ideas, 

resources, etc. In our study, link weight indicates influence. Thus, 

high average weighted degree would mean a network with strong 

peer influence among the actors.  
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Table S4. Structural social network indicators for homophily and random networks. 

The bold value is the mean (for which standard error (SD) is calculated), value above it the 

minimum value, and below it the maximum value for all simulations. Due to the high number 

of isolates in our networks, we have calculated some indices with and without isolates. 

Network size is the number of links in the network. Erdős–Rényi randomization was based 

on the average density of homophily networks, and should thus be similar for homophily and 

random networks. 

 
SOCIAL NETWORK INDEX HOMOPHILY 

 NETWORK  

HOMOPHILY  

SD 

RANDOM  

NETWORK 

RANDOM  

SD 

Mean path length 1.224 

2.210 

6.232 0.569 

1.211 

2.528 

8.496 0.808 

Network size 91.000 

142.726 

217.000 16.154 

74.000 

139.117 

212.000 16.760 

Number of cut points 26 

46.272 

70.000 6.175 

8.000 

30.565 

60.000 6.522 

Centralization 0.007 

0.015 

0.030 0.003 

0.006 

0.016 

0.032 0.004 

Centralization  

without isolates 

0.008 

0.021 

0.050 0.005 

0.006 

0.025 

0.067 0.007 

Average weighted indegree 0.289 

0.473 

0.729 0.057 

0.205 

0.461 

0.704 0.060 

Average weighted indegree  

without isolates 

0.523 

0.723 

0.979 0.060 

0.642 

0.918 

1.225 0.068 

Compartmentalization 0.210 

0.677 

0.911 0.095 

0.791 

0.934 

0.974 0.019 

Density 0.002 

0.004 

0.005 0.000 

0.002 

0.003 

0.005 0.000 

Density without isolates 0.006 

0.008 

0.012 0.001 

0.010 

0.014 

0.021 0.001 

Isolates 37.000 

69.262 

101.000 8.689 

61.000 

99.657 

136.000 9.241 
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Tables S5a-d. Stepwise logistic regression analyses with forward selection were used to 

examine which variables could influence land owner’s probability to protect native habitat for 

biodiversity, and thus, be used as actor attributes. Tables S5a shows maximal models with 

variable “farm land contains native forest and shrubs and/or ungrazed tussock grassland” 

(Table S1 variable s1), and Table S5c maximal model with variable “All or part of the land is 

covenanted” (Table S1 variable s2) as dependent variables. S5b and S5c present the results, 

respectively. The results include only land use variables. This is partly because both our 

dependent variables were essentially describing land use. Further, it is likely that land 

owners’ values, ownership and choices required by the primary industry are already reflected 

in land use. Collinearity was detected only for land use variables. Significance codes for p-

values: ***: < 0.001, ** < 0.01, * < 0.05,  .  < 0.1.  

 

Table S5a.  
ID 

Variable  Estimate 

Std. 

Error 

z 

value Pr(>|z|)  

 

(Intercept) 

-

1.95E+00 2.11E+00 

-

0.926 0.354311  

s7 Private land owners should protect habitat for 

native plants and animals on private land: 7 -5.31E-01 4.27E-01 

-

1.241 0.214547  

s7 Private land owners should protect habitat for 

native plants and animals on private land: 8 -4.21E-01 4.23E-01 

-

0.996 0.31948  

s7 Private land owners should protect habitat for 

native plants and animals on private land: 9 -7.86E-01 4.75E-01 

-

1.655 0.097961 . 

s7 Private land owners should protect habitat for 

native plants and animals on private land: 10 -9.22E-01 4.80E-01 -1.92 0.054872 . 

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 1 

-

1.51E+01 3.96E+03 

-

0.004 0.996959  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 2 

-

1.52E+01 1.94E+03 

-

0.008 0.993766  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 3 

-

2.95E+01 1.95E+03 

-

0.015 0.987893  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 4 -5.26E-01 2.37E+00 

-

0.222 0.82414  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 5 3.57E-01 2.11E+00 0.169 0.866028  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 6 -9.83E-01 2.07E+00 

-

0.476 0.634054  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 7 -1.38E-01 2.04E+00 

-

0.068 0.945994  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 8 -4.89E-01 2.03E+00 

-

0.241 0.809854  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 9 5.75E-02 2.04E+00 0.028 0.977491  

s8 The Department of Conservation should 

protect habitat for native plants and animals 

on public land: 10 3.62E-01 2.03E+00 0.179 0.85801  

s2 Has covenant on own land  1.22E+00 3.30E-01 3.694 0.000221 *** 
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s4 

