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Abstract: Background: As the opioid epidemic continues, understanding the geospatial, temporal
and demand patterns is important for policymakers to assign resources and interdict individual,
organization, and country-level bad actors. Methods: GIS geospatial-temporal analysis and
extreme-gradient boosted random forests evaluate ICD-10 F11 opioid-related admissions and
admission rates using geospatial analysis, demand analysis, and explanatory models, respectively.
The period of analysis was January 2016 through September 2018. Results: The analysis shows
existing high opioid admissions in Chicago and New Jersey with emerging areas in Atlanta, Salt
Lake City, Phoenix, and Las Vegas. High rates of admission (claims per 10,000 population) exist in
the Appalachian area and on the Northeastern seaboard. Explanatory models suggest that hospital
overall workload and financial variables might be used for allocating opioid-related treatment
funds effectively. Gradient-boosted random forest models accounted for 87.8% of the variability of
claims on blinded 20% test data. Conclusions: Based on the GIS analysis, opioid admissions appear
to have spread geographically, while higher frequency rates are still found in some regions.
Interdiction efforts require demand-analysis such as that provided in this study to allocate scarce
resources for supply-side and demand-side interdiction: prevention, treatment, and enforcement.
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1. Introduction

In the 1990’s, pharmaceutical companies began marketing to the medical community that
opioids were non-addictive, and medical providers began prescribing them at a higher rate [1]. This
marketing opened the door to the U.S. opioid epidemic. Federal funding alone to fight this epidemic
was estimated at $7.4 billion in 2018 [2].

The U.S. Department of Health and Human Services estimates that 91,548 people died from
opioids, synthetic opioids, and heroine in 2016 [1]. The National Survey on Drug Use and Health
estimated that 4.2% of the U.S. population misused opioids in 2017 [3]. The toll in morbidity and
mortality is facilitated by over-prescription and bad actors, both individuals and countries.

In April of 2019, 31 physicians, 7 pharmacists, 8 nurse practitioners, and 7 other licensed
medical professionals in 7 different states were charged as part of a law enforcement investigation of
providing opioid prescriptions for cash or sex. These individuals prescribed more than 32 million
pills [4]. In May 2019, a podiatrist was convicted of operating an opioid pill mill [5]. In another
example from May 2019, a Virginia doctor was convicted on 861 counts of drug distribution. The
oxycodone and oxymorphone that the physician prescribed to a West Virginian patient resulted in
her death [6]. As a final example, 162 individuals including doctors were charged for prescribing
and distributing opioids in June of 2018 [7]. The problem with bad actors is real and widespread, yet
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the distribution of opioid and opioid-like products outside of the medical system may be an even
larger problem.

China is the largest US source of illicit fentanyl and fentanyl-like substances, and it distributes
that product through Canada, Mexico, and directly to the US [8]. The reason for China’s involvement
in our markets is that its pharmaceutical system is poorly regulated [9] and that its manufacturers
create new and uncontrolled substances to stay ahead of regulators [10]. One estimate is that Chinese
fentanyl and derivatives supply 90% of the illicit product in the United States [11]. Even so, Mexico’s
two largest criminal organizations traffic the product largely through San Diego. Dominican
traffickers supply the heavily stricken Northeast [12].

The net result of over-prescription, illicit actors, and illicit suppliers is an increase in morbidity
and mortality. Policy considerations for addressing these problems and providing funding for
prevention, treatment, and enforcement require an understanding of the geospatial, temporal spread
of the epidemic as well as models of demand for services. This research describes the geospatial,
temporal spread of opioid inpatient demand and prevalence and provides explanatory models for
opioid admissions. Actual met demands might be aggregated to estimate state-level admissions as
well as resource requirements. The significance of this research is that it provides decision support
for policymakers by identifying areas which require additional enforcement as well as funding.

