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Abstract: Background:  As the opioid epidemic continues, understanding the geospatial, temporal 
and demand patterns is important for policymakers to assign resources and interdict individual, 
organization, and country-level bad actors.  Methods:  GIS geospatial-temporal analysis and 
extreme-gradient boosted random forests evaluate ICD-10 F11 opioid-related admissions and 
admission rates using geospatial analysis, demand analysis, and explanatory models, respectively. 
The period of analysis was January 2016 through September 2018.  Results:  The analysis shows 
existing high opioid admissions in Chicago and New Jersey with emerging areas in Atlanta, Salt 
Lake City, Phoenix, and Las Vegas. High rates of admission (claims per 10,000 population) exist in 
the Appalachian area and on the Northeastern seaboard. Explanatory models suggest that hospital 
overall workload and financial variables might be used for allocating opioid-related treatment 
funds effectively. Gradient-boosted random forest models accounted for 87.8% of the variability of 
claims on blinded 20% test data. Conclusions: Based on the GIS analysis, opioid admissions appear 
to have spread geographically, while higher frequency rates are still found in some regions.  
Interdiction efforts require demand-analysis such as that provided in this study to allocate scarce 
resources for supply-side and demand-side interdiction: prevention, treatment, and enforcement. 
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1. Introduction 

In the 1990’s, pharmaceutical companies began marketing to the medical community that 
opioids were non-addictive, and medical providers began prescribing them at a higher rate [1]. This 
marketing opened the door to the U.S. opioid epidemic. Federal funding alone to fight this epidemic 
was estimated at $7.4 billion in 2018 [2]. 

The U.S. Department of Health and Human Services estimates that 91,548 people died from 
opioids, synthetic opioids, and heroine in 2016 [1]. The National Survey on Drug Use and Health 
estimated that 4.2% of the U.S. population misused opioids in 2017 [3]. The toll in morbidity and 
mortality is facilitated by over-prescription and bad actors, both individuals and countries. 

In April of 2019, 31 physicians, 7 pharmacists, 8 nurse practitioners, and 7 other licensed 
medical professionals in 7 different states were charged as part of a law enforcement investigation of 
providing opioid prescriptions for cash or sex.  These individuals prescribed more than 32 million 
pills [4]. In May 2019, a podiatrist was convicted of operating an opioid pill mill [5]. In another 
example from May 2019, a Virginia doctor was convicted on 861 counts of drug distribution.  The 
oxycodone and oxymorphone that the physician prescribed to a West Virginian patient resulted in 
her death [6]. As a final example, 162 individuals including doctors were charged for prescribing 
and distributing opioids in June of 2018 [7]. The problem with bad actors is real and widespread, yet 
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the distribution of opioid and opioid-like products outside of the medical system may be an even 
larger problem.  

China is the largest US source of illicit fentanyl and fentanyl-like substances, and it distributes 
that product through Canada, Mexico, and directly to the US [8]. The reason for China’s involvement 
in our markets is that its pharmaceutical system is poorly regulated [9] and that its manufacturers 
create new and uncontrolled substances to stay ahead of regulators [10]. One estimate is that Chinese 
fentanyl and derivatives supply 90% of the illicit product in the United States [11]. Even so, Mexico’s 
two largest criminal organizations traffic the product largely through San Diego.  Dominican 
traffickers supply the heavily stricken Northeast [12]. 

The net result of over-prescription, illicit actors, and illicit suppliers is an increase in morbidity 
and mortality. Policy considerations for addressing these problems and providing funding for 
prevention, treatment, and enforcement require an understanding of the geospatial, temporal spread 
of the epidemic as well as models of demand for services.  This research describes the geospatial, 
temporal spread of opioid inpatient demand and prevalence and provides explanatory models for 
opioid admissions. Actual met demands might be aggregated to estimate state-level admissions as 
well as resource requirements. The significance of this research is that it provides decision support 
for policymakers by identifying areas which require additional enforcement as well as funding.  