Land ownership: myself 

-

1.35E+00 1.14E+00 

-

1.176 0.239723  

s4 

Land ownership: another individual -2.04E-01 4.18E-01 

-

0.487 0.626112  

s4 

Land ownership: family partnership -1.66E-01 4.33E-01 

-

0.384 0.701343  

s4 Land ownership: family trust 2.64E+00 1.68E+00 1.568 0.116814  

s4 

Land ownership: family company 

-

1.71E+01 1.14E+03 

-

0.015 0.988042  

s4 Land ownership: māori trust / inc.  3.98E-01 6.45E-01 0.618 0.536722  

s4 Land ownership: corporate owned 6.35E-01 4.70E-01 1.35 0.177038  

s6 Area 8.61E-05 1.31E-04 0.658 0.510582  

s3 

Primary industry: grazing livestock, not own  -9.33E-01 6.90E-01 

-

1.353 0.175908  

s3 

Primary industry: farming sheep -4.61E-01 6.57E-01 

-

0.701 0.483603  

s3 

Primary industry: farming beef -5.64E-01 6.57E-01 

-

0.857 0.391223  

s3 Primary industry: dairying 5.22E-01 1.25E+00 0.418 0.675597  

s3 Primary industry: deer farming 1.06E-01 1.12E+00 0.095 0.924602  

s3 

Primary industry: pig farming -1.36E-01 1.54E+00 

-

0.089 0.929438  

s3 

Primary industry: poultry farming 

-

1.49E+01 1.96E+03 

-

0.008 0.993943  

s3 

Primary industry: other farmed livestock 

-

2.58E+00 1.42E+00 

-

1.816 0.069396 . 

s3 

Primary industry: arable farming -7.95E-02 1.07E+00 

-

0.074 0.940855  

s3 Primary industry: vegetable production 3.43E-01 1.25E+00 0.275 0.782999  

s3 

Primary industry: kiwifruit production -2.76E-01 2.54E+00 

-

0.109 0.913228  

s3 

Primary industry: wine grape production 

-

3.23E+01 1.73E+03 

-

0.019 0.985098  

s3 Primary industry: growing fruits, nuts, edible 

tree crops 3.94E-01 9.99E-01 0.394 0.693245  

s3 

Primary industry: exotic forestry  

-

1.39E+00 8.45E-01 

-

1.642 0.100517  

s3 Primary industry: farm-based tourism 1.06E+00 1.25E+00 0.85 0.39556  

s3 Primary industry: other 1.56E+01 3.96E+03 0.004 0.996853  

s3 Land use: cattle 2.42E-01 2.95E-01 0.822 0.411148  

s1 

Land use: dairy platform 

-

1.03E+00 1.07E+00 

-

0.962 0.33589  

s1 

Land use: dairy runoff -1.64E-01 5.71E-01 

-

0.287 0.773911  

s1 

Land use: deer -5.51E-01 7.09E-01 

-

0.777 0.437357  

s1 

Land use: flowers -1.29E-01 1.27E+00 

-

0.102 0.918701  

s1 Land use: forestry 2.31E+00 3.36E-01 6.879 6.05E-12 *** 

s1 Land use: forestry harvested 5.46E-01 8.39E-01 0.651 0.515249  

s1 

Land use: fruit -6.23E-01 6.74E-01 

-

0.925 0.354869  

s1 

Land use: grain seeds 

-

1.41E+00 6.86E-01 -2.05 0.040335 * 
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s1 Land use: grapes 1.67E+01 1.34E+03 0.012 0.990028  

s1 Land use: grazing 6.18E-02 3.73E-01 0.166 0.868158  

s1 Land use: hay 2.78E-01 3.00E-01 0.926 0.354459  

s1 

Land use: kiwifruit 

-

1.58E+00 2.20E+00 

-

0.718 0.4726  

s1 Land use: other livestock 1.29E+00 5.55E-01 2.322 0.020216 * 

s1 Land use: pigs 9.09E-01 8.27E-01 1.1 0.27154  

s1 

Land use: poultry -3.29E-01 9.04E-01 

-

0.364 0.715963  

s1 Land use: sheep and beef 9.63E-01 3.77E-01 2.553 0.010682 * 

s1 Land use: tourism 1.31E-01 7.76E-01 0.168 0.866209  

s1 

Land use: vegetables indoors -1.33E-01 1.20E+00 

-

0.111 0.911427  

s1 Land use: vegetables outdoors 7.50E-01 5.97E-01 1.256 0.209152  

s1 Land use: wetlands 2.37E+00 3.79E-01 6.234 4.55E-10 *** 

s5 Live on farm:  12985 7.31E-01 4.08E-01 1.79 0.073491 . 

