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Abstract: In social & health sciences, many statistical procedures and estimation techniques rely on 8 
the underlying distributional assumption of normality of the data. Non-normality may lead to 9 
incorrect statistical inferences. This study evaluates the performance of selected normality tests on 10 
the stringency framework for the skewed alternative space. Stringency concept allows us to rank 11 
the tests uniquely. Bonett & Seier test (Tw) turns out to be the best statistics for slightly skewed 12 
alternatives and the Anderson-Darling (AD), Chen-Shapiro (CS), Shapiro-Wilk (W) and Bispo, 13 
Marques, & Pestana, (BCMR) statistics are the best choices for moderately skewed alternative 14 
distributions. Maximum loss of Jarque-Bera (JB) and its robust form (RJB), in terms of deviations 15 
from the power envelope, is greater than 50% even for large sample sizes which makes them less 16 
attractive in testing the hypothesis of normality against the moderately skewed alternatives. On 17 
balance, all selected normality tests except Tw and COIN performed exceptionally well against the 18 
highly skewed alternative space. 19 

Keywords: Power Envelope, Neyman-Pearson Tests, Skewness & Kurtosis 20 
 21 

1. Introduction 22 

Departures from normality can be measured in a variety of ways however, the most common 23 
measures are skewness and kurtosis in this regard. Skewness refers to the symmetry of a 24 
distribution and kurtosis refers to the flatness or ‘peakedness’ of a distribution. These two statistics 25 
have been widely used to differentiate between distributions. Normal distribution has the values of 26 
skewness and kurtosis as 0 & 3 respectively. If the values of skewness and kurtosis significantly 27 
deviate from 0 & 3; it is assumed that the data in hand is not distributed as normal. Macroeconomists 28 
are always concerned whether the economic variables exhibit similar behavior during recessions 29 
and booms. Delong & Summers [8] apply the skewness measure to GDP, unemployment rate and 30 
industrial production to study whether the business cycles are symmetric or not. The experimental 31 
data sets generated in clinical chemistry require the use of skewness & kurtosis statistics to 32 
determine its shape and normality [11]. Blanca, Arnau, López-Montiel, Bono, & Bendayan [3] 33 
analyze the shape of 693 real data distributions by including the measures of cognitive ability and 34 
other psychological variables in terms of skewness and kurtosis. Only 5.5% of the distributions are 35 
close to normality assumption.  36 

Keeping this in view, the literature has produced few normality tests which are based on skewness 37 
and kurtosis [4, 7, 9, & 13]. Other than the moment based tests, normality literature also provides 38 
tests based on correlation & regression [2, 6, 18 & 19], empirical distribution [1, 23 & 24] and special 39 
tests [10 & 15].  40 
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This study is devoted to analyze the impact of change in skewness and kurtosis respectively on the 41 
power of normality tests. Normality tests are developed based on the different characteristics of 42 
normal distribution and the power of normality statistics varies depending upon the nature of non-43 
normality [4]. Thus, comparisons of normality tests yield ambiguous results since all normality 44 
statistics critically depend on alternative distributions which cannot be specified [12]. Fifteen 45 
normality tests are selected for comparison of power based on stringency concept proposed by Islam 46 
[12]. The stringency concept allows you to rank the normality tests in a uniquely fashion. Neyman-47 
Pearson (NP) tests are computed against each alternative distribution to construct the power curve. 48 
Relative efficiencies of all the tests in question are computed as the deviations of each test from the 49 
power curve. The best test is defined as the test having minimum deviation from the power curve 50 
among the maximum deviations of all the tests.   51 

2. Stringency Framework 52 

Islam [12] proposes a new framework to evaluate the performance of normality tests based on the 53 
stringency concept introduced by Lehmann and Stein [14].  54 

Let 𝑦 = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … , 𝑦௡) be the observations with density function 𝑓(𝑦, 𝜑), where 𝜑 belongs to 55 
the parameter space ∅. A function ℎ(𝑦) which takes values {0, 1} is called hypothesis test and 56 
belongs to 𝐻, set of all such functions. 57 

