

1 Article

2 **Ranking of Normality Tests - An Appraisal through Skewed
3 Alternative Space**4 **Tanweer Islam¹**5 ¹ Department of Economics, National University of Sciences & Technology, Islamabad 44000, Pakistan;
6 tanweer@s3h.nust.edu.pk7
8 **Abstract:** In social & health sciences, many statistical procedures and estimation techniques rely on
9 the underlying distributional assumption of normality of the data. Non-normality may lead to
10 incorrect statistical inferences. This study evaluates the performance of selected normality tests on
11 the stringency framework for the skewed alternative space. Stringency concept allows us to rank
12 the tests uniquely. Bonett & Seier test (T_w) turns out to be the best statistics for slightly skewed
13 alternatives and the Anderson-Darling (AD), Chen-Shapiro (CS), Shapiro-Wilk (W) and Bispo,
14 Marques, & Pestana, (BCMR) statistics are the best choices for moderately skewed alternative
15 distributions. Maximum loss of Jarque-Bera (JB) and its robust form (RJB), in terms of deviations
16 from the power envelope, is greater than 50% even for large sample sizes which makes them less
17 attractive in testing the hypothesis of normality against the moderately skewed alternatives. On
18 balance, all selected normality tests except T_w and COIN performed exceptionally well against the
19 highly skewed alternative space.20 **Keywords:** Power Envelope, Neyman-Pearson Tests, Skewness & Kurtosis
2122 **1. Introduction**23 Departures from normality can be measured in a variety of ways however, the most common
24 measures are skewness and kurtosis in this regard. Skewness refers to the symmetry of a
25 distribution and kurtosis refers to the flatness or 'peakedness' of a distribution. These two statistics
26 have been widely used to differentiate between distributions. Normal distribution has the values of
27 skewness and kurtosis as 0 & 3 respectively. If the values of skewness and kurtosis significantly
28 deviate from 0 & 3; it is assumed that the data in hand is not distributed as normal. Macroeconomists
29 are always concerned whether the economic variables exhibit similar behavior during recessions
30 and booms. Delong & Summers [8] apply the skewness measure to GDP, unemployment rate and
31 industrial production to study whether the business cycles are symmetric or not. The experimental
32 data sets generated in clinical chemistry require the use of skewness & kurtosis statistics to
33 determine its shape and normality [11]. Blanca, Arnau, López-Montiel, Bono, & Bendayan [3]
34 analyze the shape of 693 real data distributions by including the measures of cognitive ability and
35 other psychological variables in terms of skewness and kurtosis. Only 5.5% of the distributions are
36 close to normality assumption.37 Keeping this in view, the literature has produced few normality tests which are based on skewness
38 and kurtosis [4, 7, 9, & 13]. Other than the moment based tests, normality literature also provides
39 tests based on correlation & regression [2, 6, 18 & 19], empirical distribution [1, 23 & 24] and special
40 tests [10 & 15].

41 This study is devoted to analyze the impact of change in skewness and kurtosis respectively on the
42 power of normality tests. Normality tests are developed based on the different characteristics of
43 normal distribution and the power of normality statistics varies depending upon the nature of non-
44 normality [4]. Thus, comparisons of normality tests yield ambiguous results since all normality
45 statistics critically depend on alternative distributions which cannot be specified [12]. Fifteen
46 normality tests are selected for comparison of power based on stringency concept proposed by Islam
47 [12]. The stringency concept allows you to rank the normality tests in a uniquely fashion. Neyman-
48 Pearson (NP) tests are computed against each alternative distribution to construct the power curve.
49 Relative efficiencies of all the tests in question are computed as the deviations of each test from the
50 power curve. The best test is defined as the test having minimum deviation from the power curve
51 among the maximum deviations of all the tests.

52 2. Stringency Framework

53 Islam [12] proposes a new framework to evaluate the performance of normality tests based on the
54 stringency concept introduced by Lehmann and Stein [14].

55 Let $y = (y_1, y_2, y_3, \dots, y_n)$ be the observations with density function $f(y, \varphi)$, where φ belongs to
56 the parameter space \emptyset . A function $h(y)$ which takes values $\{0, 1\}$ is called hypothesis test and
57 belongs to H , set of all such functions.

58 For any test of size α , maximum achievable power is defined as:

$$59 \quad Max_{h \in H_\alpha} \beta(h, \varphi) = Sup[P(h(y) = 1 | \varphi \in \emptyset_\alpha]$$

60 where, $\beta(h, \varphi)$ is the power of $h(y)$ and \emptyset_α represents the alternative parameter space. For
61 different values of φ yield different optimal test statistics which provide the power envelope. The
62 relative power performance of a test, $h \in H_\alpha$, is measured by its deviation from the power envelope
63 as:

$$64 \quad D(h(y), \varphi) = Max_{h \in H_\alpha} \beta(h, \varphi) - \beta(h, \varphi)$$

65 A test is said to be most stringent if it minimizes the maximum deviation from the power envelope.
66 Stringency of a test is defined as the maximum deviation from the power envelope when evaluated
67 over the entire alternative space.

$$68 \quad S(h(y)) = Sup_{\varphi \in \emptyset_\alpha} D(h(y), \varphi)$$

69 Only the uniformly most powerful test can have zero stringency which are rarely found however,
70 slightly compromising on it can give us a test which is as good as the uniformly most powerful test
71 [12]. Evaluating the normality tests based on their stringencies allows us to rank them in a uniquely
72 manner and helps researcher to find the best test.

73 3. Tests & Alternative Distributions

74 Normality tests are based on different characteristics like empirical distribution, moments,
75 correlation and regression and based on special characteristics of the data distribution. Fifteen
76 normality tests are selected (Table 1) which are the most representative of their respective class.
77 Departures from normality (first & second order) depends on skewness & kurtosis parameters.
78 Mixture of t-distributions allows you to vary these two statistics in a wide range. It also covers the
79 distributions used in literature in terms of skewness & kurtosis (for details see [12]).

82 Table 1: Normality tests

Test	Class of Test
Za, Zc, AD & KS	ECDF
JB, RJB, K, & Tw	Moments
W, Wsf, D, CS, BCMR & COIN	Correlation & Regression
Rsj	Special

83 This study uses the mixture of t-distributions as alternative distributional space (Appendix:
 84 Table 1). The alternative distributional space is generated by the following rule.

85
$$\alpha \cdot t(v_1, \mu_1) + (1 - \alpha) \cdot t(v_2, \mu_2) \quad (1)$$

86 where v_1, v_2, μ_1, μ_2 are the degrees of freedom and the means of the respective t-distributions. We
 87 have divided our alternative space of distributions into the following three groups on the basis of
 88 skewness; (i) slightly skewed (ii) moderately skewed and, (iii) highly skewed. In each group,
 89 skewness remains within the bounds and we allow kurtosis to vary.

90 Group I: $\sqrt{\beta_1} \leq 0.3$

91 Group II: $0.3 < \sqrt{\beta_1} \leq 1.5$

92 Group III: $\sqrt{\beta_1} > 1.5$

93 Neyman-Pearson (NP) tests are computed against each alternative distribution in each group
 94 to construct the power curve. Relative efficiencies of all the tests in question are computed as the
 95 deviations of each test from the power curve. The best test is defined as the test having minimum
 96 deviation from the power curve among the maximum deviations of all the tests.