s5 

Live on farm: 12986 -1.75E-02 9.17E-01 

-

0.019 0.984762  

 Null deviance: 716.11  on 606  degrees of freedom 

Residual deviance: 447.55  on 544  degrees of freedom 

AIC: 573.55 

Number of Fisher Scoring iterations: 16 

 

 

Table S5b.  
ID 

 Estimate Std. Error z value Pr(>|z|)  

 
(Intercept) -2.5721 0.2198 -11.704 < 2e-16 ** 

s2 
Has covenant on own land 1.1942 0.2721 4.389 1.14e-05 *** 

s1 
Land use: forestry 2.0378 0.2534 8.043 8.80e-16 *** 

s1 
Land use: sheep and beef 0.8600 0.2351 3.659 0.000254 *** 

s1 Land use: wetlands 2.2560 0.3162 7.134 9.71e-13 *** 

 Null deviance: 716.11  on 606  degrees of freedom 

Residual deviance: 516.36  on 602  degrees of freedom 

AIC: 526.36 

Number of Fisher Scoring iterations: 5 

 

 

Table S5c.  
 

 Estimate Std. Error 

z 

value Pr(>|z|)  

 (Intercept) -17.63091 3733.47905 -0.005 0.99623  

s7 Private land owners should protect 

habitat for native plants and animals 

on private land: 7 0.89451 0.46726 1.914 0.05557 . 

s7 Private land owners should protect 

habitat for native plants and animals 

on private land: 8 0.46092 0.4822 0.956 0.33913  

s7 Private land owners should protect 

habitat for native plants and animals 

on private land: 9 0.72902 0.52367 1.392 0.16388  
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s7 Private land owners should protect 

habitat for native plants and animals 

on private land: 10 0.28499 0.54286 0.525 0.5996  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 1 -2.75869 7515.56255 0 0.99971  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 2 -2.34739 4704.04145 0 0.9996  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 3 -1.4432 4589.15314 0 0.99975  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 4 15.94438 3733.47918 0.004 0.99659  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 5 11.02069 3733.47939 0.003 0.99764  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 6 14.45783 3733.47907 0.004 0.99691  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 7 13.80726 3733.47907 0.004 0.99705  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 8 14.07485 3733.47907 0.004 0.99699  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 9 14.58785 3733.47907 0.004 0.99688  

s8 The Department of Conservation 

should protect habitat for native plants 

and animals on public land: 10 14.65365 3733.47907 0.004 0.99687  

s4 
Land ownership: myself 2.05938 0.86788 2.373 0.01765 * 

s4 Land ownership: another individual 0.73929 0.49602 1.49 0.1361  

s4 
Land ownership: family partnership 1.14743 0.5035 2.279 0.02267 * 

s4 Land ownership: family trust 2.84305 1.60545 1.771 0.07658 . 

s4 
Land ownership: family company -15.16504 2181.20979 -0.007 0.99445  

s4 Land ownership: māori trust / inc.  -0.32782 0.89255 -0.367 0.7134  

s4 
Land ownership: corporate owned 0.80028 0.56051 1.428 0.15335  

s3 Primary industry: grazing livestock, 

not own  -1.00488 0.70147 -1.433 0.15199  

s3 
Primary industry: farming sheep -1.1933 0.69733 -1.711 0.08704 . 

s3 Primary industry: farming beef -0.63404 0.67011 -0.946 0.34405  

s3 
Primary industry: dairying -0.4815 1.32175 -0.364 0.71564  

s3 Primary industry: deer farming -1.41502 1.65951 -0.853 0.39384  

s3 
Primary industry: pig farming -1.62701 1.72871 -0.941 0.34662  

s3 Primary industry: poultry farming -15.77646 3237.32355 -0.005 0.99611  

s3 Primary industry: other farmed 

livestock 0.18893 1.12645 0.168 0.8668  

s3 
Primary industry: arable farming -0.6377 0.97659 -0.653 0.51376  

s3 Primary industry: vegetable 

production -17.60586 1684.43689 -0.01 0.99166  
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s3 
Primary industry: kiwifruit production -21.86036 1252.39174 -0.017 0.98607  