2. Experimental Section

2.1. Data

Data for this research derive primarily from Definitive Healthcare, through the hospital
“inpatient diagnosis analytics” query. Only principal diagnoses ICD-10 codes beginning with F11
were used. F11 codes are opioid related disorders. Complete annual data were available for 2016 and
2017; 2018 data were only available through September. The Definitive Healthcare data largely
derive from the Centers for Medicare and Medicaid Services [CMS] Standard Analytical Files [SAF]
as well as organization estimates all-payor claims through parochial algorithms [13]. The Census
Bureau provided population data for rate calculations. [14]

2.2. Geospatial Analysis

Heat maps are first used to plot zip-code level claims count data for 2016 through 2018.
Subsequently, heat maps illustrate county-level opioid-related inpatient claim per 10,000 population
for the same years. For rates, county-level data were selected rather than zip-code level data, as
zip-code level data resulted in outliers that influenced interpretation. (Some zip codes have very
small populations, yet still have admissions.) The heat maps illustrate the intensity of opioid
admissions and rates by color-coding map areas. When used properly, they can highlight
geographic variation [15]. The use of heat maps in healthcare is ubiquitous, as they have been used
for improving minority health surveillance [16], examining birth outcomes [17], and many other
applications. The value in geospatial-temporal analysis is the graphical depiction of change in
demand over time. The significance of changes for 2016 to 2017 claims and claim rates, years with
complete data, are evaluated by a non-parametric t-test, the Wilcoxon matched pairs signed rank
test, since parametric assumptions such as normality, homogeneity of variance, and independence of
do not hold [18]. Matching is performed to account for the geographic unit (zip codes for claims
and counties for claim rates).

2.3. Explanatory Analysis

Stepwise linear regression, lasso regression, robust regression, elastic net regression, and
extreme gradient-boosted random forests estimate the ICD-10 F11 opioid admissions. We built
multiple models on an 80% training set to see which one(s) perform best in explaining / forecasting a
20% test set, thus investigating bias-variance trade-off [19]. While regression models provide
coefficient estimates for variables, random forests provide the importance of each feature. All
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models are exploratory to see which workload, financial, technical, and geospatial-temporal features
might be explanatory and thus useful for allocation of resources by policymakers.

Stepwise regression models add and subtract variables based on criteria to produce reasonable
multiple regression models. In this research, the Akaike Information Criterion (AIC) is used to
select the stepwise model using a forward and backwards method. In this method, variables are
added in sequence and removed if they no longer contribute significantly to the model’s
performance [20].

Lasso regression is a constrained regression that penalizes any model with too many variables
using an L1-norm penalty function (absolute value). Ridge regression is similar to Lasso regression
but penalizes using squared coefficient estimates (the L2-norm). Elastic combines both L1 and L2
penalty functions. Equations 1 through 4 are the parameter estimation models for linear, lasso, ridge,
and elastic net regression [20]. The parameter A in all models is a Lagrangian multiplier, while the
parameter o in Equation 4 mixes the squared penalty with the absolute value penalty.

14
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The advantages of regression-type models are that coefficients are easily interpreted. Data,
however, need to be scaled, and no one single approach may be best. Regression-type models are
unable to find logical dichotomous or polytomous splits in variables that provide explanatory power
without researcher specification.

Random forests are a machine learning technique that use an ensemble of de-correlated tree
models. The tree forecasts are averaged (ensembled) to produce an estimate. A tree model
classifies counts of observations by splitting variables based on some decision criteria. Trees must be
pruned or truncated, so that they do not overfit [20]. Figure 1 is an example of a tree built from the
Definitive Healthcare F11 dataset with depth of two branches. The tree splits observations by
surgeries less than / greater than or equal to 2600.5 then again by region = Middle Atlantic and state
equal to New York. The “<0 .5” indicates that the region is not the Middle Atlantic and that the
state is not New York, as those are dichotomous variables, as estimates for dichotomous variables
are not integers in tree models.
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Figure 1. An example of a tree model to classify opioid admissions.
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Gradient boosted random forests use nonlinear optimization to optimize a cost function based
on the (pseudo)-residuals of a function. The residuals of each tree are re-fitted with the possible
independent variables in other tree models to estimate a better fit. A more complete discussion of
gradient boosting is provided in The Elements of Statistical Learning [20].

The advantages of gradient boosted random forests are that they are scale-invariant, that they
find relationships (splits) which the researcher might miss, and that they generate importance
metrics allowing researchers to see which variables are explanatory. The disadvantage is that these
models will overfit the data if the research does not restrict the growth of the trees. Determining
whether a forest is overfit is evaluated by cross-validation (e.g., the test set.)