97 **4. Discussion of Results**

98 Monte Carlo procedures are called in to investigate the powers of fifteen selected normality
 99 tests for samples of sizes, 25, 50 & 75, at 5% level of significance with 100,000 replications.

100 **4.1. Slightly Skewed Alternatives**

101 When considering all the selected normality tests, Tw is the best test against the slightly skewed
 102 alternatives (fig. 1-3 & table 2) for all sample sizes (n=25, 50, & 75) whereas the performance of JB &
 103 RJB tests is very poor with 80.5%- 99.5% maximum loss of power.

104 **4.1.1. Performance of the moments based tests**

105 Among the moments based class of normality tests, Tw is the best test for all sample sizes for slightly
 106 skewed alternatives (Table 2 & Fig. 1). The K2 test occupies the fourth (for n=25 & 50) and third (for
 107 n=75) rank with maximum power losses of 42.6%, 44.8% & 44.7% respectively (Fig. 3). For all sample
 108 sizes, the JB & RJB tests are the least favorable options in terms of their maximum deviations (gaps)
 109 from the power curve (Fig. 2). The worst distributions for JB and RJB statistics belong to symmetric
 110 and short-tailed class of alternatives (Fig. 2 & Appendix Table 2). These results corroborate with the
 111 findings in [21-23]. To decide about the worst or best performance of a test, we need an invariant
 112 benchmark- a power envelope. The worst performances of JB, in the aforementioned studies, have

113 been evaluated by using an arbitrary reference (e.g W & AD) however, we compute the power curve
 114 by using the most powerful NP-test which yield the exact deviations of JB test from the power curve.

115 Table 2: Ranking of the normality tests ($\sqrt{\beta_1} < 0.3$)

Slightly Skewed								
n=25			n=50			n=75		
Test	Rank	Gap	Test	Rank	Gap	Test	Rank	Gap
Tw	1	24.0%	Tw	1	22.9%	Tw	1	31.8%
COIN	2	34.6%	Rsj	2	26.4%	Rsj	1	32.4%
AD	2	34.7%	AD	3	38.0%	AD	1	32.6%
CS	2	34.8%	CS	3	39.8%	CS	2	38.6%
Rsj	3	36.1%	COIN	4	42.5%	W	3	43.3%
W	3	37.5%	K2	4	44.8%	K2	3	44.7%
KS	3	38.1%	W	4	45.5%	KS	3	45.1%
Zc	3	39.0%	Zc	5	48.0%	COIN	3	45.2%
BCMR	3	39.9%	BCMR	5	48.3%	BCMR	3	46.1%
K2	4	42.6%	KS	5	49.9%	Zc	4	50.5%
Za	4	43.1%	Za	6	51.9%	Za	4	51.4%
Wsf	4	46.5%	Wsf	7	61.3%	Wsf	5	56.2%
D	5	91.6%	JB	8	80.5%	D	6	85.3%
JB	6	97.2%	D	9	90.9%	JB	7	88.0%
RJB	6	98.2%	RJB	10	99.5%	RJB	8	92.9%

116 **4.1.2. Performance of the regression and correlation tests**

117 When considering the regression and correlation based group of normality tests, for small and large
 118 sample sizes (n=25 & 75), COIN, W, & BCMR are better choices for the slightly skewed alternatives.
 119 Overall, for slightly skewed distributions, COIN & W tests exhibit same power properties (Fig. 5 &
 120 6) whereas Wsf & D statistics are not matching the standards set by other members of the group
 121 (Fig. 7 & 8) with maximum power losses over 50% (table 2). Overall, the CS outperforms its
 122 competitors in the said group with maximum power loss ranges within 34.8%- 39.8% for slightly
 123 skewed alternative. This result strengthens the findings in [17].

124

125 **4.1.3. Performance of the ECDF tests**

126 Among the ECDF class of normality tests, for slightly skewed alternatives, AD statistic is sharing
127 the second rank with COIN & CS, third rank with CS and first rank with Tw and Rsj tests of
128 normality for samples of size 25, 50 and 75 respectively (Table 2).

129 When considering all the selected normality tests for the slightly skewed alternative distributions,
130 KS shares the third rank (maximum loss of power is 38.1%) with W & Zc and sixth rank (maximum
131 loss of power is 49.9%) with Zc & BCMR for samples of size 25 & 50 respectively. For samples of
132 size 75, KS test again holds the third rank with 45.1% maximum loss of power while Za & Zc tests
133 are at the fourth rank with maximum loss of powers slightly above 50% (table 2). On balance, when
134 considering the maximum deviations from the power envelope, KS has a slight edge over Za & Zc
135 statistics. In terms of maximum deviations from the power envelope, Zc has a slight edge over Za
136 but it does not corroborate with the findings in [24] due to the absence of invariant benchmark-
137 power envelope in their comparison.

138 **4.1.4. Performance of the special test**

139 This category includes only the Rsj test of normality. The performance of Rsj test increases with
140 the increase in sample size for the slightly skewed alternatives. It holds the third, second and first
141 rank for samples of size 25, 50 & 75 respectively (table 2). On balance, Rsj performed well (Fig. 10),
142 especially from medium (n=50) to large (n=75) sample sizes, against slightly skewed distributions.

143 Finally, when considering all normality tests for slightly skewed alternatives, Tw is the most
144 stringent test with Rsj, AD & CS following closely whereas RJB, JB & D are the least favorable
145 options.

146 **4.2. Moderately Skewed Alternatives**

147 For moderately skewed alternatives, for smaller sample size, CS, W, AD and BCMR are the best
148 choices and the COIN test is the least favorable option (Table 3). For medium sample size, AD is the
149 ranked one statistic and the COIN, & Tw tests are at the bottom of the ranking table. For larger
150 sample size, AD, CS, W & BCMR appear to be the best options whereas the COIN & Tw tests are
151 the worst options.

152 **4.2.1. Performance of the moments based tests**

153 In general, for moderately skewed alternatives, moments based normality tests perform poorly
154 for all sample sizes. For smaller sample size, K2 occupies the fourth rank (with 46.7% maximum
155 power loss) by outperforming the other group members. For medium sample size, JB and RJB (with
156 power losses above 50.0%) move to the fourth rank by pushing K2 down to fifth rank whereas Tw
157 shares the seventh rank (maximum power loss is 78.4%) with the COIN test.

158 With the increase in sample size, both JB & RJB show improvement in power and ranking but
159 their maximum power losses are still above 50% (table 3). Both JB & RJB are good at discriminating
160 the FAR group of distributions (where the power of NP-test is between 90-100%) with JB having a
161 slight edge over RJB but both suffers when the distributions are from INTERMEDIATE¹ group of
162 alternatives (Fig. 12).

¹ Following Islam [12] we group alternative space into three categories based on the power of NP-test: FAR, INTERMEDIATE & NEAR. The alternative distributions where the power of NP-test is between 90-100%, 40-90% & 5-40% are categorized as FAR, INTERMEDIATE & NEAR group of alternatives respectively.