2. Experimental Section 

2.1. Data 

Data for this research derive primarily from Definitive Healthcare, through the hospital 
“inpatient diagnosis analytics” query. Only principal diagnoses ICD-10 codes beginning with F11 
were used. F11 codes are opioid related disorders. Complete annual data were available for 2016 and 
2017; 2018 data were only available through September.  The Definitive Healthcare data largely 
derive from the Centers for Medicare and Medicaid Services [CMS] Standard Analytical Files [SAF] 
as well as organization estimates all-payor claims through parochial algorithms [13].  The Census 
Bureau provided population data for rate calculations. [14] 

2.2. Geospatial Analysis 

Heat maps are first used to plot zip-code level claims count data for 2016 through 2018.  
Subsequently, heat maps illustrate county-level opioid-related inpatient claim per 10,000 population 
for the same years. For rates, county-level data were selected rather than zip-code level data, as 
zip-code level data resulted in outliers that influenced interpretation.  (Some zip codes have very 
small populations, yet still have admissions.)  The heat maps illustrate the intensity of opioid 
admissions and rates by color-coding map areas. When used properly, they can highlight 
geographic variation [15]. The use of heat maps in healthcare is ubiquitous, as they have been used 
for improving minority health surveillance [16], examining birth outcomes [17], and many other 
applications.  The value in geospatial-temporal analysis is the graphical depiction of change in 
demand over time.  The significance of changes for 2016 to 2017 claims and claim rates, years with 
complete data, are evaluated by a non-parametric t-test, the Wilcoxon matched pairs signed rank 
test, since parametric assumptions such as normality, homogeneity of variance, and independence of 
do not hold [18].  Matching is performed to account for the geographic unit (zip codes for claims 
and counties for claim rates).   

2.3. Explanatory Analysis 

Stepwise linear regression, lasso regression, robust regression, elastic net regression, and 
extreme gradient-boosted random forests estimate the ICD-10 F11 opioid admissions. We built 
multiple models on an 80% training set to see which one(s) perform best in explaining / forecasting a 
20% test set, thus investigating bias-variance trade-off [19]. While regression models provide 
coefficient estimates for variables, random forests provide the importance of each feature.  All 
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models are exploratory to see which workload, financial, technical, and geospatial-temporal features 
might be explanatory and thus useful for allocation of resources by policymakers.  

Stepwise regression models add and subtract variables based on criteria to produce reasonable 
multiple regression models.  In this research, the Akaike Information Criterion (AIC) is used to 
select the stepwise model using a forward and backwards method.  In this method, variables are 
added in sequence and removed if they no longer contribute significantly to the model’s 
performance [20]. 

Lasso regression is a constrained regression that penalizes any model with too many variables 
using an L1-norm penalty function (absolute value).  Ridge regression is similar to Lasso regression 
but penalizes using squared coefficient estimates (the L2-norm).  Elastic combines both L1 and L2 
penalty functions. Equations 1 through 4 are the parameter estimation models for linear, lasso, ridge, 
and elastic net regression [20]. The parameter  in all models is a Lagrangian multiplier, while the 
parameter  in Equation 4 mixes the squared penalty with the absolute value penalty. 

Linear regression (OLS): 𝛽መ = ෍(𝑦𝑖 − 𝛽0 −෍𝑥𝑖𝑗 𝛽𝑗 )
2
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Ridge regression (L2-norm): 𝛽መ = ෍(𝑦𝑖 − 𝛽0 −෍𝑥𝑖𝑗 𝛽𝑗 )
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Elastic Net (L1 & L2 Norm): 𝛽መ = ෍(𝑦𝑖 − 𝛽0 −෍𝑥𝑖𝑗 𝛽𝑗 )
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 The advantages of regression-type models are that coefficients are easily interpreted.  Data, 
however, need to be scaled, and no one single approach may be best. Regression-type models are 
unable to find logical dichotomous or polytomous splits in variables that provide explanatory power 
without researcher specification. 

Random forests are a machine learning technique that use an ensemble of de-correlated tree 
models.  The tree forecasts are averaged (ensembled) to produce an estimate.  A tree model 
classifies counts of observations by splitting variables based on some decision criteria. Trees must be 
pruned or truncated, so that they do not overfit [20]. Figure 1 is an example of a tree built from the 
Definitive Healthcare F11 dataset with depth of two branches. The tree splits observations by 
surgeries less than / greater than or equal to 2600.5 then again by region = Middle Atlantic and state 
equal to New York.  The “<0 .5” indicates that the region is not the Middle Atlantic and that the 
state is not New York, as those are dichotomous variables, as estimates for dichotomous variables 
are not integers in tree models. 

 

Figure 1. An example of a tree model to classify opioid admissions. 
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Gradient boosted random forests use nonlinear optimization to optimize a cost function based 
on the (pseudo)-residuals of a function. The residuals of each tree are re-fitted with the possible 
independent variables in other tree models to estimate a better fit.  A more complete discussion of 
gradient boosting is provided in The Elements of Statistical Learning [20].  