2.4. Variables

All variables derive from the Definitive Healthcare dataset [13]. The primary variable of interest
is the inpatient admissions for ICD-10 code F11 (“Opioid-Related Disorders”) which are measured
by hospital claims associated with opioids. There are 55 opioid-related codes used in this study
(Appendix 1). This variable is measured at the hospital level and aggregated by zip code / year for
geospatial mapping. The inpatient claims provide a measure of the met demand for services and is
suggestive of which areas may need additional funding and resources from health policy
decisionmakers.

Independent variable groups evaluated in the explanatory models included financial variables,
workload variables, technical variables, and geo-spatial temporal variables. All the variables in the
groups are measured at the hospital level by year and reflect opioid and non-opioid contributions.
The financial variables are hospital-level and include net patient revenue, net income, cash on hand,
assets, and liabilities. Workload variables are also hospital-level and include discharges, emergency
room Vvisits, surgeries, and acute bed days. Technical variables include staffed beds, affiliated
physicians, employees, percent Medicare or Medicaid patients, ownership status, medical school
affiliation, and hospital type. These are also hospital-level variables. Table 1 provides the
appropriate definitions and scope of these variables.

Table 1. Independent variables for hospitals, all patient-types

Financial Variables Defined Measurement
Net Patient Revenue Gross Patient Revenue less attributable expenses Ratio
Net Income Income less costs, expenses, and taxes Ratio
Cash on Hand Cash available to the organization Ratio
Assets Company owned Ratio
Liabilities Company owes Ratio
Workload Variables Defined Measurement
Discharges Number of patients discharged from admission Integer
ER Visits Number of emergency room visits Integer
Surgeries Number of surgeries performed Integer
Acute Days Number of acute bed days of hospital Integer
Technical Variables Defined Measurement
Staffed Beds Number of staffed beds operated by hospital Integer
Affiliated Physicians Number of physicians affiliated with hospital Integer
Employees Number of direct employees of hospital Integer
% Medicare /caid Patients Percent of patients reimbursing through Medicare/caid Ratio
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Ownership Governmental, Proprietary, Voluntary Non-Profit Categorical
Medical School Affiliation None, Limited, Major, Graduate Affiliation Categorical
Children, Critical Access, Long-Term, Psychiatric, Rehab,
Hospital Type Short-Term Categorical

Geographic / temporal variables included the Census Bureau region [21] (Table 2), the urban /
rural status, the state, and the year. These models will identify characteristics of the facilities
providing inpatient care to opioid abusers. As the epidemic spreads or diffuses, these features
might be used to anticipate which local facilities are likely to experience an increase in care for these
patients.

Table 2. Census Bureau geographic regions

Region 1: Northeast
New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont)
Mid-Atlantic (New Jersey, New York, and Pennsylvania)
Region 2: Midwest
East North Central (Illinois, Indiana, Michigan, Ohio, Wisconsin)
West North Central (Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota)
Region 3: South
South Atlantic (Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, Washington
D.C., West Virginia)
East South Central (Alabama, Kentucky, Mississippi, Tennessee)
West South Central (Arkansas, Louisiana, Oklahoma, Texas)
Region 4: West
Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming)
Pacific (Alaska, California, Hawaii, Oregon, Washington)

2.5. Software

All analysis was performed in R Statistical Software [22] and Microsoft Excel 2016 [23].
Packages used for the primary analysis in R Statistical Software are cited.

3. Results

3.1. Descriptive Statistics-Missing Data

Missing data for both ER visits and surgeries for psychiatric hospitals were imputed with zeros.
The assumption for this imputation was simply that these values were true zeros (i.e., no ER for
some facilities and no psychiatric surgery for others) rather than missing data. While this
assumption may not hold, only 3% of the data were missing even if this imputation was not done.
After the imputation of missing data with zeros for ER visits and surgeries, a missingness map
depicts that only 1% of the data were missing. Because the percent of missing was so small, means
were imputed rather than leveraging more sophisticated techniques like multiple imputation. The
total number of valid observations for hospital-level data was N=2,090.

3.2. Descriptive Statistics-Quantitative Data

Descriptive statistics for the quantitative data are in Table 3. The average number of ICD-10
claims for F11 was 103.47 with a median of 33; however, the standard deviation was 198.19
indicating significant variability. The average reporting hospital had 274 beds, 14K discharges, 50K
ER visits, 10K surgeries, 72K acute days, 385 affiliated physicians, 2K employees, and had 42% of the
claims paid by Medicare / Medicaid. The average facility had $527K in payments for F11, $1.5M in
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charges, $403M net patient revenue, $30.1M net income, $37M cash on hand, $524M in assets, and
$213M in liabilities. On average, a facility was paid about 35% of charges. (Neither payments nor

charges were used in models, as they derive directly from claims.)