163

Table 3: Ranking of the normality tests ($0.3 < \sqrt{\beta_1} \leq 1.5$)

Moderately Skewed								
n=25			n=50			n=75		
Tests	Rank	Gap	Test	Rank	Gap	Test	Rank	Gap
CS	1	28.5%	AD	1	25.0%	AD	1	26.7%
W	1	29.0%	W	2	28.3%	CS	1	28.9%
AD	1	29.5%	BCMR	2	28.7%	W	1	29.5%
BCMR	1	29.8%	CS	2	29.8%	BCMR	1	31.4%
Za	2	32.8%	Wsf	3	34.9%	Wsf	2	35.8%
Wsf	2	33.5%	KS	3	35.2%	Za	2	36.2%
Zc	2	33.5%	Za	3	36.5%	Zc	2	38.2%
KS	3	42.2%	Zc	3	38.3%	KS	2	40.4%
K2	4	46.7%	JB	4	59.8%	JB	3	50.6%
D	5	49.8%	RJB	4	61.9%	K2	4	57.9%
Rsj	6	55.5%	K2	5	64.6%	RJB	4	58.0%
Tw	6	55.7%	D	6	74.6%	D	5	81.3%
JB	7	59.0%	Rsj	6	75.6%	Rsj	5	83.9%
RJB	8	64.4%	Tw	7	78.4%	Tw	6	88.0%
COIN	9	68.8%	COIN	7	79.8%	COIN	6	88.7%

164

4.2.2. Performance of the regression & correlation tests

165
166
167

Among the regression and correlation based normality tests, for smaller sample size, CS, W, and BCMR are the best tests for moderately skewed alternatives with a loss range of 28.5%- 29.8% (Table 3) whereas the COIN test is at the bottom with a loss range of 68.8- 88.7%.

168
169
170
171
172

For medium up to large sample size (n=50 & 75), W, BCMR, & CS are the better options, with Wsf following closely. The D & COIN tests are the least favorable regression and correlation based normality statistics for moderately skewed alternatives which is in line with the findings in Coin, (2008) and Bonett & Seier, (2002). It is evident from figure 13; Tw & COIN both suffers against INTERMEDIATE & FAR group of alternative distributions.

173

4.2.3. Performance of the ECDF tests

174
175
176

For moderately skewed alternatives, among the ECDF class of normality tests, AD exhibits superior power properties for all sample sizes. When considering all the selected normality tests for moderately skewed alternatives, AD holds the first rank for all sample sizes.

177 For smaller and larger sample size, the Za, & Zc statistics share the second rank. For medium sample
 178 size, these tests occupy the third rank. For smaller and medium sample size, the KS test holds the
 179 third rank whereas its position improves to second rank for larger sample size. The W test turns out
 180 to be a better test than KS (Fig. 11) which corroborates with the findings in Shapiro, Wilk, & Chen
 181 [20]. While evaluating the stringencies of the normality statistics for moderately skewed
 182 alternatives, we conclude the same but through a superior & reliable procedure.

183 **4.2.4. Performance of the other tests**

184 In general, for moderately skewed alternative distributions, R_{sj} test performs poorly having
 185 more than 50.0% maximum deviation from the power curve for all sample sizes. On balance, the
 186 worst performance of R_{sj} test is against the INTERMEDIATE & FAR group of alternatives but it
 187 performed well against the NEAR group of alternatives.

188 Overall, AD, CS, W & BCMR happen to be the best and JB, RJB, Tw, R_{sj} & COIN are the least
 189 favorable options for moderately skewed alternatives when considering all the selected normality
 190 tests.

191 **4.3. Highly Skewed Alternatives**

192 This group comprises of the alternatives from FAR group only where the most powerful NP-test
 193 has 100% power. As both skewness and kurtosis are high for this group of alternatives so they are
 194 palpable. All normality tests other than the COIN & Tw statistics performed well against highly
 195 skewed alternatives (Table 4).

196 For smaller sample size, the Wsf, BCMR, W, CS, Za, Zc, AD, RJB & JB tests performed well with the
 197 maximum power loss ranges between 8.8%- 13.9% followed by the D statistic with maximum power
 198 loss of 16.1% (Table 4) while the performance of the COIN & Tw tests is below the mark.

199 As the sample size increases, it becomes harder to differentiate among the selected tests of normality
 200 excluding Tw & COIN. The results are evident that the power loss of these statistics decreases with
 201 the increase in (i) sample size and (ii) the skewness and kurtosis. For all sample sizes, JB and RJB
 202 yield good powers for the highly skewed alternatives.

203 Overall, the performance of the normality tests against the highly skewed and heavy-tailed
 204 alternatives is very good. However, the COIN and Tw tests performed poorly as compared to other
 205 normality statistics. The poor performance of the COIN test is understandable as it is meant only
 206 for perfect symmetric cases [6 & 17]. Bonett and Seier [4] also recommend a standard skewness test
 207 along with the Tw statistic when the alternative distribution is skewed. Therefore, the COIN and
 208 Tw tests are not recommended for highly skewed alternative distributions.

209 Table 4: Ranking of normality tests for highly skewed alternatives ($\sqrt{\beta_1} > 1.5$)

Highly Skewed

n=25			n=50			n=75		
Test	Rank	Gap	Test	Rank	Gap	Test	Rank	Gap
Wsf	1	8.8%	Wsf	1	0.6%	RJB	1	0.0%
BCMR	1	9.3%	BCMR	1	0.7%	Zc	1	0.0%
W	1	10.1%	Zc	1	0.7%	JB	1	0.0%

CS	1	10.4%	W	1	0.7%	Wsf	1	0.0%
Za	1	10.9%	JB	1	0.7%	W	1	0.1%
Zc	1	11.0%	RJB	1	0.7%	CS	1	0.1%
AD	1	11.9%	CS	1	0.8%	D	1	0.1%
RJB	1	12.5%	Za	1	0.9%	BCMR	1	0.1%
JB	1	13.9%	D	1	1.0%	K2	1	0.1%
D	2	16.1%	K2	1	1.2%	Za	1	0.1%
K2	3	20.4%	AD	1	1.3%	AD	1	0.2%
KS	3	21.2%	Rsj	1	2.1%	Rsj	1	0.2%
Rsj	3	21.5%	KS	1	3.6%	KS	1	0.5%
Tw	4	46.9%	Tw	2	45.3%	Tw	2	42.5%
COIN	5	61.4%	COIN	3	69.1%	COIN	3	72.0%

210 5. Conclusion

211 This study shed light on the performance of the selected fifteen normality tests against the three
 212 different groups of alternatives. For slightly skewed alternative distributions, Tw is the best test
 213 with COIN, AD, CS & Rsj following closely. On balance, D, JB, RJB, K2, Wsf & Za did not perform
 214 well for the slightly skewed alternatives especially from medium (n=50) up to large (n=75) sample
 215 sizes with more than 50% maximum power losses.

216 When considering all the selected normality tests for the moderately skewed alternatives, AD, CS,
 217 W, & BCMR turn out to be the best options for testing the hypothesis of normality of data
 218 distribution. In general, JB, RJB, Tw, COIN, Rsj, D & K2 tests perform poorly against moderately
 219 skewed distributions. The performance of JB & RJB increases with the increase in sample size but
 220 their maximum loss, in terms of their deviations from the power envelope, is greater than 50% even
 221 for large sample sizes (n=75).

222 On balance, all normality tests except Tw and COIN performed exceptionally well against the highly
 223 skewed alternatives especially from medium up to large sample sizes.