The advantages of gradient boosted random forests are that they are scale-invariant, that they 
find relationships (splits) which the researcher might miss, and that they generate importance 
metrics allowing researchers to see which variables are explanatory.  The disadvantage is that these 
models will overfit the data if the research does not restrict the growth of the trees.  Determining 
whether a forest is overfit is evaluated by cross-validation (e.g., the test set.) 

2.4. Variables 

All variables derive from the Definitive Healthcare dataset [13]. The primary variable of interest 
is the inpatient admissions for ICD-10 code F11 (“Opioid-Related Disorders”) which are measured 
by hospital claims associated with opioids. There are 55 opioid-related codes used in this study 
(Appendix 1). This variable is measured at the hospital level and aggregated by zip code / year for 
geospatial mapping. The inpatient claims provide a measure of the met demand for services and is 
suggestive of which areas may need additional funding and resources from health policy 
decisionmakers.  

Independent variable groups evaluated in the explanatory models included financial variables, 
workload variables, technical variables, and geo-spatial temporal variables.  All the variables in the 
groups are measured at the hospital level by year and reflect opioid and non-opioid contributions. 
The financial variables are hospital-level and include net patient revenue, net income, cash on hand, 
assets, and liabilities. Workload variables are also hospital-level and include discharges, emergency 
room visits, surgeries, and acute bed days. Technical variables include staffed beds, affiliated 
physicians, employees, percent Medicare or Medicaid patients, ownership status, medical school 
affiliation, and hospital type.  These are also hospital-level variables.  Table 1 provides the 
appropriate definitions and scope of these variables.  

 
 

Table 1.  Independent variables for hospitals, all patient-types 
 

Financial Variables Defined Measurement 

Net Patient Revenue Gross Patient Revenue less attributable expenses Ratio 

Net Income Income less costs, expenses, and taxes Ratio 

Cash on Hand Cash available to the organization Ratio 

Assets Company owned Ratio 

Liabilities Company owes Ratio 

Workload Variables Defined Measurement 

Discharges Number of patients discharged from admission Integer 

ER Visits Number of emergency room visits Integer 

Surgeries Number of surgeries performed Integer 

Acute Days Number of acute bed days of hospital Integer 

Technical Variables Defined Measurement 

   

Staffed Beds Number of staffed beds operated by hospital Integer 

Affiliated Physicians Number of physicians affiliated with hospital Integer 

Employees Number of direct employees of hospital Integer 

% Medicare /caid Patients Percent of patients reimbursing through Medicare/caid Ratio 
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Ownership Governmental, Proprietary, Voluntary Non-Profit Categorical 

Medical School Affiliation None, Limited, Major, Graduate Affiliation Categorical 

Hospital Type 

Children, Critical Access, Long-Term, Psychiatric, Rehab, 

Short-Term Categorical 

 
Geographic / temporal variables included the Census Bureau region [21] (Table 2), the urban / 

rural status, the state, and the year.  These models will identify characteristics of the facilities 
providing inpatient care to opioid abusers.  As the epidemic spreads or diffuses, these features 
might be used to anticipate which local facilities are likely to experience an increase in care for these 
patients.  
 

 
Table 2. Census Bureau geographic regions 

Region 1: Northeast 
  New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont) 
  Mid-Atlantic (New Jersey, New York, and Pennsylvania) 
Region 2: Midwest 
  East North Central (Illinois, Indiana, Michigan, Ohio, Wisconsin) 
  West North Central (Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota) 
Region 3: South 
  South Atlantic (Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, Washington 

D.C., West Virginia) 
  East South Central (Alabama, Kentucky, Mississippi, Tennessee) 
  West South Central (Arkansas, Louisiana, Oklahoma, Texas) 
Region 4: West 
  Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming) 
  Pacific (Alaska, California, Hawaii, Oregon, Washington) 
 

2.5. Software 

All analysis was performed in R Statistical Software [22] and Microsoft Excel 2016 [23]. 
Packages used for the primary analysis in R Statistical Software are cited. 

3. Results 

3.1. Descriptive Statistics-Missing Data 

Missing data for both ER visits and surgeries for psychiatric hospitals were imputed with zeros.  
The assumption for this imputation was simply that these values were true zeros (i.e., no ER for 
some facilities and no psychiatric surgery for others) rather than missing data. While this 
assumption may not hold, only 3% of the data were missing even if this imputation was not done. 
After the imputation of missing data with zeros for ER visits and surgeries, a missingness map 
depicts that only 1% of the data were missing.  Because the percent of missing was so small, means 
were imputed rather than leveraging more sophisticated techniques like multiple imputation.  The 
total number of valid observations for hospital-level data was N=2,090.  