Table 3. Descriptive statistics for the quantitative variables.

N=2090 Variable Name Mean SD Median 10% Trimmed
Claims NumClaims 103.47 198.19 33 57.14
Staffed Beds StaffedBeds 273.53 227.59 214 240.19
Discharges Discharges 14,039.67  13,572.68  10,306.00 11,934.51
ER Visits ERVisits 50,642.37  49,459.27  43,564.50 44,229.24
Surgeries Surgeries 10,113.16 12,165.17 7,142.00 7,992.79
Acute Bed Days AcuteDays 72,140.06  72,658.04  49,710.00 59,421.91
Physicians AffPhysicians 384.89 391.09 312 318.58
Employees Employees 1,968.09 2,458.91 1,222.50 1,475.25
% Medicare/caid PerMedMed 42.00% 16.00% 42.00% 42.00%
Net Patient Revenue ($1M) NetPatRevenue $403.07 $519.72 $247.83 $298.78
Net Income ($1M) NetIncome $30.25 $109.98 $8.12 $18.94
Cash on Hand ($1M) Cash $36.59 $182.67 $1.35 $10.53
Assets (31 M) Assets $524.23 $961.34 $206.53 $317.09
Liabilities ($1 M) Liabilities $212.69 $542.10 $70.82 $125.23

3.3. Descriptive Statistics-Categorical Data

The modal Census Bureau region for hospitals reporting F11 claims was the South Atlantic (373,
17.8%) followed closely by the East North Central (366, 17.5%). The bar chart of the hospital
frequencies by Census Bureau region is Figure 2. Most of the admissions for F11 codes were in
urban areas (1732, 82.9%) with the remainder being areas classified as rural. The South Atlantic
region extends from Florida to Washington, D.C., where there is a significant intensity of opioid
abuse. The East North Central region includes Chicago, which has extremely high intensity of

abuse.
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Figure 2. Bar chart of hospital frequencies by Census Bureau region.
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Most of the hospitals reporting these admissions were short-term acute care facilities (1682,
80.5%) with psychiatric hospitals being the next most common type (385, 18.4%). The majority had
no affiliation with a medical school (1159, 55.5%), although 21.2% (443) reported a major affiliation.
In terms of ownership, 965 (46.2%) were voluntary non-profit non-church owned, 567 (27.1%) were
proprietary corporation owned, and 279 (13.3%) were voluntary non-profit church owned. The
observations were split nearly evenly between 2016 and 2017 with 1051 and 1039 observations
respectively. Most interestingly to policymakers is that the non-profit community of hospitals
appears to provide the majority of inpatient care for opioid patients.

3.4. Descriptive Statistics-Correlational Analysis

Hierarchical clustered correlational analysis [24], a method which sorts the correlation matrix
by the strength of the bivariate associations, revealed strong relationships among most of the
workload and financial variables. The strongest correlation is between discharges and acute days
(r=.97), while the next strongest correlation is between employees and net patient revenue (r=.97).
All correlations in Figure 3 are statistically significant at the o=.05 level unless an “X” appears in the
correlation plot. (Variable names versus abbreviations are in Table 2.) The number of claims
appears to be weakly correlated with other variables indicating that the relationships are either
nonlinear or not present. What is also interesting from a policy perspective is that as the facility
increases in workload and financial metrics, there is a negative relationship with the number of
inpatient admissions for F11. This would seem to indicate that smaller hospitals are bearing the
brunt of the opioid epidemic for inpatient services. The effect size is small and requires

investigation.
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Figure 3. The correlation plot reveals strong relationships among financial and workload variables.
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3.5. Exploratory Data Analysis-Feature Engineering and Transformations