224 The above findings confirm our argument that comparison of tests against different alternatives
 225 yields different statistics as best tests. The COIN & Tw are best options for slightly skewed
 226 alternatives but these statistics perform poorly for moderately and highly skewed alternative
 227 distributions. Therefore, the comparison and ranking of normality tests do not make sense in the
 228 absence of an invariant benchmark-power envelope.

229

230 **Funding:** This research received no external funding.

231 **Acknowledgments:** I would like to thank Prof. Asad Zaman for his valuable comments and guidance.

232 **Conflicts of Interest:** The authors declare no conflict of interest.

233 Appendix A

234

235 Table 1: Alternative Distributions

Sr. No	Student t Distribution				Mixture Distribution				
	t1		t2		Alpha	Mean	SD	$\sqrt{\beta_1}$	β_2
	d.f	Mean	d.f	Mean					
1	8	2.0	12	5.0	0.50	3.50	1.88	-0.05	2.33
2	100	4.0	75	6.0	0.50	5.00	1.42	0.00	2.53
3	10	0.0	1.00	0.00	1.12	0.00	4.00
4	100	-1.5	75	1.5	0.50	0.00	1.81	0.00	2.06
5	10	3.0	5	50.0	0.50	26.50	23.53	0.00	1.01
6	100	-4.0	75	4.0	0.50	0.00	4.13	0.00	1.23
7	50	-1.2	25	1.2	0.50	0.00	1.58	0.02	2.38
8	8	5.0	10	3.0	0.50	4.00	1.51	0.04	3.02
9	5	2.0	7	4.0	0.70	2.60	1.56	0.09	4.95
10	5	10.0	6	12.0	0.95	10.10	1.36	0.12	7.84
11	5	10.0	7	12.0	0.90	10.20	1.41	0.15	6.90
12	10	5.0	5	7.0	0.50	6.00	1.57	0.16	4.20
13	100	4.0	75	6.0	0.70	4.60	1.36	0.27	2.77
14	8	5.0	10	3.0	0.10	3.20	1.27	0.30	3.95
15	100	-1.0	75	1.0	0.75	-0.50	1.33	0.32	2.91
16	8	5.0	10	3.0	0.20	3.40	1.38	0.32	3.57
17	10	5.0	5	7.0	0.90	5.20	1.29	0.38	4.65
18	100	-1.2	75	1.2	0.75	-0.60	1.45	0.43	2.85
19	8	-1.0	10	2.0	0.95	-0.85	1.33	0.48	4.68
20	8	-1.0	12	2.0	0.85	-0.55	1.57	0.59	3.70
21	100	-1.5	75	1.5	0.77	-0.81	1.62	0.61	2.88
22	100	-4.0	75	4.0	0.70	-1.60	3.80	0.78	1.93
23	5	10.0	7	25.0	0.70	14.50	6.99	0.82	1.83
24	10	3.0	5	50.0	0.70	17.10	21.57	0.87	1.77
25	100	-4.0	75	4.0	0.75	-2.00	3.61	1.02	2.44
26	8	-10.0	12	5.0	0.78	-6.70	6.32	1.28	2.83
27	8	0.0	12	5.0	0.90	0.50	1.89	1.31	5.11
28	8	0.0	12	5.0	0.95	0.25	1.59	1.32	6.63
29	8	-10.0	12	5.0	0.80	-7.00	6.11	1.42	3.22
30	8	-10.0	12	5.0	0.82	-7.30	5.88	1.57	3.71
31	8	-1.0	12	5.0	0.90	-0.40	2.14	1.58	5.60
32	5	5.0	7	15.0	0.85	6.50	3.79	1.62	4.45
33	5	5.0	6	15.0	0.90	6.00	3.26	2.06	6.73
34	100	-4.0	75	4.0	0.90	-3.20	2.60	2.09	6.69

35	5	10.0	7	25.0	0.90	11.50	4.68	2.36	7.35
36	8	-10.0	12	5.0	0.90	-8.50	4.64	2.42	7.48
37	10	3.0	5	50.0	0.90	7.70	14.15	2.64	8.06

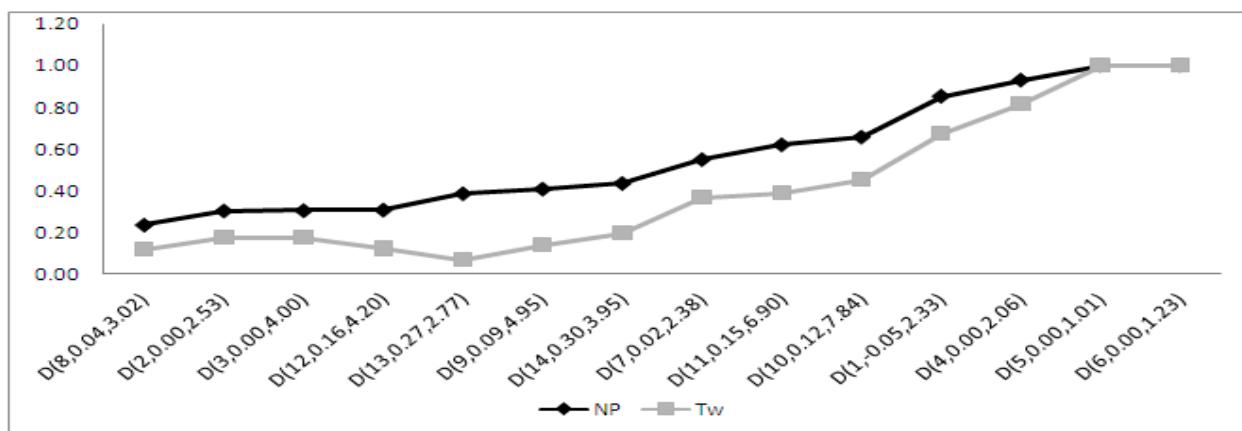
236

237

Table 2: Power comparison for symmetric short-tailed alternatives ($n=25$, $\alpha = 0.05$)