For any test of size 𝛼, maximum achievable power is defined as: 58 𝑀𝑎𝑥௛∈ுഀ𝛽(ℎ, 𝜑) = 𝑆𝑢𝑝[𝑃(ℎ(𝑦) = 1|𝜑𝜖∅௔] 59 

where, 𝛽(ℎ, 𝜑)  is the power of ℎ(𝑦)  and ∅௔  represents the alternative parameter space. For 60 
different values of 𝜑 yield different optimal test statistics which provide the power envelope. The 61 
relative power performance of a test, ℎ ∈ 𝐻ఈ, is measured by its deviation from the power envelope 62 
as:  63 𝐷(ℎ(𝑦), 𝜑) = 𝑀𝑎𝑥௛∈ுഀ𝛽(ℎ, 𝜑) − 𝛽(ℎ, 𝜑) 64 

A test is said to be most stringent if it minimizes the maximum deviation from the power envelope. 65 
Stringency of a test is defined as the maximum deviation from the power envelope when evaluated 66 
over the entire alternative space.  67 𝑆൫ℎ(𝑦)൯ = 𝑆𝑢𝑝ఝఢ∅ೌ𝐷(ℎ(𝑦), 𝜑) 68 

Only the uniformly most powerful test can have zero stringency which are rarely found however, 69 
slightly compromising on it can give us a test which is as good as the uniformly most powerful test 70 
[12]. Evaluating the normality tests based on their stringencies allows us to rank them in a uniquely 71 
manner and helps researcher to find the best test.  72 

3. Tests & Alternative Distributions 73 

Normality tests are based on different characteristics like empirical distribution, moments, 74 
correlation and regression and based on special characteristics of the data distribution. Fifteen 75 
normality tests are selected (Table 1) which are the most representative of their respective class. 76 
Departures from normality (first & second order) depends on skewness & kurtosis parameters. 77 
Mixture of t-distributions allows you to vary these two statistics in a wide range. It also covers the 78 
distributions used in literature in terms of skewness & kurtosis (for details see [12]). 79 

 80 
 81 
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Table 1: Normality tests 82 

Test  Class of Test 

Za, Zc, AD & KS ECDF 

JB, RJB, K, & Tw Moments 

W, Wsf, D, CS, BCMR & COIN Correlation & Regression 

Rsj Special  
 This study uses the mixture of t-distributions as alternative distributional space (Appendix: 83 

Table 1).  The alternative distributional space is generated by the following rule.  84 𝛼 . 𝑡(𝑣ଵ , 𝜇ଵ) + (1 − 𝛼). 𝑡(𝑣ଶ, 𝜇ଶ)                              (1) 85 

where 𝑣ଵ , 𝑣ଶ, 𝜇ଵ, 𝜇ଶ are the degrees of freedom and the means of the respective t-distributions. We 86 
have divided our alternative space of distributions into the following three groups on the basis of 87 
skewness; (i) slightly skewed (ii) moderately skewed and, (iii) highly skewed. In each group, 88 
skewness remains within the bounds and we allow kurtosis to vary.    89 

Group I: ඥ𝛽ଵ  ≤ 0.3 90 

Group II: 0.3 <  ඥ𝛽ଵ  ≤ 1.5 91 

Group III: ඥ𝛽ଵ > 1.5   92 
 Neyman-Pearson (NP) tests are computed against each alternative distribution in each group 93 
to construct the power curve. Relative efficiencies of all the tests in question are computed as the 94 
deviations of each test from the power curve. The best test is defined as the test having minimum 95 

deviation from the power curve among the maximum deviations of all the tests. 96 

4. Discussion of Results 97 

Monte Carlo procedures are called in to investigate the powers of fifteen selected normality 98 
tests for samples of sizes, 25, 50 & 75, at 5% level of significance with 100,000 replications. 99 

4.1. Slightly Skewed Alternatives  100 

 When considering all the selected normality tests, Tw is the best test against the slightly skewed 101 
alternatives (fig. 1-3 & table 2) for all sample sizes (n=25, 50, & 75) whereas the performance of JB & 102 
RJB tests is very poor with 80.5%- 99.5% maximum loss of power.  103 

