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8 Abstract: In social & health sciences, many statistical procedures and estimation techniques rely on

9 the underlying distributional assumption of normality of the data. Non-normality may lead to
10 incorrect statistical inferences. This study evaluates the performance of selected normality tests on
11 the stringency framework for the skewed alternative space. Stringency concept allows us to rank

12 the tests uniquely. Bonett & Seier test (Tw) turns out to be the best statistics for slightly skewed
13 alternatives and the Anderson-Darling (AD), Chen-Shapiro (CS), Shapiro-Wilk (W) and Bispo,

14 Marques, & Pestana, (BCMR) statistics are the best choices for moderately skewed alternative
15 distributions. Maximum loss of Jarque-Bera (JB) and its robust form (RJB), in terms of deviations
16 from the power envelope, is greater than 50% even for large sample sizes which makes them less
17 attractive in testing the hypothesis of normality against the moderately skewed alternatives. On
18 balance, all selected normality tests except Tw and COIN performed exceptionally well against the

19 highly skewed alternative space.

20 Keywords: Power Envelope, Neyman-Pearson Tests, Skewness & Kurtosis

21

22 1. Introduction

23 Departures from normality can be measured in a variety of ways however, the most common
24 measures are skewness and kurtosis in this regard. Skewness refers to the symmetry of a
25 distribution and kurtosis refers to the flatness or ‘peakedness’ of a distribution. These two statistics
26 have been widely used to differentiate between distributions. Normal distribution has the values of
27 skewness and kurtosis as 0 & 3 respectively. If the values of skewness and kurtosis significantly
28 deviate from 0 & 3; it is assumed that the data in hand is not distributed as normal. Macroeconomists
29 are always concerned whether the economic variables exhibit similar behavior during recessions
30 and booms. Delong & Summers [8] apply the skewness measure to GDP, unemployment rate and
31 industrial production to study whether the business cycles are symmetric or not. The experimental
32 data sets generated in clinical chemistry require the use of skewness & kurtosis statistics to

33 determine its shape and normality [11]. Blanca, Arnau, Lopez-Montiel, Bono, & Bendayan [3]
34 analyze the shape of 693 real data distributions by including the measures of cognitive ability and

35 other psychological variables in terms of skewness and kurtosis. Only 5.5% of the distributions are
36 close to normality assumption.

37 Keeping this in view, the literature has produced few normality tests which are based on skewness
38 and kurtosis [4, 7, 9, & 13]. Other than the moment based tests, normality literature also provides

39 tests based on correlation & regression [2, 6, 18 & 19], empirical distribution [1, 23 & 24] and special
40 tests [10 & 15].
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41 This study is devoted to analyze the impact of change in skewness and kurtosis respectively on the
42 power of normality tests. Normality tests are developed based on the different characteristics of
43 normal distribution and the power of normality statistics varies depending upon the nature of non-
44 normality [4]. Thus, comparisons of normality tests yield ambiguous results since all normality
45 statistics critically depend on alternative distributions which cannot be specified [12]. Fifteen
46 normality tests are selected for comparison of power based on stringency concept proposed by Islam
47 [12]. The stringency concept allows you to rank the normality tests in a uniquely fashion. Neyman-
48 Pearson (NP) tests are computed against each alternative distribution to construct the power curve.
49 Relative efficiencies of all the tests in question are computed as the deviations of each test from the
50 power curve. The best test is defined as the test having minimum deviation from the power curve
51 among the maximum deviations of all the tests.
52 2. Stringency Framework
53 Islam [12] proposes a new framework to evaluate the performance of normality tests based on the

54 stringency concept introduced by Lehmann and Stein [14].

55 Let y = (¥1,¥2,¥3, -, ¥u) be the observations with density function f(y, ), where ¢ belongs to
56 the parameter space @. A function h(y) which takes values {0, 1} is called hypothesis test and

57 belongs to H, set of all such functions.

58 For any test of size @, maximum achievable power is defined as:

59 Maxnen,B(h, ) = Sup[P(h(y) = 1|peda]

60 where, B(h,¢) is the power of h(y) and @, represents the alternative parameter space. For
61 different values of ¢ yield different optimal test statistics which provide the power envelope. The
62 relative power performance of a test, h € H,, is measured by its deviation from the power envelope
63 as:

64 D(h(y), ¢) = Maxpep,B(h, @) — B(h, @)

65 A test is said to be most stringent if it minimizes the maximum deviation from the power envelope.
66 Stringency of a test is defined as the maximum deviation from the power envelope when evaluated
67 over the entire alternative space.