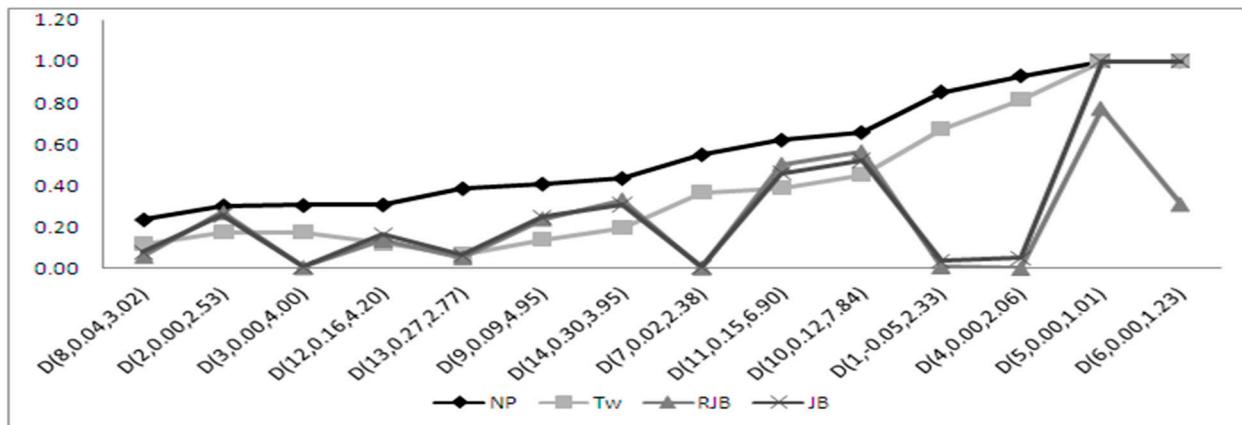
Distribution	Skew	Kurt	JB	RJB	Best Test
D(5,0.00,1.01)	0.00	1.01	0.27	0.04	1.00
D(6,0.00,1.23)	0.00	1.23	0.03	0.02	1.00
Beta(0.5,0.5)	0.00	1.50	0.00	0.00	0.91
Beta(1,1)	0.00	1.80	0.00	0.00	0.44
Tukey(2)	0.00	1.80	0.00	0.00	0.44
D(4,0.00,2.06)	0.00	2.06	0.01	0.00	0.54
Tukey(0.5)	0.00	2.08	0.00	0.00	0.14
Beta (2,2)	0.00	2.14	0.00	0.00	0.11
D(2,0.00,2.53)	0.00	2.53	0.02	0.01	0.16
Tukey(5)	0.00	2.90	0.03	0.07	0.14

238 Appendix B

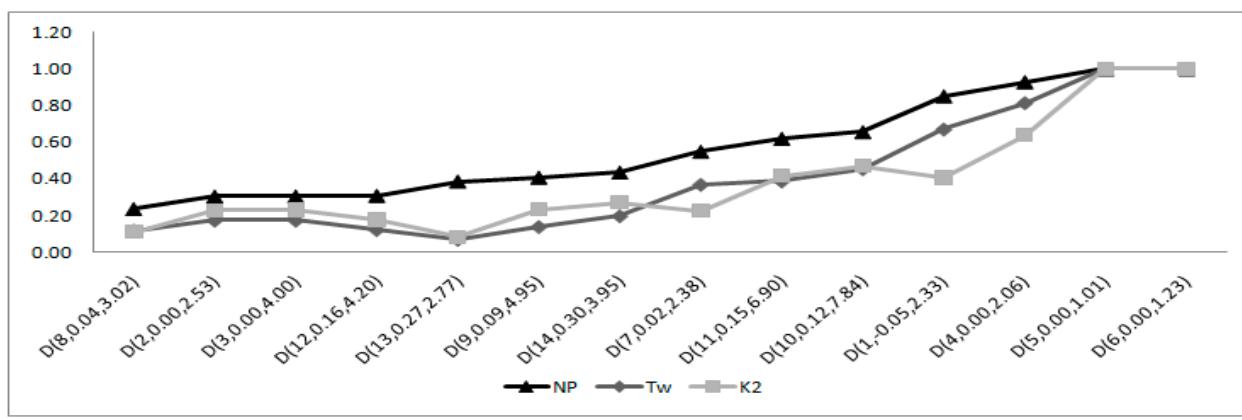
239 Fig. 1²: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

240

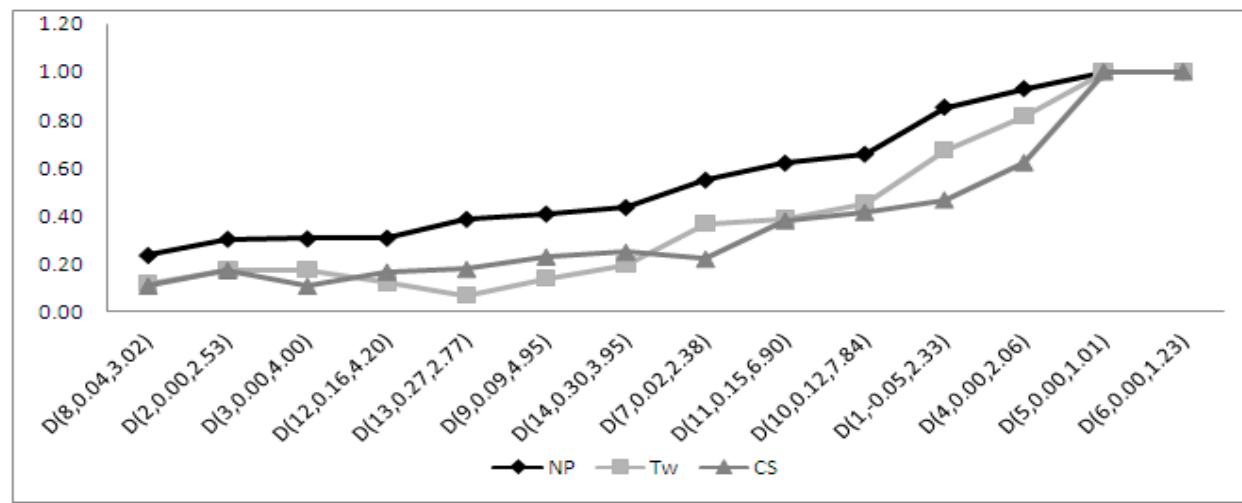
² The convention used to refer to any distribution from table 1 is D(Sr. No., Skewness, Kurtosis). For example; D(17, 0.38, 4.65) means a distribution from table 1 with serial number 17 has a skewness and kurtosis equal to 0.38 and 4.65 respectively.

241 Fig. 2: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

242

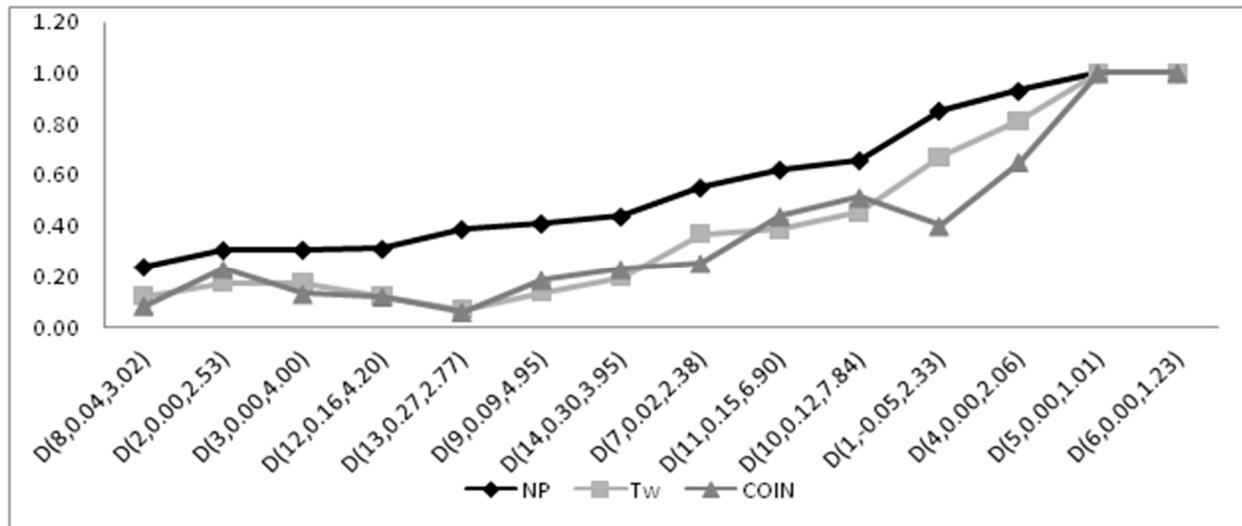
243 Fig. 3: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