s3 Primary industry: wine grape 

production 0.31805 3547.36647 0 0.99993  

s3 Primary industry: growing fruits, nuts, 

edible tree crops -2.61233 1.22786 -2.128 0.03337 * 

s3 
Primary industry: exotic forestry  -1.43336 1.10572 -1.296 0.19487  

s3 Primary industry: farm-based tourism -0.30471 1.22571 -0.249 0.80367  

s3 
Primary industry: other 17.84228 6522.63866 0.003 0.99782  

s1 

Land use: bush 1.33585 0.31871 4.191 

2.77E-

05 *** 

s1 
Land use: cattle 0.25264 0.32223 0.784 0.43303  

s1 Land use: dairy platform 0.04347 1.16905 0.037 0.97034  

s1 
Land use: dairy runoff 0.56677 0.51588 1.099 0.27192  

s1 Land use: deer -1.47072 0.90462 -1.626 0.10399  

s1 
Land use: flowers -16.51415 2108.4609 -0.008 0.99375  

s1 Land use: forestry 0.07809 0.34919 0.224 0.82305  

s1 
Land use: forestry harvested -0.40126 1.0045 -0.399 0.68956  

s1 Land use: fruit 0.18262 0.72978 0.25 0.8024  

s1 
Land use: grain seeds 0.13595 0.58743 0.231 0.81699  

s1 Land use: grapes -17.14267 3038.8154 -0.006 0.9955  

s1 
Land use: grazing 0.09179 0.38977 0.235 0.81383  

s1 Land use: hay -0.26423 0.32098 -0.823 0.41039  

s1 
Land use: kiwifruit 4.42176 1.36611 3.237 0.00121 ** 

s1 Land use: other livestock -0.26251 0.6334 -0.414 0.67855  

s1 
Land use: pigs 0.75615 0.82544 0.916 0.35964  

s1 Land use: poultry -1.45112 1.32678 -1.094 0.27408  

s1 
Land use: snb 0.81476 0.41607 1.958 0.0502 . 

s1 Land use: tourism 0.60351 0.86389 0.699 0.48481  

s1 
Land use: vegetables indoors -16.80093 1827.911 -0.009 0.99267  

s1 Land use: vegetables outdoors -0.16404 0.70244 -0.234 0.81535  

s1 
Land use: wetlands 1.02729 0.36046 2.85 0.00437 ** 

s5 Live on farm:  12985 -0.22256 0.46764 -0.476 0.63412  

s5 
Live on farm: 12986 1.5973 0.97573 1.637 0.10162  

  Null deviance: 559.15  on 606  degrees of freedom 

Residual deviance: 396.01  on 545  degrees of freedom 

AIC: 520.01 

 

Number of Fisher Scoring iterations: 17 

 

 

Table S5d.  
  Estimate Std. Error z value Pr(>|z|)  

 (Intercept) -2.8859 0.2793 -10.335 < 2e-16 *** 

s1 Land use: bush 1.2523 0.2513 4.983 6.27e-07 *** 

s1 Land use: dairy platform  0.8408 0.3217 2.614 0.008960 ** 

s1 Land use: sheep and beef 0.7732 0.2875 2.689 0.007165 ** 
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s1 Land use: wetlands 0.9950 0.2937 3.388 0.000703 *** 

 

Null deviance: 559.15  on 606  degrees of freedom 

Residual deviance 484.38  on 596  degrees of freedom 

AIC: 494.38 

 

Number of Fisher Scoring iterations: 5 
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APPENDIX A. OVERVIEW, DESIGN CONCEPTS AND DETAILS PROTOCOL FOR 

LAND OWNER MODEL. 

 

The following model description follows the ODD (Overview, Design concepts, Details) 

protocol for agent-based models (10, 11).  

 

 
A1.1. Purpose  

 

We designed and implemented the model to simulate collective conservation action on 

agricultural land, and to quantify the environmental outcomes of collective action with spatial 

landscape indicators (area and fragmentation of protected land). Specifically, the model 

allows us to investigate:  

1) how the interacting effects of social network influences, actor attributes and 

ecological feedback influence collective, landscape-level conservation of native forest 

on agricultural land. 

2) the mechanisms through which influence of behavioural factors in social actor’s 

decision-making translates into changes in landscape structure. I.e., which 

behavioural factors, or combination of the factors included, frequently produce 

effective conservation action.  

 

A1.2. Entities, state variables, scales 

 

The model includes four types of entities:  

1) Agents/individuals: land owners are social actors who make decisions about the 

protection of native or semi-natural habitat on their land. They are characterized 

by actor attributes (Table S1) and make decisions on whether their land (farm) is 

protected or not.  