3.2. Descriptive Statistics-Quantitative Data 

Descriptive statistics for the quantitative data are in Table 3. The average number of ICD-10 
claims for F11 was 103.47 with a median of 33; however, the standard deviation was 198.19 
indicating significant variability. The average reporting hospital had 274 beds, 14K discharges, 50K 
ER visits, 10K surgeries, 72K acute days, 385 affiliated physicians, 2K employees, and had 42% of the 
claims paid by Medicare / Medicaid. The average facility had $527K in payments for F11, $1.5M in 
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charges, $403M net patient revenue, $30.1M net income, $37M cash on hand, $524M in assets, and 
$213M in liabilities. On average, a facility was paid about 35% of charges.  (Neither payments nor 
charges were used in models, as they derive directly from claims.) 

Table 3. Descriptive statistics for the quantitative variables. 

N=2090 Variable Name Mean SD Median 10% Trimmed 

Claims NumClaims 103.47 198.19 33 57.14 

Staffed Beds StaffedBeds 273.53 227.59 214 240.19 

Discharges Discharges 14,039.67 13,572.68 10,306.00 11,934.51 

ER Visits ERVisits 50,642.37 49,459.27 43,564.50 44,229.24 

Surgeries Surgeries 10,113.16 12,165.17 7,142.00 7,992.79 

Acute Bed Days AcuteDays 72,140.06 72,658.04 49,710.00 59,421.91 

Physicians AffPhysicians 384.89 391.09 312 318.58 

Employees Employees 1,968.09 2,458.91 1,222.50 1,475.25 

% Medicare/caid PerMedMed 42.00% 16.00% 42.00% 42.00% 

Net Patient Revenue ($1M) NetPatRevenue $403.07  $519.72  $247.83  $298.78  

Net Income ($1M) NetIncome $30.25  $109.98  $8.12  $18.94  

Cash on Hand ($1M) Cash $36.59  $182.67  $1.35  $10.53  

Assets ($1 M) Assets $524.23  $961.34  $206.53  $317.09  

Liabilities ($1 M) Liabilities $212.69  $542.10  $70.82  $125.23  

3.3. Descriptive Statistics-Categorical Data 

The modal Census Bureau region for hospitals reporting F11 claims was the South Atlantic (373, 
17.8%) followed closely by the East North Central (366, 17.5%). The bar chart of the hospital 
frequencies by Census Bureau region is Figure 2.  Most of the admissions for F11 codes were in 
urban areas (1732, 82.9%) with the remainder being areas classified as rural. The South Atlantic 
region extends from Florida to Washington, D.C., where there is a significant intensity of opioid 
abuse.  The East North Central region includes Chicago, which has extremely high intensity of 
abuse.   

 
Figure 2. Bar chart of hospital frequencies by Census Bureau region.  
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Most of the hospitals reporting these admissions were short-term acute care facilities (1682, 
80.5%) with psychiatric hospitals being the next most common type (385, 18.4%).  The majority had 
no affiliation with a medical school (1159, 55.5%), although 21.2% (443) reported a major affiliation. 
In terms of ownership, 965 (46.2%) were voluntary non-profit non-church owned, 567 (27.1%) were 
proprietary corporation owned, and 279 (13.3%) were voluntary non-profit church owned. The 
observations were split nearly evenly between 2016 and 2017 with 1051 and 1039 observations 
respectively. Most interestingly to policymakers is that the non-profit community of hospitals 
appears to provide the majority of inpatient care for opioid patients.  
 

3.4. Descriptive Statistics-Correlational Analysis 

 
Hierarchical clustered correlational analysis [24], a method which sorts the correlation matrix 

by the strength of the bivariate associations, revealed strong relationships among most of the 
workload and financial variables. The strongest correlation is between discharges and acute days 
(r=.97), while the next strongest correlation is between employees and net patient revenue (r=.97).  
All correlations in Figure 3 are statistically significant at the =.05 level unless an “X” appears in the 
correlation plot. (Variable names versus abbreviations are in Table 2.)  The number of claims 
appears to be weakly correlated with other variables indicating that the relationships are either 
nonlinear or not present. What is also interesting from a policy perspective is that as the facility 
increases in workload and financial metrics, there is a negative relationship with the number of 
inpatient admissions for F11.  This would seem to indicate that smaller hospitals are bearing the 
brunt of the opioid epidemic for inpatient services.  The effect size is small and requires 
investigation.   