244

245 Fig. 4: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

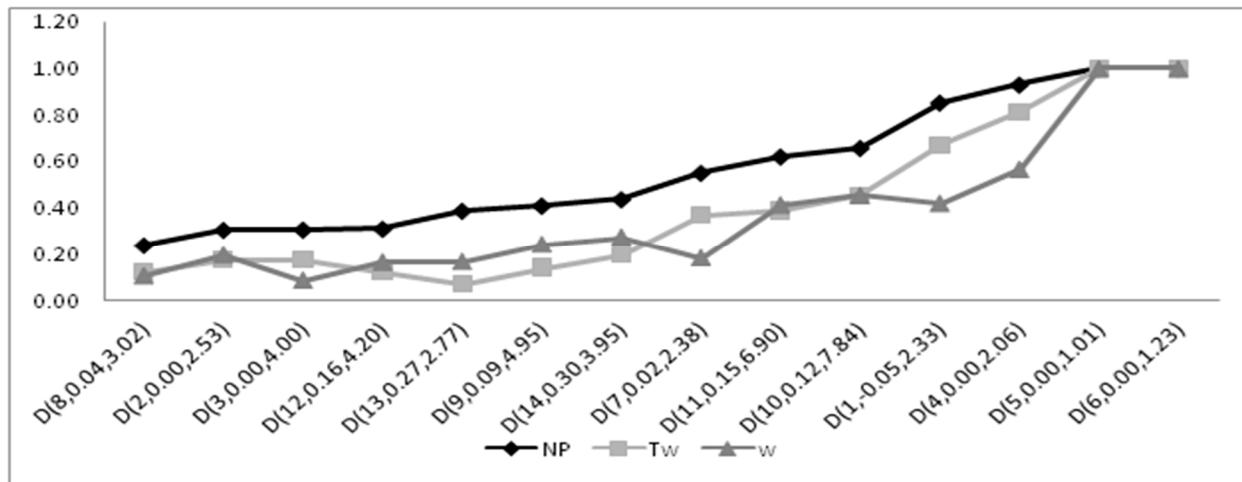
246

247

Fig. 5: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

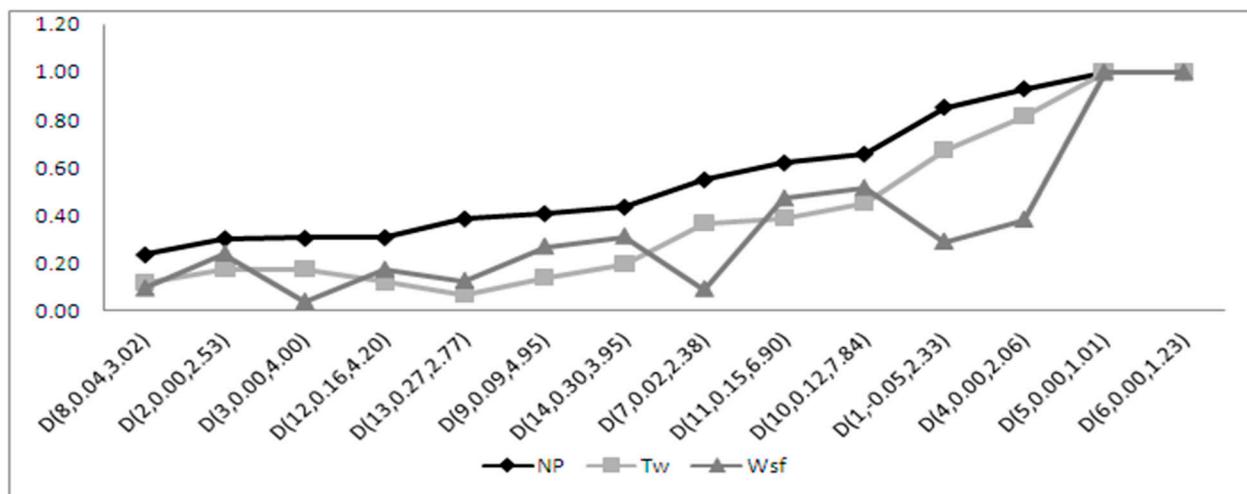
248

249

Fig. 6: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

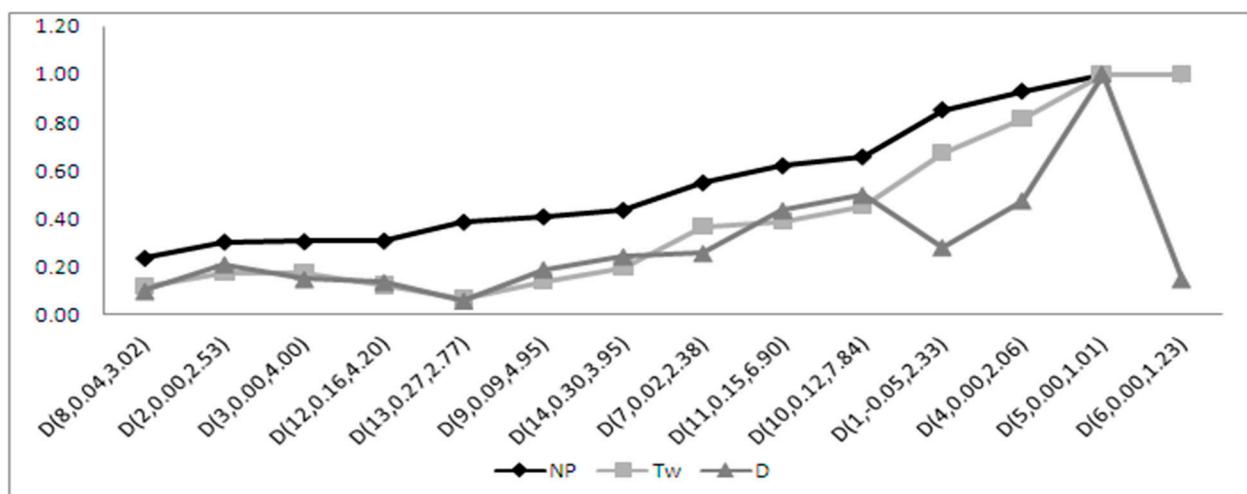
250

251

Fig. 7: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