Random forest regression models are scale invariant; however, the other methods used in this
research are not [20]. The “car” package in R [25] facilitated a multivariate Box-Cox transformation
for all modeled quantitative variables simultaneously after adjustment. Box-Cox transformations
require that variables be strictly positive definite. =~ With positive definite variables, the
transformation seeks power transformations (powers of 1) that make the data multivariate normal
enough for use in traditional linear models [26]. This multivariate transformation is particularly
useful for random effects models, models where the independent variables are assumed to be not
fully observed or the result of random variable draws. The likelihood ratio test of the null
(multivariate normal) vs. the alternative (not multivariate normal) after location transformation to
make all variables positive definite resulted in a p-value of 1.0. The actual vector of transformations
follows: A={-.39, .31, .38, .24, .23, .34, .25, .14, .1, .21, .22, .48, .21, .71 }for x={number of claims,
number of staffed beds, number of discharges, ER visits, total surgeries, acute days, net patient
revenue, net income, cash, assets, liabilities, affiliated physicians, employees, percent
Medicare/Medicaid}, respectively. Figure 4 is a correlation plot [27] post-transformation which
reveals the strength, direction, and bivariate shape of the bivariate normal between variable pairs.
With successful transformation, the forecasting using linear methods is likely to improve.
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Figure 4. The correlation plot post-transform depicts the bivariate pairs.

3.6. Geospatial Analysis Results-Zip Code Unit of Analysis

Geospatial heat map analysis of F11 claims by year and zip code is shown in the Figure 5 panels.
These maps were generated by a new feature of Microsoft Excel (3D Map), which links to its Bing
mapping service [23]. This study is concerned mostly with supporting resource allocation decision
making, so counts of opioid admissions were considered more important than population rates of
admissions, although both analyses are provided. With counts, it becomes possible to visualize a

proxy for service demand.
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The geospatial-temporal heat maps for counts were generated based on scaling to
approximately the maximum number of claims experienced in any given year (3000). The meaning
of the color ranges is shown in Table 4. The inpatient met demand associated with the opioid

epidemic becomes clear with geospatial analysis.

Table 4. Color meanings of the heat maps for counts

Color Percentile Value Lower Value Higher Value
Blue 0% 0 0
Blue Green (0, 25%) 1 749
Green 25% 750 750
Green Yellow (25%,50%) 751 1499
Yellow 50% 1,500 1,500
Yellow Orange (50%,75%) 1,501 2,249
Orange 75% 2,250 2,250
Orange Red (75%, 100%) 2,251.00 2,999.00
Red 100% 3,000.00 3,000.00
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Figure 5. Excel-based [20] heat panel maps of the opioid admissions (ICD-10 F11) for 2016, 2017,
and 2018 (extrapolated from September) show emerging areas of interest..

In 2016, the level of intensity for admissions is strongest around Chicago, Illinois and large
swaths of New Jersey, where drug overdose is its leading cause of accidental death [28]. The heat
map depicts extreme intensity (dark red, near the 100™ %) in Chicago. Areas above the median
admission rate (yellow) appear to be Washington, DC; Atlanta, GA; and areas of Kentucky, Indiana,
and Ohio.

By 2017, the area of intensity around New Jersey had grown, Atlanta saw more intensity, and
Chicago remained the most intense. The usage in Los Angeles had expanded but remained
sub-intense. Areas in Kentucky, Indiana, and Ohio remained problematic.

Data for 2018 were complete only through September, so they are excluded in the explanatory
modeling. However, linear extrapolation produced the 2018 chart which indicates significant
intensity in Chicago, New Jersey, and Atlanta. Montana, the Dakotas, Iowa, and Wyoming appear to
be inoculated against the epidemic.

Year over year with 2018 extrapolated, there has been a decline in the number of claims. In 2016,
the estimated number of claims was 112,816, and that value dropped to 103,436 in 2017. Using linear
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extrapolation, the estimated number of claims for 2018 is 71,414, although such an extrapolation
likely does not reflect later reporting of previous claims and is thus an underestimate.

A Wilcoxon signed ranks test for complete opioid claims data (2016 and 2017) suggests
differences between the years across zip codes with V=405660, p<.001. This result indicates that
opioid-related claims from 2017 are statistically lower than 2016 when controlling for the zip code.
The approximate 8.3% decrease in 2017 was statistically significant.

Overall, the maps are suggestive of areas where intervention efforts are needed most or are
emerging. From a policy perspective, opioid prescriptions in the highest afflicted areas like Illinois
and New Jersey should be screened more closely than those (say) in Montana, South Dakota, and
North Dakota. Machine learning techniques should be used to identify outliers similar to Ekin et al.
[29]. Further, interdiction efforts should focus on Chicago as a major transportation hub along with
the emerging problem city, Atlanta, for the same reason, and (of course) New Jersey.