Figure 3. The correlation plot reveals strong relationships among financial and workload variables. 
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3.5. Exploratory Data Analysis-Feature Engineering and Transformations 

Random forest regression models are scale invariant; however, the other methods used in this 
research are not [20]. The “car” package in R [25] facilitated a multivariate Box-Cox transformation 
for all modeled quantitative variables simultaneously after adjustment.  Box-Cox transformations 
require that variables be strictly positive definite.  With positive definite variables, the 
transformation seeks power transformations (powers of ) that make the data multivariate normal 
enough for use in traditional linear models [26]. This multivariate transformation is particularly 
useful for random effects models, models where the independent variables are assumed to be not 
fully observed or the result of random variable draws.  The likelihood ratio test of the null 
(multivariate normal) vs. the alternative (not multivariate normal) after location transformation to 
make all variables positive definite resulted in a p-value of 1.0.  The actual vector of transformations 
follows: ={-.39, .31, .38, .24, .23, .34, .25, .14, .1, .21, .22, .48, .21, .71 }for x={number of claims,  
number of staffed beds, number of discharges, ER visits, total surgeries, acute days, net patient 
revenue, net income, cash, assets, liabilities, affiliated physicians, employees, percent 
Medicare/Medicaid}, respectively. Figure 4 is a correlation plot [27] post-transformation which 
reveals the strength, direction, and bivariate shape of the bivariate normal between variable pairs. 
With successful transformation, the forecasting using linear methods is likely to improve.  

 

Figure 4. The correlation plot post-transform depicts the bivariate pairs. 

3.6. Geospatial Analysis Results-Zip Code Unit of Analysis 

Geospatial heat map analysis of F11 claims by year and zip code is shown in the Figure 5 panels. 
These maps were generated by a new feature of Microsoft Excel (3D Map), which links to its Bing 
mapping service [23]. This study is concerned mostly with supporting resource allocation decision 
making, so counts of opioid admissions were considered more important than population rates of 
admissions, although both analyses are provided. With counts, it becomes possible to visualize a 
proxy for service demand.   
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The geospatial-temporal heat maps for counts were generated based on scaling to 
approximately the maximum number of claims experienced in any given year (3000). The meaning 
of the color ranges is shown in Table 4.  The inpatient met demand associated with the opioid 
epidemic becomes clear with geospatial analysis. 
 

 
Table 4.  Color meanings of the heat maps for counts 

 

Color Percentile Value Lower Value Higher Value 

Blue 0% 0 0 

Blue Green (0, 25%) 1 749 

Green 25% 750 750 

Green Yellow (25%,50%) 751 1499 

Yellow 50% 1,500 1,500 

Yellow Orange (50%,75%) 1,501 2,249 

Orange 75% 2,250 2,250 

Orange Red (75%, 100%) 2,251.00 2,999.00 

Red 100% 3,000.00 3,000.00 
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Figure 5.  Excel-based [20] heat panel maps of the opioid admissions (ICD-10 F11) for 2016, 2017, 
and 2018 (extrapolated from September) show emerging areas of interest.. 

In 2016, the level of intensity for admissions is strongest around Chicago, Illinois and large 
swaths of New Jersey, where drug overdose is its leading cause of accidental death [28]. The heat 
map depicts extreme intensity (dark red, near the 100th %) in Chicago.  Areas above the median 
admission rate (yellow) appear to be Washington, DC; Atlanta, GA; and areas of Kentucky, Indiana, 
and Ohio.  

By 2017, the area of intensity around New Jersey had grown, Atlanta saw more intensity, and 
Chicago remained the most intense.  The usage in Los Angeles had expanded but remained 
sub-intense. Areas in Kentucky, Indiana, and Ohio remained problematic.  

Data for 2018 were complete only through September, so they are excluded in the explanatory 
modeling.  However, linear extrapolation produced the 2018 chart which indicates significant 
intensity in Chicago, New Jersey, and Atlanta. Montana, the Dakotas, Iowa, and Wyoming appear to 
be inoculated against the epidemic. 

Year over year with 2018 extrapolated, there has been a decline in the number of claims. In 2016, 
the estimated number of claims was 112,816, and that value dropped to 103,436 in 2017. Using linear 
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extrapolation, the estimated number of claims for 2018 is 71,414, although such an extrapolation 
likely does not reflect later reporting of previous claims and is thus an underestimate.  

A Wilcoxon signed ranks test for complete opioid claims data (2016 and 2017) suggests 
differences between the years across zip codes with V=405660, p<.001. This result indicates that 
opioid-related claims from 2017 are statistically lower than 2016 when controlling for the zip code.  
The approximate 8.3% decrease in 2017 was statistically significant. 