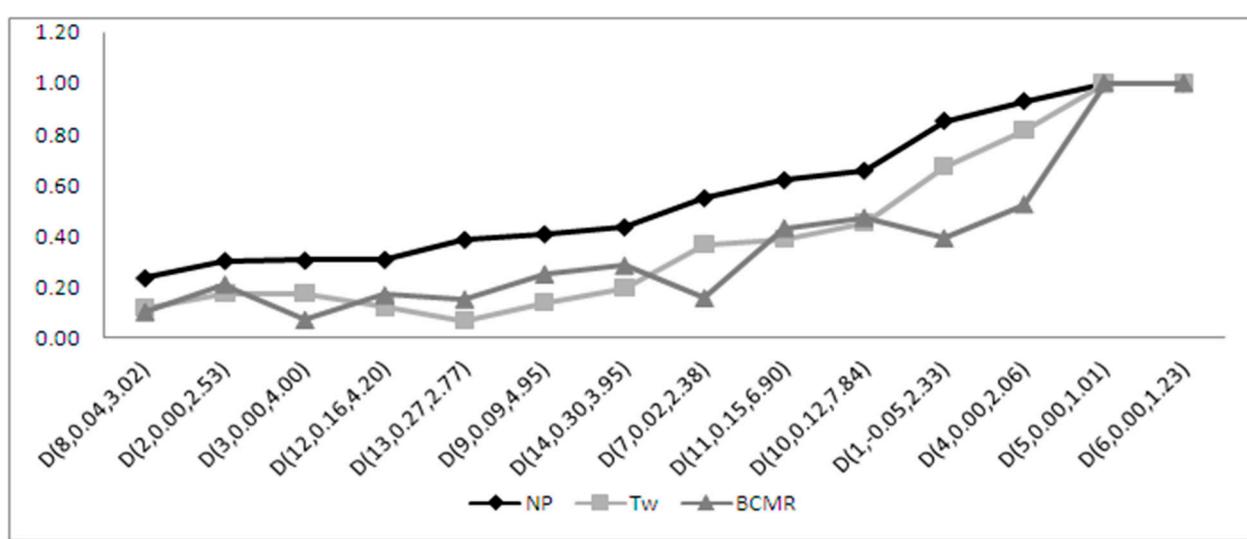
252

253

Fig. 8: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

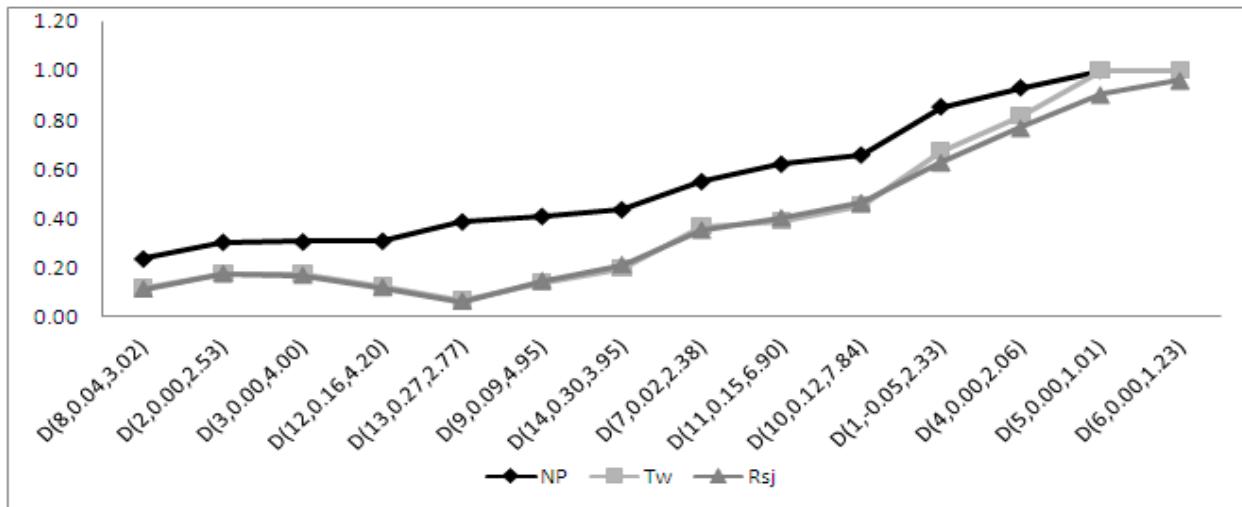
254

255

Fig. 9: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

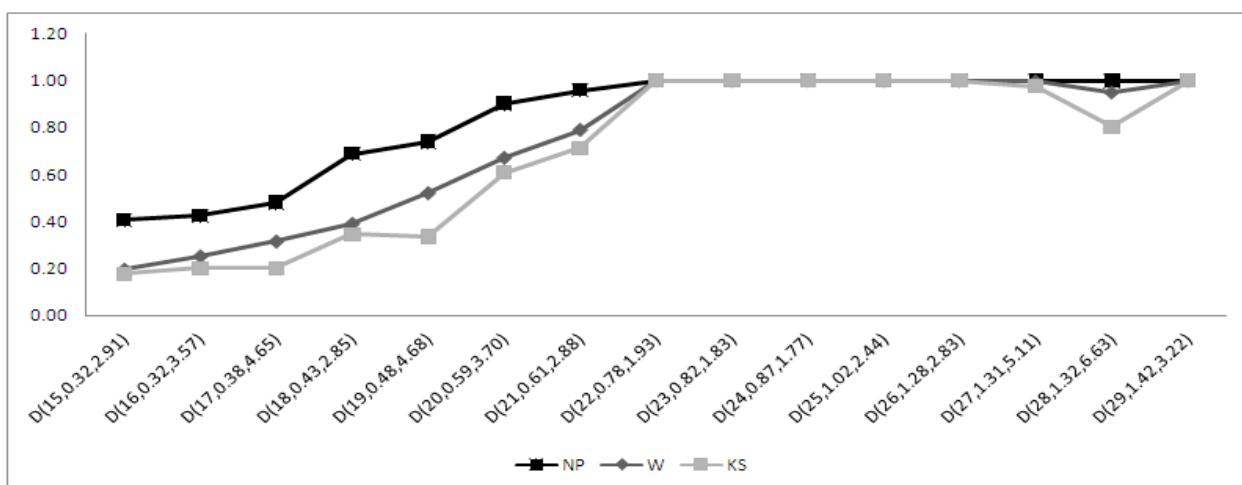
256

257

Fig. 10: Power Comparison of Normality Tests ($\sqrt{\beta_1} < 0.3$ & $n = 75$)