68 S(h(®)) = Supyep, D (), )

69 Only the uniformly most powerful test can have zero stringency which are rarely found however,
70 slightly compromising on it can give us a test which is as good as the uniformly most powerful test
71 [12]. Evaluating the normality tests based on their stringencies allows us to rank them in a uniquely
72 manner and helps researcher to find the best test.

73 3. Tests & Alternative Distributions

74 Normality tests are based on different characteristics like empirical distribution, moments,
75 correlation and regression and based on special characteristics of the data distribution. Fifteen
76 normality tests are selected (Table 1) which are the most representative of their respective class.
71 Departures from normality (first & second order) depends on skewness & kurtosis parameters.
78 Mixture of t-distributions allows you to vary these two statistics in a wide range. It also covers the
79 distributions used in literature in terms of skewness & kurtosis (for details see [12]).

80
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Table 1: Normality tests

d0i:10.20944/preprints201905.0190.v1

Test Class of Test

Za, Zc, AD & KS ECDF

JB, RJB, K, & Tw Moments

W, Wsf, D, CS, BCMR & COIN Correlation & Regression
Rsj Special

This study uses the mixture of t-distributions as alternative distributional space (Appendix:

Table 1). The alternative distributional space is generated by the following rule.

a.t(vy,p) + (1= a).t(vy, 13) €Y

where vy, v,, i1, i, are the degrees of freedom and the means of the respective t-distributions. We
have divided our alternative space of distributions into the following three groups on the basis of
skewness; (i) slightly skewed (ii) moderately skewed and, (iii) highly skewed. In each group,
skewness remains within the bounds and we allow kurtosis to vary.

Group It JB, <03

GroupIl: 03< ,/p; <15

Group III: \/E >15
Neyman-Pearson (NP) tests are computed against each alternative distribution in each group

to construct the power curve. Relative efficiencies of all the tests in question are computed as the
deviations of each test from the power curve. The best test is defined as the test having minimum
deviation from the power curve among the maximum deviations of all the tests.

4. Discussion of Results

Monte Carlo procedures are called in to investigate the powers of fifteen selected normality
tests for samples of sizes, 25, 50 & 75, at 5% level of significance with 100,000 replications.

4.1. Slightly Skewed Alternatives

When considering all the selected normality tests, Tw is the best test against the slightly skewed
alternatives (fig. 1-3 & table 2) for all sample sizes (n=25, 50, & 75) whereas the performance of ]B &
RJB tests is very poor with 80.5%- 99.5% maximum loss of power.

4.1.1. Performance of the moments based tests

Among the moments based class of normality tests, Tw is the best test for all sample sizes for slightly
skewed alternatives (Table 2 & Fig. 1). The K2 test occupies the fourth (for n=25 & 50) and third (for
n=75) rank with maximum power losses of 42.6%, 44.8% & 44.7% respectively (Fig. 3). For all sample
sizes, the ]B & RJB tests are the least favorable options in terms of their maximum deviations (gaps)
from the power curve (Fig. 2). The worst distributions for JB and R]B statistics belong to symmetric
and short-tailed class of alternatives (Fig. 2 & Appendix Table 2). These results corroborate with the
findings in [21-23]. To decide about the worst or best performance of a test, we need an invariant
benchmark- a power envelope. The worst performances of JB, in the aforementioned studies, have
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been evaluated by using an arbitrary reference (e.g W & AD) however, we compute the power curve
by using the most powerful NP-test which yield the exact deviations of ] B test from the power curve.

Table 2: Ranking of the normality tests (,/1<0.3)

Slightly Skewed
n=25 n=50 n=75
Test Rank  Gap Test Rank  Gap Test Rank  Gap
Tw 1 24.0% Tw 1 22.9% Tw 1 31.8%
COIN 2 34.6% Rs;j 2 26.4% Rs;j 1 32.4%
AD 2 34.7% AD 3 38.0% AD 1 32.6%
CS 2 34.8% (@) 3 39.8% Cs 2 38.6%
Rsj 3 36.1% COIN 4 42.5% W 3 43.3%
W 3 37.5% K2 4 44.8% K2 3 44.7%
KS 3 38.1% \ 4 45.5% KS 3 45.1%
Zc 3 39.0% Zc 5 48.0% COIN 3 45.2%
BCMR 3 39.9% BCMR 5 48.3% BCMR 3 46.1%
K2 4 42.6% KS 5 49.9% Zc 4 50.5%
Za 4 43.1% Za 6 51.9% Za 4 51.4%
Wsf 4 46.5% Wsf 7 61.3% Wsf 5 56.2%
D 5 91.6% JB 8 80.5% D 6 85.3%
JB 6 97.2% D 9 90.9% JB 7 88.0%
R]JB 6 98.2% RJB 10 99.5% RJB 8 92.9%
41.2.  Performance of the regression and correlation tests