 Overall, the maps are suggestive of areas where intervention efforts are needed most or are 
emerging. From a policy perspective, opioid prescriptions in the highest afflicted areas like Illinois 
and New Jersey should be screened more closely than those (say) in Montana, South Dakota, and 
North Dakota. Machine learning techniques should be used to identify outliers similar to Ekin et al. 
[29].  Further, interdiction efforts should focus on Chicago as a major transportation hub along with 
the emerging problem city, Atlanta, for the same reason, and (of course) New Jersey.  

 
It is interesting that while California and Florida have large populations, none of their major 

population centers reached the same level of high intensity scales of other large cities. The questions 
then become how these patterns might be explained and possibly forecast, and what are the federal 
and local policy implications for funding based on the expansion / diffusion associated with the 
epidemic.  
 

While the counts analyzed and graphed above show areas of interest, rates of claims per 10,000 
provide a slightly different descriptive viewpoint. Using county-level population data from the 
Census Bureau [14], heat maps were generated for 2016-2018. County-level data were used as 
several zip codes had sparse populations resulting in many outliers. Figure 6 provides the maps for 
these years. These maps have gradients as specified in Table 4 columns 1 and 2 and are scaled to a 
maximum of 100+ opioid claims per 10,000 cases for comparison purposes. 
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Figure 6. ICD-10 F11* claims per 10,000 population by year 
 
 Map 1 of Figure 6 (Year 2016) highlights five locations that have intensities of 100 / 10,000 
population or more. The highest intensity claims rate (424.47) is associated with a small county, 
Colquitt, Georgia.  In 2016, this county of 45,492 had an estimated 1,931 claims for a rate of 424.47 
per 10,000 population. Norfolk City, Virginia; Bourbon, Kentucky; Bullock, Alabama; and Warren, 
Mississippi also had claim rates per 10,000 rates. Map 1 also highlights high claim rates in 
Appalachia. 
 
 Map 2 of Figure 6 (Year 2017) illustrates the diffusion or spread of the problem.  While counts 
may have decreased since 2016, intensity appears to have increased, particularly in the Appalachian 
region and on the Northeastern seaboard. Diffusion is visible as evidenced by areas of intensity that 
have spread to Missouri.  
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 Finally, map 3 of Figure 6 (Year 2018) is based on extrapolated data, as information was only 
available through September.  Still, the claim rates per 10,000 population for opioid admissions 
appear to be heaviest in the Appalachian Mountain regions.  
 
 Year over year, the average opioid admissions claim per 10,000 population has declined from 
6.1 per 10,000 in 2016 to 5.8 per 10,000 in 2017.  The estimate for 2018 is 4.5 per 10,000.  While the 
average rates have declined, there has been noticeable diffusion based on an analysis of the heat 
maps. 
 

A Wilcoxon signed ranks test for complete opioid claims rate data (2016 and 2017) suggests no 
differences between the years across counties with V=109990, p<.097. This result indicates that 
opioid-related claims rates from 2017 are not statistically different from 2016 when controlling for 
the county.   
 
 Figure 5 and Figure 6 illustrate different sides of the opioid epidemic problem. Figure 5 
provides resource allocation decision-making for treatment, while Figure 6 provides decision 
support for enforcement and prevention. Both counts and rates may be useful in supporting 
resource allocation decision making.  
 

3.7. Explanatory Modeling Results 

The first explanatory model, stepwise regression, investigated the number of inpatient opioid 
claims as a function of the independent variables. Models were built on an 80% training set and 
applied to 20% blinded test set for analysis of performance. The final stepwise model, the one with 
the smallest Akaike Information Criterion, included 1) staffed beds, 2) discharges, 3) emergency 
room visits, 4) surgeries, 5) assets, 6) affiliated physicians, 7) percent Medicare / Medicaid, 8) medical 
school affiliation, 9) hospital type, 10) year, and 11) state. Unfortunately, this model was only able to 
account for 17.73% of the dependent variable’s variability. The root mean squared error (RMSE) of 
the forecast predictions was 1.76.  The largest contributions to the model were from the ER Visits 
(Sum of Squares [SS]=1.49, 1 degree of freedom, df) and from the state (SS=1.25, 51 df).  All variables 
in the model were statistically significant largely, due to sample size.  The overall effect size, 
however, is small.  

Lasso, ridge, and elastic net regression models built using “glmnet” [30] provided only slightly 
more variance capture with R2 = {17.82%, 17.77%, 17.77%}, respectively. The RMSE’s were 1.75 for all 
three models.  The elastic net selected a lasso model by assigning parameter =0.  These models 
produced are essentially equivalent to the stepwise regression analysis. 