It is interesting that while California and Florida have large populations, none of their major
population centers reached the same level of high intensity scales of other large cities. The questions
then become how these patterns might be explained and possibly forecast, and what are the federal
and local policy implications for funding based on the expansion / diffusion associated with the
epidemic.

While the counts analyzed and graphed above show areas of interest, rates of claims per 10,000
provide a slightly different descriptive viewpoint. Using county-level population data from the
Census Bureau [14], heat maps were generated for 2016-2018. County-level data were used as
several zip codes had sparse populations resulting in many outliers. Figure 6 provides the maps for
these years. These maps have gradients as specified in Table 4 columns 1 and 2 and are scaled to a
maximum of 100+ opioid claims per 10,000 cases for comparison purposes.
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Figure 6. ICD-10 F11* claims per 10,000 population by year

Map 1 of Figure 6 (Year 2016) highlights five locations that have intensities of 100 / 10,000
population or more. The highest intensity claims rate (424.47) is associated with a small county,
Colquitt, Georgia. In 2016, this county of 45,492 had an estimated 1,931 claims for a rate of 424.47
per 10,000 population. Norfolk City, Virginia; Bourbon, Kentucky; Bullock, Alabama; and Warren,
Mississippi also had claim rates per 10,000 rates. Map 1 also highlights high claim rates in
Appalachia.

Map 2 of Figure 6 (Year 2017) illustrates the diffusion or spread of the problem. While counts
may have decreased since 2016, intensity appears to have increased, particularly in the Appalachian
region and on the Northeastern seaboard. Diffusion is visible as evidenced by areas of intensity that
have spread to Missouri.
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Finally, map 3 of Figure 6 (Year 2018) is based on extrapolated data, as information was only
available through September. Still, the claim rates per 10,000 population for opioid admissions
appear to be heaviest in the Appalachian Mountain regions.

Year over year, the average opioid admissions claim per 10,000 population has declined from
6.1 per 10,000 in 2016 to 5.8 per 10,000 in 2017. The estimate for 2018 is 4.5 per 10,000. While the
average rates have declined, there has been noticeable diffusion based on an analysis of the heat
maps.

A Wilcoxon signed ranks test for complete opioid claims rate data (2016 and 2017) suggests no
differences between the years across counties with V=109990, p<.097. This result indicates that
opioid-related claims rates from 2017 are not statistically different from 2016 when controlling for
the county.

Figure 5 and Figure 6 illustrate different sides of the opioid epidemic problem. Figure 5
provides resource allocation decision-making for treatment, while Figure 6 provides decision
support for enforcement and prevention. Both counts and rates may be useful in supporting
resource allocation decision making.

3.7. Explanatory Modeling Results

The first explanatory model, stepwise regression, investigated the number of inpatient opioid
claims as a function of the independent variables. Models were built on an 80% training set and
applied to 20% blinded test set for analysis of performance. The final stepwise model, the one with
the smallest Akaike Information Criterion, included 1) staffed beds, 2) discharges, 3) emergency
room visits, 4) surgeries, 5) assets, 6) affiliated physicians, 7) percent Medicare / Medicaid, 8) medical
school affiliation, 9) hospital type, 10) year, and 11) state. Unfortunately, this model was only able to
account for 17.73% of the dependent variable’s variability. The root mean squared error (RMSE) of
the forecast predictions was 1.76. The largest contributions to the model were from the ER Visits
(Sum of Squares [SS]=1.49, 1 degree of freedom, df) and from the state (55=1.25, 51 df). All variables
in the model were statistically significant largely, due to sample size. The overall effect size,
however, is small.

Lasso, ridge, and elastic net regression models built using “glmnet” [30] provided only slightly
more variance capture with R?= {17.82%, 17.77%, 17.77%)}, respectively. The RMSE’s were 1.75 for all
three models. The elastic net selected a lasso model by assigning parameter 0=0. These models
produced are essentially equivalent to the stepwise regression analysis.