When considering the regression and correlation based group of normality tests, for small and large
sample sizes (n=25 & 75), COIN, W, & BCMR are better choices for the slightly skewed alternatives.
Overall, for slightly skewed distributions, COIN & W tests exhibit same power properties (Fig. 5 &
6) whereas Wsf & D statistics are not matching the standards set by other members of the group
(Fig. 7 & 8) with maximum power losses over 50% (table 2). Overall, the CS outperforms its
competitors in the said group with maximum power loss ranges within 34.8%- 39.8% for slightly
skewed alternative. This result strengthens the findings in [17].
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4.1.3. Performance of the ECDF tests

Among the ECDF class of normality tests, for slightly skewed alternatives, AD statistic is sharing
the second rank with COIN & CS, third rank with CS and first rank with Tw and Rsj tests of
normality for samples of size 25, 50 and 75 respectively (Table 2).

When considering all the selected normality tests for the slightly skewed alternative distributions,
KS shares the third rank (maximum loss of power is 38.1%) with W & Zc and sixth rank (maximum
loss of power is 49.9%) with Zc & BCMR for samples of size 25 & 50 respectively. For samples of
size 75, KS test again holds the third rank with 45.1% maximum loss of power while Za & Zc tests
are at the fourth rank with maximum loss of powers slightly above 50% (table 2). On balance, when
considering the maximum deviations from the power envelope, KS has a slight edge over Za & Zc
statistics. In terms of maximum deviations from the power envelope, Zc has a slight edge over Za
but it does not corroborate with the findings in [24] due to the absence of invariant benchmark-
power envelope in their comparison.

4.1.4. Performance of the special test

This category includes only the Rsj test of normality. The performance of Rsj test increases with
the increase in sample size for the slightly skewed alternatives. It holds the third, second and first
rank for samples of size 25, 50 & 75 respectively (table 2). On balance, Rsj performed well (Fig. 10),
especially from medium (n=50) to large (n=75) sample sizes, against slightly skewed distributions.

Finally, when considering all normality tests for slightly skewed alternatives, Tw is the most
stringent test with Rsj, AD & CS following closely whereas R]B, ]B & D are the least favorable
options.

4.2. Moderately Skewed Alternatives

For moderately skewed alternatives, for smaller sample size, CS, W, AD and BCMR are the best
choices and the COIN test is the least favorable option (Table 3). For medium sample size, AD is the
ranked one statistic and the COIN, & Tw tests are at the bottom of the ranking table. For larger
sample size, AD, CS, W & BCMR appear to be the best options whereas the COIN & Tw tests are
the worst options.

4.2.1. Performance of the moments based tests

In general, for moderately skewed alternatives, moments based normality tests perform poorly
for all sample sizes. For smaller sample size, K2 occupies the fourth rank (with 46.7% maximum
power loss) by outperforming the other group members. For medium sample size, ]B and RJB (with
power losses above 50.0%) move to the fourth rank by pushing K2 down to fifth rank whereas Tw
shares the seventh rank (maximum power loss is 78.4%) with the COIN test.

With the increase in sample size, both JB & RJB show improvement in power and ranking but
their maximum power losses are still above 50% (table 3). Both JB & R]B are good at discriminating
the FAR group of distributions (where the power of NP-test is between 90-100%) with JB having a
slight edge over RJB but both suffers when the distributions are from INTERMEDIATE! group of
alternatives (Fig. 12).