2) Agents/individuals: cross-scale actors are social actors who influence land owners 

connected to them. Cross-scale actors include representatives from indigenous 

groups (iwi), regional and district councils and central government. Cross-scale 

actors status does not get updated; their influence is always pro-conservation and 

affects directly only those land owners, who have (influential) links with cross-

scale actors.   

3) Spatial units: farms consist of multiple patches (grid cells) and represent area that 

each land owner has available for conservation, and upon which land user makes 

decisions. A farm can be in three states: protected, unprotected or covenanted.  

4) Spatial units: all patches are additionally considered ecological spatial units, upon 

which natural habitat area and fragmentation indices are calculated. Connected 

protected patches are considered to create a non-fragmented habitat area. On the 

contrary, any non-protected cells between protected patches indicates the presence 

of habitat edges.  

 

 

The variables characterizing these entities are presented in Table S1.  

 

There are 200 social actors in the model, and the number of grid cells in the model arena is 

841. Farms represent the land area that each land owner could set as protected natural habitat, 

and their sizes are standardized to give each land owner land proportionally to the size of 
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their largest land parcel (in case a survey responder’s farm consists of multiple blocks of 

land), self-reported in the survey. The model was run for 150 time steps, which represents 15 

years of time.  

A1.3. Process overview and scheduling  

 

General model concept and simulations 

The model is an agent-based model (12) integrated with the R environment (3), based on a 

new and detailed dataset on 600 rural decision-makers (1). The model consists of i) land 

owners and their social networks (two-mode network, i.e. including connectivity between 

land owners, and between land owners and cross-scale actors), and ii) a simulated landscape 

consisting of two layers: farms upon which each land owner makes decision to protect, 

covenant or not protect land, and an ecological landscape representing land as natural habitat 

or land in other use. 

 

We ran one simulation for each parameter value combination for the two experiments 

including all behavioral factors, which resulted in 6561 simulations for homophily and 

random network each. Since the number of unique parameter value combinations were lower 

for the two other experiments including only social network influence (from land owners, i.e. 

excluding cross-scale actors) and actor attributes, we ran 80 simulations for each combination 

to gain 6561 simulations for the homophily and random network each. The model adjusts the 

assigned behavioural driver weights (presented in manuscript Table 1) to sum to one, and the 

simulations and result analyses are performed on the adjusted values.  

 

For each simulation (Figure S3), a baseline system is set by drawing a subset of 200 

individuals from a data set of 600 land owners, with their individual, self-reported actor 

attributes. A landscape is constructed with actor attribute data on ownership of natural 

habitats, covenanted land and farm size. During each time step, probabilities for protecting 

natural habitat are calculated for a subset (the percentage of land owners chosen for decision-

making is included in parameter value settings, see Table 1) of land owners, who then either 

protect or not protect their land. For those not chosen for decision-making, we assume a 

decision to continue with their current behavior. If a land owner decides to protect their land, 

the farm is marked as protected area. If a land owner decides to stop protecting land, the land 

is marked as non-protected. Those land owners who have decided to protect land also have an 

option to covenant land, in which case that land cannot become unprotected during the entire 

simulation. During the following time step, decisions are made in an updated social-

ecological context, since the landscape may have changed (natural habitat extent on 

neighboring farms affects decision-making through ecological feedback) as may have the 

behavioral status of network actors (land owners are affected by the habitat protection status 

of other land users they are linked to through social network influence). The model stops after 

150 time steps. Model output (state) variables (Table S2) capture changes at the landscape-

level in protected area extent, fragmentation and the duration of land as protected area, as 

well as number of land owners participating in conservation, and the detailed network 

structure of land owners’ network.  
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Figure S3. Model logic. Survey data is used in initialization to create land owners (including 

actor attributes), their network, and initial landscape. On the first time step of a simulation, 

social network influence and ecological feedback in decision-making are based on survey 

data; indicated with dashed lines. Yellow box marks decision-making based on behavioural 

factors. Based on influence from the behavioural factors, land owners decide to either protect 

or not protect land on their farm, potentially changing land use (i.e. protected/not) on farm. 

The extent of natural habitats on landscape-level emerges from land use on farms, and affects 

ecological feedback in decision-making during the next time step. Another social-ecological 

feedback is formed by social network influence, which is updated on each time step, as land 

use on farm determines which land owners in the network have protected natural habitats 

(here shortened to “conservationists”). Asterisks (*) mark the behavioural factors that are 

included in experiments including only two of the four factors, i.e. H_SNA and R_SNA.  
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A1.4. NetLogo pseudocode  

 

INITIALIZATION  

 

Create land owner networks and calculate social network indices 

Read in an input file with actor attributes for 6003 survey respondents/land owners.  