4.1.1. Performance of the moments based tests 104 

Among the moments based class of normality tests, Tw is the best test for all sample sizes for slightly 105 
skewed alternatives (Table 2 & Fig. 1). The K2 test occupies the fourth (for n=25 & 50) and third (for 106 
n=75) rank with maximum power losses of 42.6%, 44.8% & 44.7% respectively (Fig. 3). For all sample 107 
sizes, the JB & RJB tests are the least favorable options in terms of their maximum deviations (gaps) 108 
from the power curve (Fig. 2). The worst distributions for JB and RJB statistics belong to symmetric 109 
and short-tailed class of alternatives (Fig. 2 & Appendix Table 2). These results corroborate with the 110 
findings in [21-23]. To decide about the worst or best performance of a test, we need an invariant 111 
benchmark- a power envelope. The worst performances of JB, in the aforementioned studies, have 112 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2019                   doi:10.20944/preprints201905.0190.v1

Peer-reviewed version available at Symmetry 2019, 11, 872; doi:10.3390/sym11070872

https://doi.org/10.20944/preprints201905.0190.v1
https://doi.org/10.3390/sym11070872


 4 of 17 

 

been evaluated by using an arbitrary reference (e.g W & AD) however, we compute the power curve 113 
by using the most powerful NP-test which yield the exact deviations of JB test from the power curve. 114 

Table 2: Ranking of the normality tests (ඥ𝜷𝟏<0.3) 115 

Slightly Skewed 

n=25  n=50  n=75 

Test  Rank Gap  Test  Rank Gap  Test  Rank Gap 

Tw 1 24.0%  Tw 1 22.9%  Tw 1 31.8% 

COIN 2 34.6%  Rsj  2 26.4%  Rsj  1 32.4% 

AD 2 34.7%  AD 3 38.0%  AD 1 32.6% 

CS 2 34.8%  CS 3 39.8%  CS 2 38.6% 

Rsj  3 36.1%  COIN 4 42.5%  W 3 43.3% 

W 3 37.5%  K2 4 44.8%  K2 3 44.7% 

KS 3 38.1%  W 4 45.5%  KS 3 45.1% 

Zc 3 39.0% Zc 5 48.0% COIN 3 45.2% 

BCMR 3 39.9% BCMR 5 48.3% BCMR 3 46.1% 

K2 4 42.6%  KS 5 49.9%  Zc 4 50.5% 

Za 4 43.1%  Za 6 51.9%  Za 4 51.4% 

Wsf 4 46.5%  Wsf 7 61.3%  Wsf 5 56.2% 

D 5 91.6%  JB 8 80.5%  D 6 85.3% 

JB 6 97.2%  D 9 90.9%  JB 7 88.0% 

RJB 6 98.2%  RJB 10 99.5%  RJB 8 92.9% 

4.1.2. Performance of the regression and correlation tests 116 

When considering the regression and correlation based group of normality tests, for small and large 117 
sample sizes (n=25 & 75), COIN, W, & BCMR are better choices for the slightly skewed alternatives. 118 
Overall, for slightly skewed distributions, COIN & W tests exhibit same power properties (Fig. 5 & 119 
6) whereas Wsf & D statistics are not matching the standards set by other members of the group 120 
(Fig. 7 & 8) with maximum power losses over 50% (table 2). Overall, the CS outperforms its 121 
competitors in the said group with maximum power loss ranges within 34.8%- 39.8% for slightly 122 
skewed alternative. This result strengthens the findings in [17]. 123 

  124 
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4.1.3. Performance of the ECDF tests 125 

Among the ECDF class of normality tests, for slightly skewed alternatives, AD statistic is sharing 126 
the second rank with COIN & CS, third rank with CS and first rank with Tw and Rsj tests of 127 
normality for samples of size 25, 50 and 75 respectively (Table 2).  128 

When considering all the selected normality tests for the slightly skewed alternative distributions, 129 
KS shares the third rank (maximum loss of power is 38.1%) with W & Zc and sixth rank (maximum 130 
loss of power is 49.9%) with Zc & BCMR for samples of size 25 & 50 respectively. For samples of 131 
size 75, KS test again holds the third rank with 45.1% maximum loss of power while Za & Zc tests 132 
are at the fourth rank with maximum loss of powers slightly above 50% (table 2). On balance, when 133 
considering the maximum deviations from the power envelope, KS has a slight edge over Za & Zc 134 
statistics. In terms of maximum deviations from the power envelope, Zc has a slight edge over Za 135 
but it does not corroborate with the findings in [24] due to the absence of invariant benchmark- 136 
power envelope in their comparison. 137 