Gradient-boosted random forests [31] performed well on the unobserved test set and 
untransformed data, achieving an R2=.878 with hyperparameter tuning (depth of 6 trees, 500 rounds, 
learning rate of .1).  To compare the results more fairly with the regression models, the same 
random forest configuration was run on the transformed data resulting in R2=.550 and an RMSE=.06. 
Figure 7 is a plot of the observed claims versus the random forest predicted claims for the training 
and unobserved test set data.  From this plot, it appears reasonable to forecast demand for opioid 
inpatient services based on factors important to the random forest model. The implication for 
policymakers at the state and local level is that resource allocation to treat opioid abuse might 
reasonably be based on these models.  
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Figure 7. Predictions vs. observations for the claim data based on an extreme gradient boosting 
random forest provides reasonable predictive accuracy. The R2 for the fit on the entirety of the data 
using the model built only on the training set is .965, while the R2 for the fit on the test set is .878. 

Figure 8 is a top vs. bottom plot of the gain (improvement of an estimate when a feature is used 
in a tree) and cover (the average proportion of samples affected by splitting using this feature) for 
the top five items in the importance matrix. The most important features for predicting the F11 
opioid claims appear to be the staffed beds (10.1% gain and 5.5% cover), surgeries (9.8% gain and 
3.6% cover), and liabilities (7.3% gain and 6.2% cover). Most interesting is that workload and 
financial variables are the most explanatory. Table 5 shows the top 10 most important features by 
gain. Because of their predictive accuracy, random forests may be used by policymakers to assign 
funds and resources to states and localities based on the estimated inpatient demand. 
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Figure 8.  The gain chart (right) and the cover chart (left) show that hospital overall workload and 
financial variables are explanatory to opioid F11 admissions.  Abbreviations are in Table 3.  
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Table 5. This table provides the gain for the top 10 most important features. 

Feature Gain 
Staffed Beds 10.09% 

Surgeries 9.79% 
Liabilities 7.27% 

Affiliated Physicians 7.07% 
Net Income 6.54% 

ER Visits 5.46% 
% Medicare/caid 5.32% 

Employees 5.20% 
Year 2018 5.04% 

Illinois 4.35% 

Random forests seek out estimates for each tree to help predict what the demand will be.  The 
splits are not necessarily in the direction one might assume.  The purpose of the explanatory models 
is to assess those workload, financial, technical, geographical-temporal variables that might be 
useful in estimating which facilities experience demand for ICD-10 opioid admissions. The presence 
of variables in the tree splits suggest importance only, not directionality.  Given that the forest 
model predicts unseen data with .878% accuracy, it seems reasonable to assume that policymakers 
can rely on the forest for funding allocation determination.  The initially explanatory models have 
outstanding predictive power.   

4. Discussion 

The opioid abuse problem in the United States is non-static.  While the US may have seen a 
decline in prescriptions from 2012 to the present, the average days of supply per prescription has 
increased [32] and illicit provider activity continues.  The contribution of this illicit activity to the 
problem is likely to intensify the epidemic, which requires no additional assistance. In fact, a March 
2018 CDC report showed a 35% increase in ER visits for the 16 states most affected by opioids. 
[33]Policymakers need to consider additional provider controls to ensure that opioids are 
distributed in accordance with the law. 

The GIS mapping of F11 ICD-10 cases through 2018 suggests that the intensity of the epidemic 
is not fading and that there are new growth areas emerging including areas like Salt Lake City, 
Phoenix, and Las Vegas as evidenced by the orange-red, 75th percentile and above mapping. 
Policymakers should consider funding prevention, treatment, and interdiction activities according 
to the GIS trends and demand for inpatient services and should focus analytical techniques to the 
most highly afflicted cities to target illicit activity by providers.  

The gradient-boosted random forest model was effective in estimating the demand for inpatient 
services associated with ICD-10 F11. This type of model may be used policymakers for the allocation 
of resources and funding to appropriate states, zip codes, or even hospitals.  The model suggests 
that hospital technical and workload factors are important in determining the demand for inpatient 
services. Specifically, the most important features for predicting the F11 opioid claims appear to be 
the staffed beds (10.1% gain and 5.5% cover), surgeries (9.8% gain and 3.6% cover), and liabilities 
(7.3% gain and 6.2% cover).  Further analysis of facilities with high demand might be indicative of 
illicit actors in the community, either individual or otherwise.  Such a finding would help prioritize 
interdiction efforts (enforcement and prevention) and potentially reduce the requirement for 
treatment, treatment that cost the Federal Government alone $7.4 billion in 2018. 