Create land owner agents by drawing a random subsample of land owners from actor attribute 

input file.  

Define survey data actor attributes as land owner variables (see Table S1).  

 

If Random Network or Degree Network generation is not chosen: 

 load homophily matrix from R environment 

 extract data for land owners from homophily matrix based on their ID 

 add network link between those land owners that are connected in homophily   

            matrix, according to their self-reported indegree (e.g. number of incoming links) 

set self-reported influence (converted to quantitative values: [0.33 0.66 1], non-   

influential links have value 0 and are not included) as link   

           weights 

 

If Homophily Network is not chosen: 

 ask land owners to create network links with other land owners in given 

probability       

            using Erdös-Rényi network generation 

 set [0.33 0.66 1] as link weight list 

 set network link weights randomly from link weight list   

 

Export a list of IDs for land owners (i.e. social network actors) 

Export weighted matrix of land owners network.  

Social network analysis is performed in R environment, using mainly iGraph package (4). 

Import network indices from R environment to NetLogo.  

 

 

Create farms and landscape 

Create as many farms as there are land owners.  

Use survey data on normalized farm areas of the land owners to set the size of each land 

owner's farm. Set land owner ID as farm ID.   

Cluster together all patches that belong to the same farm.  

Mark adjacent farms to each farm as its ‘neighbor farms’.  

Fill landscape: while patches without farm ID, continue adding edge patches to farms.  

Set patch colour the colour of the farm. 

Set the colour of the patch as ‘start patch colour’.  

 

 

Set baseline native habitants 

Land owners with native habitat on their land (survey data): 

 mark own farm as protected land.  

                                                 
3 A subset of 3311 survey respondents. The subset of 600 land owners is a result of eliminating "Non-

Applicable" - answers (mainly due to survey logic, occassionally because a responder has chosen to not reply to 

a specific question) from survey response variables used in the regression analyses.  
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Land owners with native forest on their land who have joined a conservation covenant 

(survey data):  

 mark own farm as protected land, covenanted land, and as inconvertible.   

Report baseline count of patches that contain native forest. 

Report baseline count of patches that are part of covenant.  

All other patches: 

 set patches as not protected, not inconvertible, and not baseline habitat.  

 

 

Decision-making set-up 

Set values for ‘land owner weight’, ‘actor attributes weight’, ‘iwi weight’, ‘council weight’, 

‘central government weight’ and ‘ecological feedback weight’ (the weights that each 

behavioural driver has on decision-making, see manuscript Table 1) according to the 

experiment-specific parameter values.    

Adjust the total value of ‘land owner weight’, ‘actor attributes weight’, ‘iwi weight’, ‘council 

weight’, ‘central gov weight’ and ‘ecological feedback weight’ to sum to one. 

Set parameter values for number Change-makers, i.e. the percentage of land owners able to 

change the conservation status of their farms on each time step, as well as ‘Time steps’, i.e. 

the number of ticks that land owners have to wait until next change of conservation status on 

their land.  

 

 

EXECUTION 

 

To go:  

 

If time < stop time: 

 

Update  

Set patch colour ‘start patch colour’ 

Set ‘decision-makers’ those land owners for whom ‘minimum time since change’ has 

passed or who have not changed the conservation status of their farm yet.  

 

 

 Calculate land owner network influence  

Land owners with indegree > 0: 

let my ‘habitat connections’ be land owners that I have incoming link with and 

who have native habitat on their farms 

calculate the fraction of habitat connections of all my incoming links, both 

multiplied with link weights.  

set the fraction as my ‘network influence’   

 

Land owners with indegree = 0: 

  set my ‘land owner network influence’ to 0 

 

 

Calculate stakeholder influence  

Land owners: 

set my ‘indigenous group influence’ my number of links to indigenous group 

multiplied with their link weight 
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set my ‘council group influence’ my number of links to council 

representatives multiplied with their link weight 

set my ‘central government group influence’ my number of links to central 

government representatives multiplied with their link weight 

 

Set the highest indigenous/council/central government group influences among land 

owners as maximum indigenous/council/central government group influence among 

the land owners. 

Land owners with indigenous group degree > 0 and indigenous representatives link 

weight > 0  

set indigenous representatives influence as my indigenous group influence   

divided with maximum indigenous group influence  

 

Land owners with iwi degree = 0 or iwi link weight = 0 

 set iwi influence 0 

 

Calculate council and central government group influences for each land owner 

similarly to indigenous group influence.  