1 Following Islam [12] we group alternative space into three categories based on the power of NP-test: FAR,
INTERMEDIATE & NEAR. The alternative distributions where the power of NP-test is between 90-100%, 40-90% & 5-40%

are categorized as FAR, INTERMEDIATE & NEAR group of alternatives respectively.

d0i:10.20944/preprints201905.0190.v1
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Table 3: Ranking of the normality tests (0.3 < \/E < 1.5)
Moderately Skewed
n=25 n=50 n=75
Tests Rank Gap Test Rank Gap Test Rank Gap
CS 1 28.5% AD 1 25.0% AD 1 26.7%
Y 1 29.0% w 2 28.3% CS 1 28.9%
AD 1 29.5% BCMR 2 28.7% \ 1 29.5%
BCMR 1 29.8% CS 2 29.8% BCMR 1 31.4%
Za 2 32.8% Wsf 3 34.9% Wsf 2 35.8%
Wsf 2 33.5% KS 3 35.2% Za 2 36.2%
Zc 2 33.5% Za 3 36.5% Zc 2 38.2%
KS 3 42.2% Zc 3 38.3% KS 2 40.4%
K2 4 46.7% JB 4 59.8% JB 3 50.6%
D 5 49.8% RJB 4 61.9% K2 4 57.9%
Rsj 6 55.5% K2 5 64.6% RJB 4 58.0%
Tw 6 55.7% D 6 74.6% D 5 81.3%
JB 7 59.0% Rsj 6 75.6% Rsj 5 83.9%
RJB 8 64.4% Tw 7 78.4% Tw 6 88.0%
COIN 9 68.8% COIN 7 79.8% COIN 6 88.7%
422, Performance of the regression & correlation tests

Among the regression and correlation based normality tests, for smaller sample size, CS, W, and
BCMR are the best tests for moderately skewed alternatives with a loss range of 28.5%- 29.8% (Table
3) whereas the COIN test is at the bottom with a loss range of 68.8- 88.7%.

For medium up to large sample size (n=50 & 75), W, BCMR, & CS are the better options, with Wsf
following closely. The D & COIN tests are the least favorable regression and correlation based
normality statistics for moderately skewed alternatives which is in line with the findings in Coin,
(2008) and Bonett & Seier, (2002). It is evident from figure 13; Tw & COIN both suffers against
INTERMEDIATE & FAR group of alternative distributions.

4.2.3.

Performance of the ECDF tests

For moderately skewed alternatives, among the ECDF class of normality tests, AD exhibits superior
power properties for all sample sizes. When considering all the selected normality tests for
moderately skewed alternatives, AD holds the first rank for all sample sizes.
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For smaller and larger sample size, the Za, & Zc statistics share the second rank. For medium sample
size, these tests occupy the third rank. For smaller and medium sample size, the KS test holds the
third rank whereas its position improves to second rank for larger sample size. The W test turns out
to be a better test than KS (Fig. 11) which corroborates with the findings in Shapiro, Wilk, & Chen
[20]. While evaluating the stringencies of the normality statistics for moderately skewed
alternatives, we conclude the same but through a superior & reliable procedure.

4.2.4. Performance of the other tests

In general, for moderately skewed alternative distributions, Rsj test performs poorly having
more than 50.0% maximum deviation from the power curve for all sample sizes. On balance, the
worst performance of Rsj test is against the INTERMEDIATE & FAR group of alternatives but it
performed well against the NEAR group of alternatives.

Overall, AD, CS, W & BCMR happen to be the best and JB, R]B, Tw, Rsj & COIN are the least
favorable options for moderately skewed alternatives when considering all the selected normality
tests.

4.3. Highly Skewed Alternatives

This group comprises of the alternatives from FAR group only where the most powerful NP-test
has 100% power. As both skewness and kurtosis are high for this group of alternatives so they are
palpable. All normality tests other than the COIN & Tw statistics performed well against highly
skewed alternatives (Table 4).

For smaller sample size, the Wsf, BCMR, W, CS, Za, Zc, AD, R]B & B tests performed well with the
maximum power loss ranges between 8.8%- 13.9% followed by the D statistic with maximum power
loss of 16.1% (Table 4) while the performance of the COIN & Tw tests is below the mark.

As the sample size increases, it becomes harder to differentiate among the selected tests of normality
excluding Tw & COIN. The results are evident that the power loss of these statistics decreases with
the increase in (i) sample size and (ii) the skewness and kurtosis. For all sample sizes, ]B and R]B
yield good powers for the highly skewed alternatives.

Overall, the performance of the normality tests against the highly skewed and heavy-tailed
alternatives is very good. However, the COIN and Tw tests performed poorly as compared to other
normality statistics. The poor performance of the COIN test is understandable as it is meant only
for perfect symmetric cases [6 & 17]. Bonett and Seier [4] also recommend a standard skewness test
along with the Tw statistic when the alternative distribution is skewed. Therefore, the COIN and
Tw tests are not recommended for highly skewed alternative distributions.