Gradient-boosted random forests [31] performed well on the unobserved test set and
untransformed data, achieving an R?=.878 with hyperparameter tuning (depth of 6 trees, 500 rounds,
learning rate of .1). To compare the results more fairly with the regression models, the same
random forest configuration was run on the transformed data resulting in R?=.550 and an RMSE=.06.
Figure 7 is a plot of the observed claims versus the random forest predicted claims for the training
and unobserved test set data. From this plot, it appears reasonable to forecast demand for opioid
inpatient services based on factors important to the random forest model. The implication for
policymakers at the state and local level is that resource allocation to treat opioid abuse might
reasonably be based on these models.
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Figure 7. Predictions vs. observations for the claim data based on an extreme gradient boosting
random forest provides reasonable predictive accuracy. The R? for the fit on the entirety of the data
using the model built only on the training set is .965, while the R? for the fit on the test set is .878.

Figure 8 is a top vs. bottom plot of the gain (improvement of an estimate when a feature is used
in a tree) and cover (the average proportion of samples affected by splitting using this feature) for
the top five items in the importance matrix. The most important features for predicting the F11
opioid claims appear to be the staffed beds (10.1% gain and 5.5% cover), surgeries (9.8% gain and
3.6% cover), and liabilities (7.3% gain and 6.2% cover). Most interesting is that workload and
financial variables are the most explanatory. Table 5 shows the top 10 most important features by
gain. Because of their predictive accuracy, random forests may be used by policymakers to assign
funds and resources to states and localities based on the estimated inpatient demand.
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Figure 8. The gain chart (right) and the cover chart (left) show that hospital overall workload and
financial variables are explanatory to opioid F11 admissions. Abbreviations are in Table 3.
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Table 5. This table provides the gain for the top 10 most important features.

Feature Gain
Staffed Beds 10.09%
Surgeries 9.79%
Liabilities 7.27%
Affiliated Physicians = 7.07%
Net Income 6.54%
ER Visits 5.46%

% Medicare/caid 5.32%
Employees 5.20%
Year 2018 5.04%
Illinois 4.35%

Random forests seek out estimates for each tree to help predict what the demand will be. The
splits are not necessarily in the direction one might assume. The purpose of the explanatory models
is to assess those workload, financial, technical, geographical-temporal variables that might be
useful in estimating which facilities experience demand for ICD-10 opioid admissions. The presence
of variables in the tree splits suggest importance only, not directionality. Given that the forest
model predicts unseen data with .878% accuracy, it seems reasonable to assume that policymakers
can rely on the forest for funding allocation determination. The initially explanatory models have
outstanding predictive power.

4. Discussion

The opioid abuse problem in the United States is non-static. While the US may have seen a
decline in prescriptions from 2012 to the present, the average days of supply per prescription has
increased [32] and illicit provider activity continues. The contribution of this illicit activity to the
problem is likely to intensify the epidemic, which requires no additional assistance. In fact, a March
2018 CDC report showed a 35% increase in ER visits for the 16 states most affected by opioids.
[33]Policymakers need to consider additional provider controls to ensure that opioids are
distributed in accordance with the law.

The GIS mapping of F11 ICD-10 cases through 2018 suggests that the intensity of the epidemic
is not fading and that there are new growth areas emerging including areas like Salt Lake City,
Phoenix, and Las Vegas as evidenced by the orange-red, 75 percentile and above mapping.
Policymakers should consider funding prevention, treatment, and interdiction activities according
to the GIS trends and demand for inpatient services and should focus analytical techniques to the
most highly afflicted cities to target illicit activity by providers.

The gradient-boosted random forest model was effective in estimating the demand for inpatient
services associated with ICD-10 F11. This type of model may be used policymakers for the allocation
of resources and funding to appropriate states, zip codes, or even hospitals. The model suggests
that hospital technical and workload factors are important in determining the demand for inpatient
services. Specifically, the most important features for predicting the F11 opioid claims appear to be
the staffed beds (10.1% gain and 5.5% cover), surgeries (9.8% gain and 3.6% cover), and liabilities
(7.3% gain and 6.2% cover). Further analysis of facilities with high demand might be indicative of
illicit actors in the community, either individual or otherwise. Such a finding would help prioritize
interdiction efforts (enforcement and prevention) and potentially reduce the requirement for
treatment, treatment that cost the Federal Government alone $7.4 billion in 2018.