4.1.4. Performance of the special test 138 

This category includes only the Rsj test of normality. The performance of Rsj test increases with 139 
the increase in sample size for the slightly skewed alternatives. It holds the third, second and first 140 
rank for samples of size 25, 50 & 75 respectively (table 2). On balance, Rsj performed well (Fig. 10), 141 
especially from medium (n=50) to large (n=75) sample sizes, against slightly skewed distributions. 142 

Finally, when considering all normality tests for slightly skewed alternatives, Tw is the most 143 
stringent test with Rsj, AD & CS following closely whereas RJB, JB & D are the least favorable 144 
options. 145 

4.2. Moderately Skewed Alternatives  146 

For moderately skewed alternatives, for smaller sample size, CS, W, AD and BCMR are the best 147 
choices and the COIN test is the least favorable option (Table 3). For medium sample size, AD is the 148 
ranked one statistic and the COIN, & Tw tests are at the bottom of the ranking table. For larger 149 
sample size, AD, CS, W & BCMR appear to be the best options whereas the COIN & Tw tests are 150 
the worst options. 151 

4.2.1. Performance of the moments based tests 152 

 In general, for moderately skewed alternatives, moments based normality tests perform poorly 153 
for all sample sizes. For smaller sample size, K2 occupies the fourth rank (with 46.7% maximum 154 
power loss) by outperforming the other group members. For medium sample size, JB and RJB (with 155 
power losses above 50.0%) move to the fourth rank by pushing K2 down to fifth rank whereas Tw 156 
shares the seventh rank (maximum power loss is 78.4%) with the COIN test.  157 

 With the increase in sample size, both JB & RJB show improvement in power and ranking but 158 
their maximum power losses are still above 50% (table 3). Both JB & RJB are good at discriminating 159 
the FAR group of distributions (where the power of NP-test is between 90-100%) with JB having a 160 
slight edge over RJB but both suffers when the distributions are from INTERMEDIATE1 group of 161 
alternatives (Fig. 12). 162 

                                                 
1 Following Islam [12] we group alternative space into three categories based on the power of NP-test: FAR, 

INTERMEDIATE & NEAR. The alternative distributions where the power of NP-test is between 90-100%, 40-90% & 5-40% 

are categorized as FAR, INTERMEDIATE & NEAR group of alternatives respectively.     
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Table 3: Ranking of the normality tests (0.3 < ඥ𝛽ଵ  ≤ 1.5) 163 

Moderately Skewed 

n=25  n=50  n=75 

Tests Rank Gap  Test Rank Gap  Test Rank Gap 

CS 1 28.5%  AD 1 25.0%  AD 1 26.7% 

W 1 29.0%  W 2 28.3%  CS 1 28.9% 

AD 1 29.5%  BCMR 2 28.7%  W 1 29.5% 

BCMR 1 29.8%  CS 2 29.8%  BCMR 1 31.4% 

Za 2 32.8%  Wsf 3 34.9%  Wsf 2 35.8% 

Wsf 2 33.5%  KS 3 35.2%  Za 2 36.2% 

Zc 2 33.5%  Za 3 36.5%  Zc 2 38.2% 

KS 3 42.2%  Zc 3 38.3%  KS 2 40.4% 

K2 4 46.7%  JB 4 59.8%  JB 3 50.6% 

D 5 49.8% RJB 4 61.9% K2 4 57.9% 

Rsj  6 55.5%  K2 5 64.6%  RJB 4 58.0% 

Tw 6 55.7%  D 6 74.6%  D 5 81.3% 

JB 7 59.0%  Rsj  6 75.6%  Rsj  5 83.9% 

RJB 8 64.4%  Tw 7 78.4%  Tw 6 88.0% 

COIN 9 68.8%  COIN 7 79.8%  COIN 6 88.7% 

4.2.2. Performance of the regression & correlation tests 164 

Among the regression and correlation based normality tests, for smaller sample size, CS, W, and 165 
BCMR are the best tests for moderately skewed alternatives with a loss range of 28.5%- 29.8% (Table 166 
3) whereas the COIN test is at the bottom with a loss range of 68.8- 88.7%. 167 