 

   

Calculate actor attribute influence 

Land owners: 

set my actor attributes influence for protecting land and for covenanting land 

based on regression model (manuscript equation 4):  

 

𝑃(𝑌) =
1

1 + 𝑒(𝑏| |0 + 𝑏1𝑖𝑋1𝑖 + 𝑏2𝑋2𝑖 + … 𝑏𝑛𝑋 )
 

 

 

Calculate ecological feedback influence 

Land owners: 

set ‘my ecological feedback’ as a count of my neighbour farms with protected 

land divided with the count of my neighbour farms   

 

 

Make conservation decisions  

‘Decision-makers’: 

set my ‘conservation probability’ as weighted sum of behavioural factors  (f) 

and their parameter values (w) (manuscript equation 5) 

 

𝑃(𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑤𝑗𝑓𝑖𝑗

𝑛

𝑗=1

 

 

 

 

Implement conservation action 
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If my ‘conservation probability’ is > random floating-point number 0-1 

 PROTECT NATIVE HABITAT  

  if my farm is not inconvertible 

   mark as protected land 

   change patch colour to white 

  

  ‘Decision-makers’ without covenant barriers: 

if my ‘covenant attributes’ > random floating-point number 0-1 

 if my farm is marked as protected land and is  

 not inconvertible 

JOIN COVENANT 

  mark land as inconvertible 

  set patch colour blue 

Else:  

 UNPROTECT NATIVE HABITAT  

  If my farm is not inconvertible 

   mark as unprotected land 

   change patch colour to black 

  

 

Update the conservation status of land owners and land 

If land marked as protected 

 set land owner as ‘conservationist’ 

Else:  

set land owner as ‘non-conservationist’ 

If land marked as covenant 

 set land owner as ‘covenant land owner’ 

Else:  

set land owner as ‘non- covenant land owner’ 

 Report the number of conservationists  

Report the number of covenant land owners 

 
 

Calculate the residence time of each farm as protected land 

If patch colour white:  

 set ‘residence time’ as (‘residence time’ + 1) 

If patch colour blue:  

 set ‘residence time’ as (‘residence time’ + 1) 

 

 

Calculate habitat fragmentation indices (Modified from (13)) 

 

Identify contiguous groupings of patches with protected land as 

fragments (Modified from (13)) 

 Mark patches that are not protected land to a group of its own. 

Other patches: (loop) 

select one protected land patch as a start of a new fragment 

if a neighbouring patch is marked as protected land, assign it to 

the same fragment as a starter patch and mark as assessed 
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if a neighbouring patch is marked as protected land, 

assign it to the same fragment as a starter patch and 

mark as assessed 

continue until all patches with protected land have been assigned into 

fragments 

 

 

Calculate number and size of habitat fragments (Modified from (13)) 

  Mark patches that are not protected land as a group of its own. 

 Label fragments with identification numbers 

With each new fragment ID number, set ‘fragment count’ (fragment 

count + 1)  

  Set number of patches in each fragment as their area 

  Report fragment count and minimum and maximum fragment areas 

 

Tick 

 

If time = stop time: 

 

Export habitat coordinates and social network data 

Export a list of coordinates for each patch with protected land to R 

environment for calculating entropy 

Export a list of IDs and conservationist status of land owners (social network 

actors) and weighted matrix of land owners network (optional, used for 

creating Figure S2 graph) 

 

  

Calculate environmental outcome variables  

Import entropy value from R environment 

Report outcome variables, listed in Tables S2 and S4.  

 

 

A1.5. Design concepts 

 

A1.5.1. Basic principles 

General concepts and hypotheses, and their relationship to the model: 

- Biodiversity is affected by the abundance and spatial configuration of habitats on 

landscape level (14). The model investigates land owners’ collective capacity to 

protect natural habitats on landscape-level and quantifies the environmental results 

with indicators describing the area and fragmentation of natural habitats on a 

landscape.  

- Emergence (15): landscape-level area and connectivity of natural habitats in 

agricultural land is produced collectively by land use on farms, which, in turn, is a 

result of individual decision-making of land owners.  

- Environmental outcomes of collective action may range from highly ineffective to 

successful (16). The output variables enable capturing the success of collective action.  

- Pro-environmental behaviour can be encouraged with behavioural factors (17). Two 

to four behavioural factors are included in the study experiments.  
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- Multiple drivers effects are not necessarily additive, and the interplay between 

behavioural drivers and constraints may influence outcomes of collective action (16, 

18). The model allows including several behavioural factors in decision-making and 

investigating the effects that the factors have in diverse combinations.  