5. Conclusions

This research is largely descriptive and explanatory in nature, yet it provides some insights
about the spread of the opioid epidemic over time and space. In this study, we found that met
demand for opioid admissions has concentrations in Chicago, Illinois and large swaths of New
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Jersey. We also found emerging areas of increased demand in Washington, DC; Atlanta, GA; and
areas of Kentucky, Indiana, and Ohio based upon map analysis. Random forest models were able
to effectively predict ICD-10 opioid claims with high accuracy (R?=.878), and staffed beds, the
number of surgeries performed, organizational liabilities, and the number of affiliated providers
were the most important features in doing so.

Limitations of this study include the fact that some locations and states (e.g., Texas, Florida, and
California) are likely to experience higher admissions, as they may be associated with opioid
inpatient treatment destinations. The exact zip code of admission may not reflect the zip code of
occurrence. The allocation of federal and state resources for inpatient opioid medical services should
still reflect the inpatient demand. Further, allocating resources based on inpatient demand will not
capture unmet demand, and some demand may exist in specific areas due to higher bed capacities
per capita. In other words, it is likely that there are areas which should have higher inpatient
census for opioid abuse but do not have the requisite available bed capacity.

This battle is likely to continue for the near future, and with limited assets, policymakers will
have to use techniques like those presented here to allocate resources for supply-side and
While the research only focused on
inpatient admission (exceedingly resource intensive), analogous studies for outpatient visits and

demand-side interventions (prevention and enforcement).

deaths might be done. This research team will continue describing, explaining, and forecasting
opioid-related incidents.
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Appendix 1, Opioid-Related ICD-10 Codes

F11 Opioid related disorders F11.24 ...... with opioid-induced mood disorder

F11.25 Opioid dependence with opioid-induced

F11.1 Opioid abuse

psychotic disorder
F11.10 ...... uncomplicated F11.250...... with delusions
F11.11 ...... in remission F11.251 ...... with hallucinations

F11.12 Opioid abuse with intoxication F11.259 ...... unspecified

F11.2 ioi ith oth ioid-i
F11.120 .. uncomplicated 8 Opioid dependen.ce with other opioid-induced
disorder
F11101 ... delirium F11.281 Opioid dependence w1jrh opioid-induced
sexual dysfunction
F11.282 Opioid dependence with opioid-induced
sleep disorder
F11.288 Opioid dependence with other

opioid-induced disorder

F11.122 ...... with perceptual disturbance

F11.129 ...... unspecified

F11.14...... with opioid-induced mood
disorder
F11.15 Opioid abuse with opioid-induced
psychotic disorder
F11.150 ...... with delusions
F11.151 ...... with hallucinations
F11.159 ...... unspecified
F11.18 Opioid abuse with other
opioid-induced disorder
F11.181 Opioid abuse with opioid-induced
sexual dysfunction

F11.29 ...... with unspecified opioid-induced
disorder

F11.9 Opioid use, unspecified

F11.90 ...... uncomplicated
F11.92 Opioid use, unspecified with intoxication
F11.920 ...... uncomplicated

F11.921...... delirium

F11.922 ...... with perceptual disturbance
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F11.182 Opioid abuse with opioid-induced
sleep disorder
F11.188 Opioid abuse with other
opioid-induced disorder
F11.19...... with unspecified
opioid-induced disorder

F11.929 ...... unspecified
F11.93 ...... with withdrawal
F1194 ...... with opioid-induced mood disorder

F11. . i ith opioid-i
F11.2 Opioid dependence 95 Opioid use, unspecified with opioid-induced

psychotic disorder
F11.20 ...... uncomplicated F11.950 ...... with delusions
F11.21 ...... in remission F11.951 ...... with hallucinations
F11.22 Opioid d d ith
p’101 .ep?n encewt F11.959 ...... unspecified
intoxication

F11.98 Opioid use, unspecified with other specified

opioid-induced disorder

F11.981 Opioid use, unspecified with opioid-induced

sexual dysfunction
F11.982 Opioid use, unspecified with opioid-induced
sleep disorder
F11.988 Opioid use, unspecified with other
opioid-induced disorder
F11.99 ...... with unspecified opioid-induced

F11.220 ...... uncomplicated
F11.221 ...... delirium
F11.222 ...... with perceptual disturbance
F11.229 ...... unspecified

F11.23 ...... with withdrawal

disorder
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