Table 4: Ranking of normality tests for highly skewed alternatives (/8; > 1.5)

Highly Skewed

n=25 n=50 n=75

Test Rank Gap Test Rank Gap Test Rank Gap
Wsf 1 8.8% Wsf 1 0.6% R]B 1 0.0%
BCMR 1 9.3% BCMR 1 0.7% Zc 1 0.0%

W 1 10.1% Zc 1 0.7% JB 1 0.0%

d0i:10.20944/preprints201905.0190.v1
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s 1 10.4% W 1 0.7% Wsf 1 0.0%
Za 1 10.9% JB 1 0.7% W 1 0.1%
Zc 1 11.0% RJB 1 0.7% CS 1 0.1%
AD 1 11.9% CS 1 0.8% D 1 0.1%
RJB 1 12.5% Za 1 0.9% BCMR 1 0.1%
JB 1 13.9% D 1 1.0% K2 1 0.1%
D 2 16.1% K2 1 1.2% Za 1 0.1%
K2 3 20.4% AD 1 1.3% AD 1 0.2%
KS 3 21.2% Rsj 1 2.1% Rsj 1 0.2%
Rsj 3 21.5% KS 1 3.6% KS 1 0.5%
Tw 4 46.9% Tw 2 45.3% Tw 2 42.5%
COIN 5 61.4% COIN 3 69.1% COIN 3 72.0%

210 5. Conclusion

211 This study shed light on the performance of the selected fifteen normality tests against the three
212 different groups of alternatives. For slightly skewed alternative distributions, Tw is the best test
213 with COIN, AD, CS & Rsj following closely. On balance, D, B, R]B, K2, Wsf & Za did not perform
214 well for the slighty skewed alternatives especially from medium (n=50) up to large (n=75) sample
215 sizes with more than 50% maximum power losses.

216 When considering all the selected normality tests for the moderately skewed alternatives, AD, CS,
217 W, & BCMR turn out to be the best options for testing the hypothesis of normality of data
218 distribution. In general, JB, RJB, Tw, COIN, Rsj, D & K2 tests perform poorly against moderately
219 skewed distributions. The performance of ]JB & R]B increases with the increase in sample size but
220 their maximum loss, in terms of their deviations from the power envelope, is greater than 50% even
221 for large smaple sizes (n=75).

222 On balance, all normality tests except Tw and COIN performed exceptionally well against the higly

223 skewed alternatives especially from medium up to larege sample sizes.

224 The above findings confirm our argument that comparison of tests against different alternatives
225 yields different statistics as best tests. The COIN & Tw are best options for slightly skewed
226 alternatives but these statistics perform poorly for moderately and highly skewed alternative
227 distributions. Therefore, the comparison and ranking of normality tests do not make sense in the
228 absence of an invariant benchmark-power envelope.

229
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233  Appendix A
234
235  Table 1: Alternative Distributions
Student t Distribution
t1 t2 Mixture Distribution

Sr.

No | d.f | Mean | d.f| Mean Alpha Mean SD ‘/E B2
1 8 2.0 12 5.0 0.50 3.50 1.88 -0.05 2.33
2 100 4.0 75 6.0 0.50 5.00 1.42 0.00 2.53
3 10 0.0 . . 1.00 0.00 1.12 0.00 4.00
4 100 -1.5 75 1.5 0.50 0.00 1.81 0.00 2.06
5 10 3.0 5 50.0 0.50 26.50 23.53 0.00 1.01
6 100 -4.0 75 4.0 0.50 0.00 4.13 0.00 1.23
7 50 -1.2 25 1.2 0.50 0.00 1.58 0.02 2.38
8 8 5.0 10 3.0 0.50 4.00 1.51 0.04 3.02
9 5 2.0 7 4.0 0.70 2.60 1.56 0.09 4.95
10 5 10.0 6 12.0 0.95 10.10 1.36 0.12 7.84
11 5 10.0 7 12.0 0.90 10.20 1.41 0.15 6.90
12 10 5.0 5 7.0 0.50 6.00 1.57 0.16 4.20
13 100 4.0 75 6.0 0.70 4.60 1.36 0.27 2.77
14 8 5.0 10 3.0 0.10 3.20 1.27 0.30 3.95
15 100 -1.0 75 1.0 0.75 -0.50 1.33 0.32 2.91
16 8 5.0 10 3.0 0.20 3.40 1.38 0.32 3.57
17 10 5.0 5 7.0 0.90 5.20 1.29 0.38 4.65
18 100 -1.2 75 1.2 0.75 -0.60 1.45 0.43 2.85
19 8 -1.0 10 2.0 0.95 -0.85 1.33 0.48 4.68