5. Conclusions 

This research is largely descriptive and explanatory in nature, yet it provides some insights 
about the spread of the opioid epidemic over time and space. In this study, we found that met 
demand for opioid admissions has concentrations in Chicago, Illinois and large swaths of New 
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Jersey.  We also found emerging areas of increased demand in Washington, DC; Atlanta, GA; and 
areas of Kentucky, Indiana, and Ohio based upon map analysis.  Random forest models were able 
to effectively predict ICD-10 opioid claims with high accuracy (R2=.878), and staffed beds, the 
number of surgeries performed, organizational liabilities, and the number of affiliated providers 
were the most important features in doing so. 

Limitations of this study include the fact that some locations and states (e.g., Texas, Florida, and 
California) are likely to experience higher admissions, as they may be associated with opioid 
inpatient treatment destinations.  The exact zip code of admission may not reflect the zip code of 
occurrence. The allocation of federal and state resources for inpatient opioid medical services should 
still reflect the inpatient demand. Further, allocating resources based on inpatient demand will not 
capture unmet demand, and some demand may exist in specific areas due to higher bed capacities 
per capita.  In other words, it is likely that there are areas which should have higher inpatient 
census for opioid abuse but do not have the requisite available bed capacity.  

This battle is likely to continue for the near future, and with limited assets, policymakers will 
have to use techniques like those presented here to allocate resources for supply-side and 
demand-side interventions (prevention and enforcement).  While the research only focused on 
inpatient admission (exceedingly resource intensive), analogous studies for outpatient visits and 
deaths might be done. This research team will continue describing, explaining, and forecasting 
opioid-related incidents.  
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Appendix 1, Opioid-Related ICD-10 Codes 

F11 Opioid related disorders F11.24 …… with opioid-induced mood disorder 

F11.1 Opioid abuse 
F11.25 Opioid dependence with opioid-induced 

psychotic disorder 
F11.10 …… uncomplicated F11.250 …… with delusions 

F11.11 …… in remission F11.251 …… with hallucinations 
F11.12 Opioid abuse with intoxication F11.259 …… unspecified 

F11.120 …… uncomplicated 
F11.28 Opioid dependence with other opioid-induced 

disorder 

F11.121 …… delirium 
F11.281 Opioid dependence with opioid-induced 

sexual dysfunction 

F11.122 …… with perceptual disturbance 
F11.282 Opioid dependence with opioid-induced 

sleep disorder 

F11.129 …… unspecified 
F11.288 Opioid dependence with other 

opioid-induced disorder 
F11.14 …… with opioid-induced mood 

disorder 
F11.29 …… with unspecified opioid-induced 

disorder 
F11.15 Opioid abuse with opioid-induced 

psychotic disorder F11.9 Opioid use, unspecified 

F11.150 …… with delusions F11.90 …… uncomplicated 
F11.151 …… with hallucinations F11.92 Opioid use, unspecified with intoxication 

F11.159 …… unspecified F11.920 …… uncomplicated 
F11.18 Opioid abuse with other 

opioid-induced disorder 
F11.921 …… delirium 

F11.181 Opioid abuse with opioid-induced 
sexual dysfunction 

F11.922 …… with perceptual disturbance 
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F11.182 Opioid abuse with opioid-induced 
sleep disorder 

F11.929 …… unspecified 

F11.188 Opioid abuse with other 
opioid-induced disorder 

F11.93 …… with withdrawal 

F11.19 …… with unspecified 
opioid-induced disorder 

F11.94 …… with opioid-induced mood disorder 

F11.2 Opioid dependence 
F11.95 Opioid use, unspecified with opioid-induced 

psychotic disorder 
F11.20 …… uncomplicated F11.950 …… with delusions 

F11.21 …… in remission F11.951 …… with hallucinations 
F11.22 Opioid dependence with 

intoxication F11.959 …… unspecified 

F11.220 …… uncomplicated 
F11.98 Opioid use, unspecified with other specified 

opioid-induced disorder 

F11.221 …… delirium 
F11.981 Opioid use, unspecified with opioid-induced 

sexual dysfunction 

F11.222 …… with perceptual disturbance 
F11.982 Opioid use, unspecified with opioid-induced 

sleep disorder 

F11.229 …… unspecified 
F11.988 Opioid use, unspecified with other 

opioid-induced disorder 

F11.23 …… with withdrawal 
F11.99 …… with unspecified opioid-induced 

disorder 
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