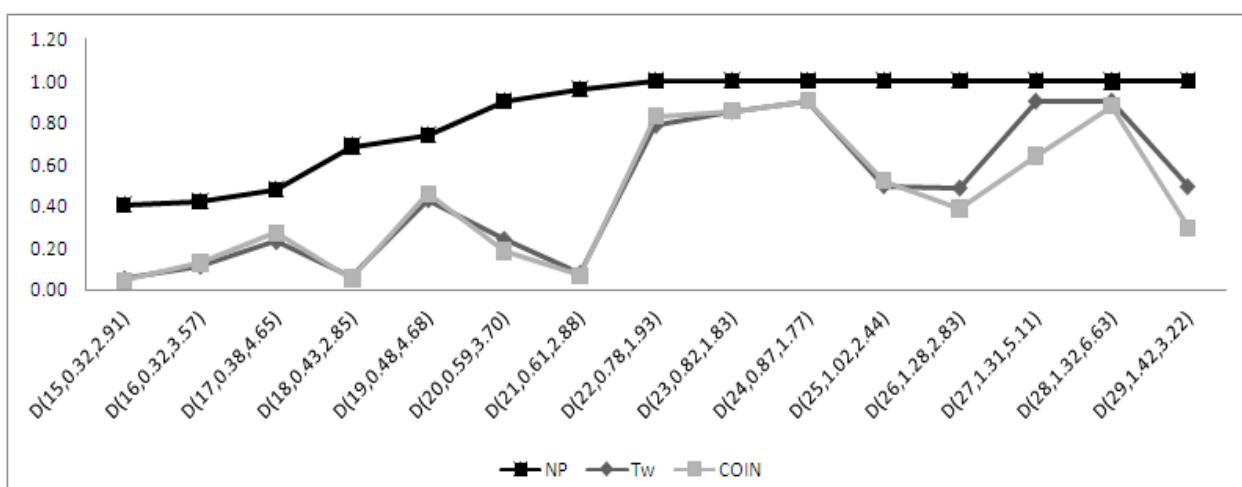
258

259

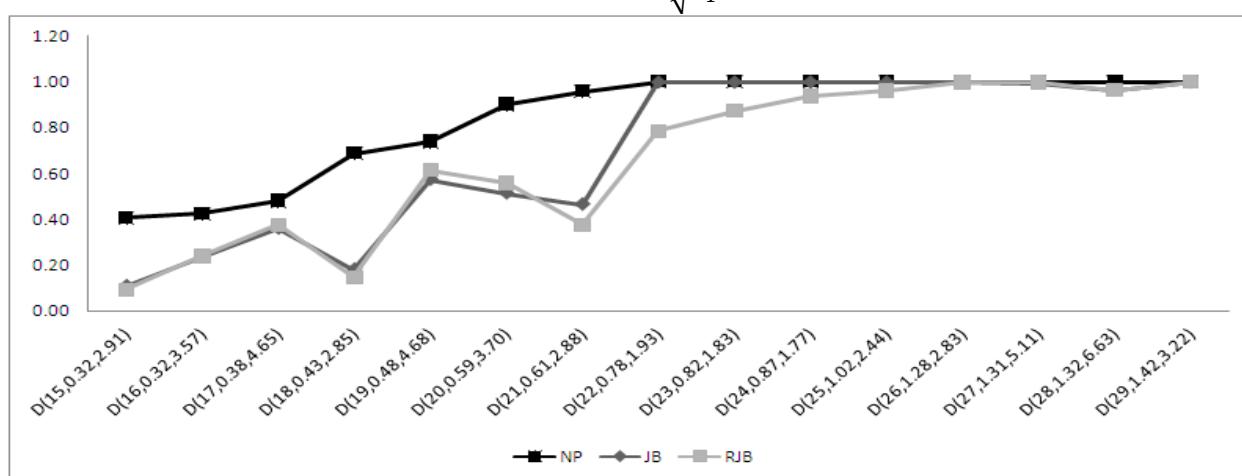
Fig. 11: Power Comparison of Normality Tests ($0.3 < \sqrt{\beta_1} \leq 1.5$ & $n = 75$)

260

261

Fig. 12: Power Comparison of Normality Tests ($0.3 < \sqrt{\beta_1} \leq 1.5$ & $n = 75$)

262

263 Fig. 13: Power Comparison of Normality Tests ($0.3 < \sqrt{\beta_1} \leq 1.5$ & $n = 75$)

264

265 **References**

266 Anderson, T. W., Darling, D. A. A test of goodness of fit. *Journal of the American Statistical*
267 *Association* 1954; 49(268): 765–769.

268 Bispo, R., Marques, T. A., Pestana, D. Statistical power of goodness-of-fit tests based on the empirical
269 distribution function for type_I right-censored data. *Journal of Statistical Computation and*
270 *Simulations*. 2012; 21-38.

271 Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. Skewness and Kurtosis in Real
272 Data Samples. *Methodology*. 2013; 9: 78-84.

273 Bonett, D. G., Seier, E. A test of normality with high uniform power. *Computational Statistics &*
274 *Data Analysis*. 2002; 40: 435-445.

275 Bowman, K. O., Shenton, L. R. Omnibus test contours for departures from normality based on $\sqrt{b_1}$
276 and b_2 . *Biometrika*. 1975; 62(2): 243–250.

277 Coin, D. A goodness-of-fit test for normality based on polynomial regression. *Computational Statistics &*
278 *Data Analysis*. 2008; 52: 2185-2198.

279 D'Agostino, R., Pearson, E. S. Tests for departure from normality. Empirical results for the
280 distributions of b_2 and $\sqrt{b_1}$. *Biometrika*. 1973; 60(3): 613–622.

281 Delong, J. B., Summers, L. H. "Are Business Cycle Symmetrical," in *American Business Cycle: Continuity and Change*. University of Chicago Press. 1985: 166–178.

282

283 Gel, Y. R., Gastwirth, J. L. A robust modification of the Jarque–Bera test of normality. *Economics Letters*. 2008; 99 (1): 30-32.

284

285 Gel, Y. R., Miao, W., Gastwirth, J. L. Robust directed tests of normality against heavy-tailed
286 alternatives. *Computational Statistics & Data Analysis*. 2007; 51: 2734–2746.

287 Henderson, A. R. Testing experimental data for univariate normality. *Clinica Chimica Acta*. 2006;
288 366:112-129.

289 Islam, T. U. Stringency-based ranking of normality tests. *Communications in Statistics - Simulation and Computation*. 2017; 46(1): 655-668.

290

291 Jarque, C. M., Bera, A. K. A Test for Normality of Observations and Regression Residuals.
292 *International Statistical Review*. 1987; 55(2): 163-172.

293 Lehmann, E. L., Stein, C. On the Theory of Some Non-Parametric Hypotheses. *Ann. Math. Statist.*
294 1949; 20(1):28–45.

295 Önder, A. Ö., Zaman, A. Robust tests for normality of errors in regression models. *Economics Letters*. 2005;
296 86(1): 63-68.

297 Pearson, E. S., D' Agostino, R. B., Bowman, K. O. Tests for Departure from Normality: Comparison
298 of Power. *Biometrika*. 1977; 64(02): 231-246.

299 Romao, X., Delgado, R., Costa, A. An empirical power comparison of univariate goodness-of-fit tests
300 for normality. *Journal of Statistical Computation and Simulation*. 2010; 80(5): 1-47.

301 Shapiro, S. S., Francia, R. S. An approximate analysis of variance test for normality. *Journal of*
302 *American Statistical Association*. 1972; 67: 215–216.

303 Shapiro, S. S., Wilk, M. B. An analysis of variance test for the exponential distribution (Complete
304 samples). *Biometrika*. 1965; 54(3/4): 591–611.

305 Shapiro, S. S., Wilk, M. B., Chen, H. J. A comparative study of various tests for normality. *Journal of*
306 *American Statistical Association*. 1968; 63(324):1343–1372.

307 Thorsten, T., Buning, H. Jarque-Bera Test and its Competitors for Testing Normality- A Power
308 Comparison. *Journal of Applied Statistics*. 2007; 34(1): 87- 105.

309 Yap, B. W., Sim, C. H. Comparisons of various types of normality tests. *Journal of Statistical*
310 *Computation and Simulation*. 2011: 1-15.

311 Yazici, B., Yolacan, S. A comparison of various tests of normality. *Journal of Statistical Computation*
312 *and Simulation*. 2007; 77(02): 175-183.

313 Zhang, J., & Wu, Y. (2005). Likelihood-ratio tests for normality. *Computational Statistics & Data*
314 *Analysis*. 2005; 49: 709-721.