20 8 -1.0 12 2.0 0.85 -0.55 1.57 0.59 3.70

21 100 -1.5 75 1.5 0.77 -0.81 1.62 0.61 2.88

22 100 -4.0 75 4.0 0.70 -1.60 3.80 0.78 1.93

23 5 10.0 7 25.0 0.70 14.50 6.99 0.82 1.83

24 10 3.0 5 50.0 0.70 17.10 21.57 0.87 1.77

25 100 -4.0 75 4.0 0.75 -2.00 3.61 1.02 2.44

26 8 -10.0 | 12 5.0 0.78 -6.70 6.32 1.28 2.83

27 8 0.0 12 5.0 0.90 0.50 1.89 1.31 5.11

28 8 0.0 12 5.0 0.95 0.25 1.59 1.32 6.63

29 8 -10.0 | 12 5.0 0.80 -7.00 6.11 1.42 3.22

30 8 -10.0 | 12 5.0 0.82 -7.30 5.88 1.57 3.71

31 8 -1.0 12 5.0 0.90 -0.40 2.14 1.58 5.60

32 5 5.0 7 15.0 0.85 6.50 3.79 1.62 4.45

33 5 5.0 6 15.0 0.90 6.00 3.26 2.06 6.73

34 | 100 -4.0 75 4.0 0.90 -3.20 2.60 2.09 6.69
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35 5 10.0 7 25.0 0.90 11.50 4.68 2.36 7.35
36 8 -10.0 |12 5.0 0.90 -8.50 4.64 2.42 7.48
37 10 3.0 5 50.0 0.90 7.70 14.15 2.64 8.06

Table 2: Power comparison for symmetric short-tailed alternatives (n=25, a. = 0.05)

Distribution Skew Kurt JB RIJB Best Test
D(5,0.00,1.01) 0.00 1.01 0.27 0.04 1.00
D(6,0.00,1.23) 0.00 1.23 0.03 0.02 1.00
Beta(0.5,0.5) 0.00 1.50 0.00 0.00 0.91
Beta(1,1) 0.00 1.80 0.00 0.00 0.44
Tukey(2) 0.00 1.80 0.00 0.00 0.44
D(4,0.00,2.06) 0.00 2.06 0.01 0.00 0.54
Tukey(0.5) 0.00 2.08 0.00 0.00 0.14
Beta (2,2) 0.00 2.14 0.00 0.00 0.11
D(2,0.00,2.53) 0.00 2.53 0.02 0.01 0.16
Tukey(5) 0.00 2.90 0.03 0.07 0.14
Appendix B

Fig. 12 Power Comparison of Normality Tests (/$; < 0.3 & n = 75)
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2 The convention used to refer to any distribution from table 1 is D(Sr. No., Skewness, Kurtosis). For
example; D(17, 0.38, 4.65) means a distribution from table 1 with serial number 17 has a skewness and

kurtosis equal to 0.38 and 4.65 respectively.
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Fig. 2:  Power Comparison of Normality Tests (\/E <03&n=75)
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Fig. 5: Power Comparison of Normality Tests (\/E <03&n=75)
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Fig. 6: Power Comparison of Normality Tests (,/; < 0.3 &n = 75)
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251 Fig. 7: Power Comparison of Normality Tests (\/E <03&n=75)
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253 Fig. 8: Power Comparison of Normality Tests (\/E <03&n=75)
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255 Fig. 9: Power Comparison of Normality Tests (y/; < 0.3 &n = 75)
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257 Fig. 10:  Power Comparison of Normality Tests (y/f; < 0.3 & n = 75)
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259 Fig. 11:  Power Comparison of Normality Tests (0.3 < /f; < 1.5 &n=75)
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261 Fig. 12: Power Comparison of Normality Tests (0.3 < ,/f; < 1.5 &n=75)
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263  Fig.13: Power Comparison of Normality Tests (0.3 < \/[371 <15 &n=75)
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