 For medium up to large sample size (n=50 & 75), W, BCMR, & CS are the better options, with Wsf 168 
following closely. The D & COIN tests are the least favorable regression and correlation based 169 
normality statistics for moderately skewed alternatives which is in line with the findings in Coin, 170 
(2008) and Bonett & Seier, (2002). It is evident from figure 13; Tw & COIN both suffers against 171 
INTERMEDIATE & FAR group of alternative distributions. 172 

4.2.3. Performance of the ECDF tests 173 

For moderately skewed alternatives, among the ECDF class of normality tests, AD exhibits superior 174 
power properties for all sample sizes. When considering all the selected normality tests for 175 
moderately skewed alternatives, AD holds the first rank for all sample sizes. 176 
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For smaller and larger sample size, the Za, & Zc statistics share the second rank. For medium sample 177 
size, these tests occupy the third rank. For smaller and medium sample size, the KS test holds the 178 
third rank whereas its position improves to second rank for larger sample size. The W test turns out 179 
to be a better test than KS (Fig. 11) which corroborates with the findings in Shapiro, Wilk, & Chen 180 
[20]. While evaluating the stringencies of the normality statistics for moderately skewed 181 
alternatives, we conclude the same but through a superior & reliable procedure.  182 

4.2.4. Performance of the other tests 183 

 In general, for moderately skewed alternative distributions, Rsj test performs poorly having 184 
more than 50.0% maximum deviation from the power curve for all sample sizes. On balance, the 185 
worst performance of Rsj test is against the INTERMEDIATE & FAR group of alternatives but it 186 
performed well against the NEAR group of alternatives.     187 

Overall, AD, CS, W & BCMR happen to be the best and JB, RJB, Tw, Rsj & COIN are the least 188 
favorable options for moderately skewed alternatives when considering all the selected normality 189 
tests. 190 

4.3. Highly Skewed Alternatives 191 

This group comprises of the alternatives from FAR group only where the most powerful NP-test 192 
has 100% power. As both skewness and kurtosis are high for this group of alternatives so they are 193 
palpable. All normality tests other than the COIN & Tw statistics performed well against highly 194 
skewed alternatives (Table 4).   195 

For smaller sample size, the Wsf, BCMR, W, CS, Za, Zc, AD, RJB & JB tests performed well with the 196 
maximum power loss ranges between 8.8%- 13.9% followed by the D statistic with maximum power 197 
loss of 16.1% (Table 4) while the performance of the COIN & Tw tests is below the mark. 198 

As the sample size increases, it becomes harder to differentiate among the selected tests of normality 199 
excluding Tw & COIN. The results are evident that the power loss of these statistics decreases with 200 
the increase in (i) sample size and (ii) the skewness and kurtosis. For all sample sizes, JB and RJB 201 
yield good powers for the highly skewed alternatives.  202 

Overall, the performance of the normality tests against the highly skewed and heavy-tailed 203 
alternatives is very good. However, the COIN and Tw tests performed poorly as compared to other 204 
normality statistics. The poor performance of the COIN test is understandable as it is meant only 205 
for perfect symmetric cases [6 & 17]. Bonett and Seier [4] also recommend a standard skewness test 206 
along with the Tw statistic when the alternative distribution is skewed. Therefore, the COIN and 207 
Tw tests are not recommended for highly skewed alternative distributions. 208 

Table 4: Ranking of normality tests for highly skewed alternatives (ඥ𝛽ଵ > 1.5) 209 

Highly Skewed  

n=25  n=50  n=75 

Test Rank Gap  Test Rank Gap  Test Rank Gap 

Wsf 1 8.8%  Wsf 1 0.6%  RJB 1 0.0% 

BCMR 1 9.3%  BCMR 1 0.7%  Zc 1 0.0% 

W 1 10.1%  Zc 1 0.7%  JB 1 0.0% 
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CS 1 10.4%  W 1 0.7%  Wsf 1 0.0% 