 

 

A1.5.2. Emergence 

In the model, the macro-level environmental outcome (landscape structure) emerges from 

micro-level social interactions, i.e. individual decision-making and consequent farm-level 

land use and social network influence. The micro-level interactions are, in turn, affected by 

the macro-level environmental change (ecological feedback) and social diffusion (social 

network influence). 

 

A1.5.3. Adaptation and objectives 

The model includes heterogeneity in the social component, which allows land owners to have 

diverse objectives. Adaptation in a narrow sense is present in that land owners’ decision-

making takes into account changes in neighbouring farms. However, while land owners 

respond to changing conditions, seeking a specific individual or collective goal in their action 

is not included in the model. 

 

A1.5.4. Learning 

Not included  

 

A1.5.5. Prediction  

Not included 

 

A1.5.6. Sensing 

The external variables included in land owners’ decision making are ecological feedback, 

which is theoretically based on land owners observing conservation action on neighbouring 

farms. 

 

A1.5.7. Interaction 

Land owners interact directly through static network links, and indirectly through social 

network and ecological feedback, when in effect.  

 

A1.5.8. Stochasticity 

Stochasticity is included partly to protect the identity of survey repliers, and partly to account 

for unknown factors in decision-making. The following processes are randomized: 

- the location of each farm on the landscape 

- the sample of 200 land owners from a pool of 600 surveyed land owners 

- randomized network: an Erdös-Rényi randomized network model  

- homophily network construction: which pairs of land owners are connected is partly random 

(due to unique samples of land owners for each simulation), see manuscript Methods and 

Materials section  

 

A1.5.9. Collectives 

The social community of the model is a conceptually a two-level network, in which land 

owners produce a layer one where they have links with each other as well as to the cross-

scale actors. On the cross-scale actors' layer, links between cross-scale actors are not 

constructed, they have links only to the land owners.  
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A1.5.10. Observation 

Data collected from model simulations is listed in Table S2.  

 

State variables that are kept constant are: 

- number of land owners 

- actor attributes  

- networks connections and link weights (networks are static during a simulation run, but 

positions in the network occupied by those who have protected land change according to land 

owner actions) 

- time (number of ticks) until the model stops, i.e. each simulation runs for 150 time steps.  

A1.5.11. Initialization  

For each simulation (Figure S3), a subset of 200 individuals is drawn from a dataset of 600 

land owners, with their individual, self-reported actor attributes. Land owners’ network is 

created based on homophily matrix and actor attribute data, or network randomization. A 

landscape is constructed with actor attribute data on ownership of natural habitats, 

covenanted land and farm sizes. Initialization is described in detail in Pseudocode: 

initialization section.  

 

A1.5.12. Input data 

- Actor attributes: a table that includes 600 land owners and their actor attributes. Table S5 

provides a sample of the table. The entire input file is available from Brown, P. on reasonable 

request  

- Farm sizes: standardized (0 – 1) farm area of every land owner (Table S5)   

- Homophily matrix (Table S6): a matrix that links land owners to each other according to 

their similarity, based on their actor attributes data. The values in the matrix are link weights 

that represent self-reported level of influence between land owners, and degree is self-

reported in survey data.  

 

A1.5.13. Submodels 

 

The model’s procedures and sub-models and summarized in Materials and Methods section 

in manuscript, Supplementary Materials Figure S3 and Appendix A section A1.4.: 

Pseudocode. 

 

A2. MODEL EVALUATION 

Parameter sensitivity analysis for the model is essentially performed as the main analysis of 

the study. The main results are presented in manuscript Figure 4. Suitability of the model for 

its objectives and validity of input data and model outputs are discussed in the manuscript in 

Discussion section (uncertainty and caveats).  

 

 

Table S5. Model input data for actor attributes. A sample for 100 land owners available in 

[data depository link will be here in the final version (Sample_data2019.xls)] Temporary link 

for review: 

https://www.dropbox.com/s/l99ockib7c3rvvo/Yletyinen_sample_data_LU1_2019.xlsx?dl=0 
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Table S6. Homophily matrix. Example of homophily matrix that is used as an input data. 

[data depository link (HP_network.csv)] Temporary link: 

https://www.dropbox.com/s/em7zba0buydo1gu/HP_network.csv?dl=0 

 

Table S7. Input data for calculating Gower’s similarity. Actor attributes matrix used to 

create homophilous networks. [data depository link (Homophily.csv)] Temporary link: 

https://www.dropbox.com/s/czd7fj1xwfuffef/Homophily.csv?dl=0 
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