Za 1 10.9%  JB 1 0.7%  W 1 0.1% 

Zc 1 11.0%  RJB 1 0.7%  CS 1 0.1% 

AD 1 11.9%  CS 1 0.8%  D 1 0.1% 

RJB 1 12.5%  Za 1 0.9%  BCMR 1 0.1% 

JB 1 13.9%  D 1 1.0%  K2 1 0.1% 

D 2 16.1%  K2 1 1.2%  Za 1 0.1% 

K2 3 20.4%  AD 1 1.3%  AD 1 0.2% 

KS 3 21.2%  Rsj  1 2.1%  Rsj  1 0.2% 

Rsj  3 21.5%  KS 1 3.6%  KS 1 0.5% 

Tw 4 46.9%  Tw 2 45.3%  Tw 2 42.5% 

COIN 5 61.4%  COIN 3 69.1%  COIN 3 72.0% 

5. Conclusion 210 

This study shed light on the performance of the selected fifteen normality tests against the three 211 
different groups of alternatives. For slightly skewed alternative distributions, Tw is the best test 212 
with COIN, AD, CS & Rsj following closely. On balance, D, JB, RJB, K2, Wsf & Za did not perform 213 
well for the slighty skewed alternatives especially from medium (n=50) up to large (n=75) sample 214 
sizes with more than 50% maximum power losses.   215 

When considering all the selected normality tests for the moderately skewed alternatives, AD, CS, 216 
W, & BCMR turn out to be the best options for testing the hypothesis of normality of data 217 
distribution. In general, JB, RJB, Tw, COIN, Rsj, D & K2 tests perform poorly against moderately 218 
skewed distributions. The performance of JB & RJB increases with the increase in sample size but 219 
their maximum loss, in terms of their deviations from the power envelope, is greater than 50% even 220 
for large smaple sizes (n=75).  221 

On balance, all normality tests except Tw and COIN performed exceptionally well against the higly 222 
skewed alternatives especially from medium up to larege sample sizes.  223 

The above findings confirm our argument that comparison of tests against different alternatives 224 
yields different statistics as best tests. The COIN & Tw are best options for slightly skewed 225 
alternatives but these statistics perform poorly for moderately and highly skewed alternative 226 
distributions. Therefore, the comparison and ranking of normality tests do not make sense in the 227 
absence of an invariant benchmark-power envelope. 228 
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Appendix A 233 

 234 

Table 1: Alternative Distributions 235 

Sr. 
No 

Student t Distribution 
Mixture Distribution  t1 t2 

d.f Mean d.f Mean Alpha Mean SD ඥ𝜷𝟏 𝜷𝟐 
1 8 2.0 12 5.0 0.50 3.50 1.88 -0.05 2.33 
2 100 4.0 75 6.0 0.50 5.00 1.42 0.00 2.53 
3 10 0.0 .. .. 1.00 0.00 1.12 0.00 4.00 
4 100 -1.5 75 1.5 0.50 0.00 1.81 0.00 2.06 
5 10 3.0 5 50.0 0.50 26.50 23.53 0.00 1.01 
6 100 -4.0 75 4.0 0.50 0.00 4.13 0.00 1.23 
7 50 -1.2 25 1.2 0.50 0.00 1.58 0.02 2.38 
8 8 5.0 10 3.0 0.50 4.00 1.51 0.04 3.02 
9 5 2.0 7 4.0 0.70 2.60 1.56 0.09 4.95 

10 5 10.0 6 12.0 0.95 10.10 1.36 0.12 7.84 
11 5 10.0 7 12.0 0.90 10.20 1.41 0.15 6.90 
12 10 5.0 5 7.0 0.50 6.00 1.57 0.16 4.20 
13 100 4.0 75 6.0 0.70 4.60 1.36 0.27 2.77 
14 8 5.0 10 3.0 0.10 3.20 1.27 0.30 3.95 
15 100 -1.0 75 1.0 0.75 -0.50 1.33 0.32 2.91 
16 8 5.0 10 3.0 0.20 3.40 1.38 0.32 3.57 
17 10 5.0 5 7.0 0.90 5.20 1.29 0.38 4.65 
18 100 -1.2 75 1.2 0.75 -0.60 1.45 0.43 2.85 
19 8 -1.0 10 2.0 0.95 -0.85 1.33 0.48 4.68 
20 8 -1.0 12 2.0 0.85 -0.55 1.57 0.59 3.70 
21 100 -1.5 75 1.5 0.77 -0.81 1.62 0.61 2.88 
22 100 -4.0 75 4.0 0.70 -1.60 3.80 0.78 1.93 
23 5 10.0 7 25.0 0.70 14.50 6.99 0.82 1.83 
24 10 3.0 5 50.0 0.70 17.10 21.57 0.87 1.77 
25 100 -4.0 75 4.0 0.75 -2.00 3.61 1.02 2.44 
26 8 -10.0 12 5.0 0.78 -6.70 6.32 1.28 2.83 
27 8 0.0 12 5.0 0.90 0.50 1.89 1.31 5.11 
28 8 0.0 12 5.0 0.95 0.25 1.59 1.32 6.63 
29 8 -10.0 12 5.0 0.80 -7.00 6.11 1.42 3.22 
30 8 -10.0 12 5.0 0.82 -7.30 5.88 1.57 3.71 
31 8 -1.0 12 5.0 0.90 -0.40 2.14 1.58 5.60 
32 5 5.0 7 15.0 0.85 6.50 3.79 1.62 4.45 
33 5 5.0 6 15.0 0.90 6.00 3.26 2.06 6.73 
34 100 -4.0 75 4.0 0.90 -3.20 2.60 2.09 6.69 
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35 5 10.0 7 25.0 0.90 11.50 4.68 2.36 7.35 
36 8 -10.0 12 5.0 0.90 -8.50 4.64 2.42 7.48 
37 10 3.0 5 50.0 0.90 7.70 14.15 2.64 8.06 

 236 
Table 2: Power comparison for symmetric short-tailed alternatives (n=25, α = 0.05) 237 

Distribution Skew Kurt JB RJB Best Test 
D(5,0.00,1.01) 0.00 1.01 0.27 0.04 1.00 
D(6,0.00,1.23) 0.00 1.23 0.03 0.02 1.00 
Beta(0.5,0.5) 0.00 1.50 0.00 0.00 0.91 
Beta(1,1) 0.00 1.80 0.00 0.00 0.44 
Tukey(2) 0.00 1.80 0.00 0.00 0.44 
D(4,0.00,2.06) 0.00 2.06 0.01 0.00 0.54 
Tukey(0.5) 0.00 2.08 0.00 0.00 0.14 
Beta (2,2) 0.00 2.14 0.00 0.00 0.11 
D(2,0.00,2.53) 0.00 2.53 0.02 0.01 0.16 
Tukey(5) 0.00 2.90 0.03 0.07 0.14 

Appendix B 238 

Fig. 12:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)239 

 240 

                                                 
2 The convention used to refer to any distribution from table 1 is D(Sr. No., Skewness, Kurtosis). For 
example; D(17, 0.38, 4.65) means a distribution from table 1 with serial number 17 has a skewness and 
kurtosis equal to 0.38 and 4.65 respectively. 
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Fig. 2:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)241 

 242 

Fig. 3:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)243 

 244 

Fig. 4:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)245 

 246 
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Fig. 5:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)247 

 248 

Fig. 6:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)249 

 250 
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Fig. 7:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)251 

 252 

Fig. 8:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)253 

 254 

Fig. 9:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)255 

 256 
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Fig. 10:  Power Comparison of Normality Tests (ඥ𝛽ଵ < 0.3 & 𝑛 = 75)257 

 258 

Fig. 11:  Power Comparison of Normality Tests (0.3 < ඥ𝛽ଵ  ≤ 1.5 & n = 75)259 

 260 

  Fig. 12:  Power Comparison of Normality Tests (0.3 < ඥ𝛽ଵ  ≤ 1.5 & n = 75)261 

 262 
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Fig. 13:  Power Comparison of Normality Tests (0.3 < ටβଵ  ≤ 1.5 & n = 75)263 

 264 
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